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Abstract— The ordered weighted average (OWA) operator
has been widely used in decision-making. In many situations,
however, providing crisp numbers for either the sub-criteria or
the weights is problematic (there could be uncertainties about
them), and it is more meaningful to provide intervals, type-1
fuzzy sets (T1 FSs), interval type-2 fuzzy sets (IT2 FSs), or
a mixture of all of these, for the sub-criteria and weights.
Two fuzzy extensions of the OWA, ordered fuzzy weighted
averages for T1 FSs and ordered linguistic weighted averages
for IT2 FSs, as wells as procedures for computing them, are
introduced in this paper. They are compared with Zhou et al.’s
T1 and IT2 fuzzy extensions of the OWA. Examples show that
our extensions may give different results from Zhou et al.’s
extensions when the legs of the FSs have intersections. Because
our extensions coincide with the intuition of “FS in its entirety,”
they are the suggested ones to use.

I. INTRODUCTION

The weighted average (WA) is arguably the earliest and

still most widely used form of aggregation or fusion. We

remind the reader of the well-known formula for the WA,

i.e.,

y =

∑n

i=1 xiwi
∑n

i=1 wi

, (1)

in which wi are the weights (real numbers) that act upon the

sub-criteria xi (real numbers). In this paper, the term sub-

criteria can mean data, features, decisions, recommendations,

judgments, scores, etc. In (1), normalization is achieved by

dividing the weighted numerator sum by the sum of all of

the weights.

The ordered weighted average (OWA) operator [5], [16],

[17], [21], [31], [32], [34]–[36], a generalization of the

WA operator, was proposed by Yager to aggregate expert’s

opinions in decision making:

Definition 1: An OWA operator of dimension n is a

mapping y
OWA

: Rn → R, which has an associated set of

weights w = {w1, . . . , wn} for which wi ∈ [0, 1], i.e.,

y
OWA

=

∑n
i=1 wixσ(i)
∑n

i=1 wi

, (2)

where σ : {1, . . . , n} → {1, . . . , n} is a permutation function

such that {xσ(1), xσ(2), . . . , xσ(n)} are in descending order.
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The key feature of the OWA operator is the ordering of the

sub-criteria by value, a process that introduces a nonlinearity

into the operation. It can be shown that the OWA operator

is in the class of mean operators [4] as it is commutative,

monotonic, and idempotent. It is also easy to see that for any

w, mini xi ≤ y
OWA

≤ maxi xi.

The most attractive feature of the OWA operator is that

it can implement different aggregation operators by setting

the weights differently [5], e.g., by setting wi = 1/n it

implements the mean operator, by setting w1 = 1 and wi = 0
(i = 2, . . . , n) it implements the maximum operator, by

setting wi = 0 (i = 1, . . . , n− 1) and wn = 1 it implements

the minimum operator, and by setting w1 = wn = 0
and wi = 1/(n − 2) it implements the so-called olympic

aggregator, which is often used in obtaining aggregated

scores from judges in olympic events such as gymnastics

and diving.

Yager’s original OWA operator [31] considers only crisp

numbers. In many situations [20], [22], [28], however, pro-

viding crisp numbers for either the sub-criteria or the weights

is problematic (there could be uncertainties about them), and

it is more meaningful to provide intervals, type-1 fuzzy sets

(T1 FSs), interval type-2 fuzzy sets (IT2 FSs) [18], or a

mixture of all of these, for the sub-criteria and weights. Fuzzy

extensions of the OWAs are the focus of this paper.

There has been many works on fuzzy extensions of OWAs,

e.g., linguistic ordered weighted averaging [2], [8]–[10] and

uncertain linguistic ordered weighted averaging [29]; how-

ever, for these extensions, only the sub-criteria are modeled

as T1 FSs whereas the weights are still crisp numbers. To

the authors’ best knowledge, Zhou et al. [34]–[36] are the

first to consider fuzzy weights.

This paper introduces new fuzzy extensions of the OWA

called ordered fuzzy weighted averages (OFWAs) for T1

FSs and ordered linguistic weighted averages (OLWAs) for

IT2 FSs, where both sub-criteria and weights are FSs, and

compares them with Zhou et al.’s approaches.

The rest of this paper is organized as follows: Section II

proposes the OFWA and OLWA. Section III introduces Zhou

et al.’s T1 and IT2 fuzzy extensions of the OWA. Section IV

compares the two categories of extensions. Finally, conclu-

sions are drawn in Section V.

II. OUR FUZZY EXTENSIONS OF THE OWA

Our fuzzy extensions of the OWA, OFWAs and OLWAs,

are introduced in this section. Because their computations

use the fuzzy weighted average (FWA) [15], [20], [22], [28]
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and the linguistic weighted average (LWA) [20], [22], [23],

[25], [28], the FWA and LWA are also introduced.

A. The Fuzzy Weighted Average (FWA)

Definition 2: [3], [6], [7], [13]–[15] An FWA is defined

as

YFWA =

∑n
i=1 WiXi
∑n

i=1 Wi

, (3)

where Xi and Wi are T1 FSs. �

(3) is an expressive way to describe the FWA, because

YFWA is not computed using multiplications, additions or

divisions, as expressed by (3). Instead, YFWA, which is

also a T1 FS, is computed by using the α-cut decompo-

sition theorem [12], [15]. Denote the α-cut on YFWA as

[yL(α), yR(α)], and the α-cut on Xi and Wi as [ai(α), bi(α)]
and [ci(α), di(α)], respectively, as shown in Fig. 1. Then

[15],

yL(α) = min
∀wi(α)∈[ci(α),di(α)]

∑n
i=1 ai(α)wi(α)
∑n

i=1 wi(α)
(4)

yR(α) = max
∀wi(α)∈[ci(α),di(α)]

∑n

i=1 bi(α)wi(α)
∑n

i=1 wi(α)
(5)

yL(α) and yR(α) can be computed by the KM or EKM al-

gorithms [11], [18], [22], [24], [27]. In summary, to compute

YFWA:

1) For each α ∈ [0, 1], compute the corresponding α-cuts

of the T1 FSs Xi and Wi, i.e., compute

Xi(α) = [ai(α), bi(α)] i = 1, ..., n (6)

Wi(α) = [ci(α), di(α)] i = 1, ..., n (7)

2) For each α ∈ [0, 1], compute yL(α) in (4) and yR(α)
in (5) using the KM or EKM Algorithms.

3) Connect all left-coordinates (yL(α), α) and all right-

coordinates (yR(α), α) to form the T1 FS YFWA.

B. The Ordered Fuzzy Weighted Average (OFWA)

As its name suggests, the OFWA is a combination of the

OWA and the FWA.

Definition 3: An OFWA is defined as

YOFWA =

∑n
i=1 WiXσ(i)
∑n

i=1 Wi

, (8)

where Xi and Wi are T1 FSs, and σ : {1, . . . , n} →
{1, . . . , n} is a permutation function such that

{Xσ(1), Xσ(2), . . . , Xσ(n)} are in descending order.

�

Definition 4: A group of T1 FSs {Xi}
n
i=1 are in descend-

ing order if Xi � Xj for ∀i < j by a ranking method. �

Any T1 FS ranking method can be used to find σ. In this

paper, Yager’s first method [30] is used, which first computes

the centroid of each T1 FS and then ranks them to obtain

the order of the corresponding T1 FSs.

To compute YOFWA, Xi are first sorted in descending

order and called by the same name, but now X1 � X2 �
· · · � Xn (Wi are not changed during this step); then, the

FWA algorithm introduced in Section II-A can be used to

compute YOFWA.
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Fig. 1. α-cuts on (a) Xi, (b) Wi, and, (c) YFWA.

C. The Linguistic Weighted Average (LWA)

Definition 5: [20], [22], [23], [25], [28] An LWA is

defined as

ỸLWA =

∑n
i=1 W̃iX̃i
∑n

i=1 W̃i

, (9)

where X̃i and W̃i are IT2 FSs. �

Again, (9) is an expressive way to summarize the LWA.

It has been shown [20], [22], [23], [25] that computing an

LWA is equivalent to computing two FWAs. Denote the

lower membership function (LMF) of ỸLWA as Y LWA, and

the upper membership function (UMF) of ỸLWA as Y LWA.

Using the notations shown in Fig. 2, the α-cuts on Y LWA

and Y LWA are computed as:

yLl(α) = min
wi(α)∈[cil(α),dir(α)]

∑n

i=1 ail(α)wi(α)
∑n

i=1 wi(α)
, α ∈ [0, 1]

(10)

yRr(α) = max
wi(α)∈[cil(α),dir(α)]

∑n

i=1 bir(α)wi(α)
∑n

i=1 wi(α)
, α ∈ [0, 1]

(11)

yLr(α) = min
wi(α)∈[cir(α),dil(α)]

∑n

i=1 air(α)wi(α)
∑n

i=1 wi(α)
, α ∈ [0, hmin]

(12)

yRl(α) = max
wi(α)∈[cir(α),dil(α)]

∑n
i=1 bil(α)wi(α)
∑n

i=1 wi(α)
, α ∈ [0, hmin]

(13)

where

hmin = min{min
∀i

hX
i
,min

∀i
hW

i
} (14)
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Fig. 2. α-cuts on (a) X̃i, (b) W̃i, and, (c) ỸLWA.

in which hX
i

is the height of the LMF of X̃i [see Fig. 2(a)],

and hW
i

is the height of the LMF of W̃i [see Fig. 2(b)].

The procedure to compute Y LWA is:

1) Select appropriate m α-cuts for Y LWA (e.g., divide [0,

1] into m− 1 intervals and set αj = (j − 1)/(m− 1),
j = 1, 2, ...,m).

2) For each αj , find the corresponding α-cuts

[ail(αj), bir(αj)] and [cil(αj), dir(αj)] on Xi

and W i (i = 1, ..., n). Use a KM or EKM algorithm

to find yLl(αj) in (10) and yRr(αj) in (11).

3) Connect all left-coordinates (yLl(αj), αj) and all right-

coordinates (yRr(αj), αj) to form the T1 FS Y LWA.

To compute Y LWA:

1) Determine hX
i

and hW
i
, i = 1, . . . , n, and hmin in

(14).

2) Select appropriate p α-cuts for Y LWA (e.g., divide

[0, hmin] into p − 1 intervals and set αj = hmin(j −
1)/(p− 1), j = 1, 2, ..., p).

3) For each αj , find the corresponding α-cuts

[air(αj), bil(αj)] and [cir(αj), dil(αj)] on Xi

and W i. Use a KM or EKM algorithm to find

yLr(αj) in (12) and yRl(αj) in (13).

4) Connect all left-coordinates (yLr(αj), αj) and all

right-coordinates (yRl(αj), αj) to form the T1 FS

Y LWA.

D. The Ordered Linguistic Weighted Average (OLWA)

As its name suggests, the OLWA is a combination of the

OWA and the LWA.

Definition 6: An OLWA is defined as

ỸOLWA =

∑n

i=1 W̃iX̃σ(i)
∑n

i=1 W̃i

, (15)

where X̃i and W̃i are IT2 FSs, σ : {1, . . . , n} → {1, . . . , n}
is a permutation function such that {X̃σ(1), . . . , X̃σ(n)} are

in descending order. �

Definition 7: A group of IT2 FSs {X̃i}
n
i=1 are in descend-

ing order if X̃i � X̃j for ∀i < j by a ranking method. �

Any IT2 FS ranking method can be used to find σ. In

this paper, the centroid-based ranking method [20], [22],

[26] is used, which first computes the center of centroid of

each IT2 FS and then ranks them to obtain the order of the

corresponding IT2 FSs.

To compute the OLWA, all X̃i are first sorted in descend-

ing order and called by the same name, but now X̃1 � X̃2 �
· · · � X̃n (note that W̃i are not changed during this step);

then, the LWA algorithm introduced in Section II-C can be

used to compute the OLWA.

III. ZHOU ET AL.’S FUZZY EXTENSIONS OF THE OWA

Zhou, et al. [34]–[36] were the first to consider fuzzy

weights in the OWAs. Their approaches are introduced in

this section.

A. T1 Fuzzy OWAs (T1FOWAs)

Zhou et al. [35], [36] defined a T1 fuzzy OWA (T1FOWA)

as:

Definition 8: Given T1 FSs {Wi}
n
i=1 and {Xi}

n
i=1, the

membership function of a T1FOWA is computed by (16) on

top of the next page, where σ : {1, . . . , n} → {1, . . . , n} is a

permutation function such that {xσ(1), xσ(2), . . . , xσ(n)} are

in descending order. �

µYT1FOWA
(y) can be understood from the Extension Prin-

ciple [33], i.e., first all combinations of wi and xi whose

OWA is y are found, and for the jth combination, the

resulting yj has a membership grade µ(yj) which is the

minimum of the corresponding µXi
(xi) and µWi

(wi). Then,

µYT1FOWA
(y) is the maximum of all these µ(yj).

YT1FOWA can be computed efficiently using α-cuts [34],

similar to the way they are used in computing the FWA.

Denote YT1FOWA(α) = [y′L(α), y
′
R(α)] and use the same

notations for α-cuts on Xi and Wi as in Fig. 1. Then,

y′L(α) = min
∀wi(α)∈[ci(α),di(α)]

∑n

i=1 aσ(i)(α)wi(α)
∑n

i=1 wi(α)
(17)

y′R(α) = max
∀wi(α)∈[ci(α),di(α)]

∑n

i=1 bσ(i)(α)wi(α)
∑n

i=1 wi(α)
(18)

y′L(α) and y′R(α) can also be computed using KM or EKM

algorithms.

Observe from (17) and (18) that Zhou et al. consider each

α-cut on Xi individually, and the permutation function σ(i)
may change from one α-cut to another α-cut. Prior to Zhou



µYT1FOWA
(y) = sup

∑n

i=1 wixσ(i)
∑n

i=1 wi

= y

min(µW1
(w1), · · · , µWn

(wn), µX1
(x1), · · · , µXn

(xn)) (16)

et al.’s approach, no one had ever defined a ranking method

for FSs (either T1 or IT2) that may change the ranking of the

FSs from one α-cut to the next. Furthermore, even for the

same α-cut, (17) and (18) may use different σ(i). Consider a

simple example [a1(α), b1(α)] = [2, 3] and [a2(α), b2(α)] =
[1, 4]. Then, in computing y′L(α), a1(α) is associated with

w1(α) and a2(α) is associated with w2(α); however, in

computing y′R(α), b2(α) is associated with w1(α) and b1(α)
is associated with w2(α), i.e., the points from the same α-cut

on Xi have different rankings and hence different weights in

computing y′L(α) and y′R(α), which sounds counter-intuitive.

Generally the OFWA and the T1FOWA give different

outputs, as indicated by the following:

Theorem 1: The OFWA and the T1FOWA have different

results when at least one of the following two conditions

occurs:

1) The left leg of Xi intersects the left leg of Xj , i 6= j.

2) The right leg of Xi intersects the right leg of Xj , i 6= j.

�

Proof: Because the proof for Condition 2 is very similar

to that for Condition 1, only the proof for Condition 1 is

given here.

Assume the left leg of Xi intersects the left leg of Xj at

α = λ ∈ (0, 1), as shown in Fig. 3. Then, ai(α) > aj(α)
when α ∈ [0, λ) and ai(α) < aj(α) when α ∈ (λ, 1].

For an α1 ∈ [0, λ), y′L(α1) in (17) is computed as

y′L(α1) = min
∀wi(α1)∈[ci(α1),di(α1)]

∑n

i=1 aσ1(i)(α1)wi(α1)
∑n

i=1 wi(α1)
(19)

where σ1 : {1, . . . , n} → {1, . . . , n} is a permutation

function such that {aσ1(1)(α1), xσ1(2)(α1), . . . , xσ1(n)(α1)}
are in descending order. Because ai(α1) > aj(α1), it follows

that σ1(i) < σ1(j).
For an α2 ∈ (λ, 1], y′L(α2) in (17) is computed as

y′L(α2) = min
∀wi(α2)∈[ci(α2),di(α2)]

∑n
i=1 aσ2(i)(α2)wi(α2)

∑n

i=1 wi(α2)
(20)

where σ2 : {1, . . . , n} → {1, . . . , n} is a permutation

function such that {aσ2(1)(α2), aσ2(2)(α2), . . . , aσ2(n)(α2)}
are in descending order. Because ai(α2) < aj(α2), it follows

that σ2(i) > σ2(j), i.e., σ1 6= σ2.

On the other hand, for YOFWA, no matter which ranking

method is used, the permutation function σ is the same for

all α ∈ [0, 1]. Without loss of generality, assume Xj � Xi

by a ranking method. Then, in (15) σ(i) > σ(j), and, for

any α ∈ [0, 1], yL(α) is computed by (5).

Clearly, for any α ∈ [0, λ), yL(α) 6= y′L(α) because σ 6=
σ1. Consequently, the left legs of YOFWA and YT1FOWA

are different. �
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Fig. 3. Illustration of intersecting Xi and Xj , where the left leg of Xi

intersects the left leg of Xj .

Generally, the intersections occur when an Xi is much

wider (more uncertain) that its neighbors. Observe two

important points from Theorem 1:

1) Only the intersection of a left leg with another left

leg, or a right leg with another right leg, would

definitely lead to different YT1FOWA and YOFWA. The

intersection of a left leg with a right leg does not lead

to different YT1FOWA and YOFWA.

2) Only the intersections of Xi may lead to different

YT1FOWA and YOFWA. The intersections of Wi have

no effect on this because the permutation function σ
does not depend on Wi.

B. IT2 Fuzzy OWAs (IT2FOWAs)

Zhou et al. [36] defined the IT2 fuzzy OWA (IT2FOWA)

as:

Definition 9: Given IT2 FSs {W̃i}
n
i=1 and {X̃i}

n
i=1, the

membership function of an IT2FOWA is computed by

(21) on top of the next page, where W e
i and Xe

i are

embedded T1 FSs of W̃i and X̃i, respectively, and σ :
{1, . . . , n} → {1, . . . , n} is a permutation function such that

{xσ(1), xσ(2), . . . , xσ(n)} are in descending order. �

Comparing (21) with (16), observe that the bracketed term

in (21) is a T1FOWA, and the IT2FOWA is the union of all

possible T1FOWAs computed from the embedded T1 FSs of

X̃i and W̃i. The Wavy Slice Representation Theorem [19]

for IT2 FSs is used implicitly in this definition.

ỸIT2FOWA can be computed efficiently using α-cuts, sim-

ilar to the way they were used in computing the LWA. Denote

the α-cut on the UMF of ỸIT2FOWA as Y IT2FOWA(α) =
[y′Ll(α), y

′
Rr(α)] for ∀α ∈ [0, 1], the α-cut on the LMF

of ỸIT2FOWA as Y IT2FOWA(α) = [y′Lr(α), y
′
Rl(α)] for

∀α ∈ [0, hmin], where hmin is defined in (14). Using the

same notations for α-cuts on X̃i and W̃i as in Fig. 2, it is



µỸIT2FOWA
(y) =

⋃

∀W e

i
,Xe

i















sup
∑n

i=1 wixσ(i)
∑n

i=1 wi

= y

min(µW e

1
(w1), · · · , µW e

n
(wn), µXe

1
(x1), · · · , µXe

n
(xn))















(21)

easy to show that

y′Ll(α) = min
∀wi(α)∈[cil(α),dir(α)]

∑n

i=1 aσ(i),l(α)wi(α)
∑n

i=1 wi(α)
,

α ∈ [0, 1] (22)

y′Rr(α) = max
∀wi(α)∈[cil(α),dir(α)]

∑n
i=1 bσ(i),r(α)wi(α)
∑n

i=1 wi(α)
,

α ∈ [0, 1] (23)

y′Lr(α) = min
∀wi(α)∈[cir(α),dil(α)]

∑n

i=1 aσ(i),r(α)wi(α)
∑n

i=1 wi(α)
,

α ∈ [0, hmin]
(24)

y′Rl(α) = max
∀wi(α)∈[cir(α),dil(α)]

∑n
i=1 bσ(i),l(α)wi(α)
∑n

i=1 wi(α)
,

α ∈ [0, hmin]
(25)

y′Ll(α), y
′
Rr(α), y

′
Lr(α) and y′Rl(α) can also be computed

using KM or EKM algorithms.

As the IT2FOWA also considers each α-cut separately

in ranking, it has the same property as the T1FOWA, i.e.,

the ranking of a FS may change within an α-cut and

between different α-cuts. Similarly, generally the OLWA and

the IT2FOWA give different outputs, as indicated by the

following:

Theorem 2: The OLWA and the IT2FOWA have different

results when at least one of the following four conditions

occurs:

1) The left leg of X i intersects the left leg of Xj , i 6= j.

2) The left leg of X i intersects the left leg of Xj , i 6= j.

3) The right leg of X i intersects the right leg of Xj ,

i 6= j.

4) The right leg of X i intersects the right leg of Xj ,

i 6= j. �

The correctness of Theorem 2 can be easily seen from

Theorem 1, i.e., Condition 1 leads to different yLl(α) and

y′Ll(α) for certain α, Condition 2 leads to different yLr(α)
and y′Lr(α) for certain α, Condition 3 leads to different

yRr(α) and y′Rr(α) for certain α, and Condition 4 leads to

different yRl(α) and y′Rl(α) for certain α.

Generally, the intersections occur when an X̃i is much

wider (more uncertain) that its neighbors. Observe two

important points from Theorem 2:

1) Only the intersection of a left leg of X̃i with a left leg

of X̃j (i 6= j), or a right leg of X̃i with a right leg

of X̃j , will definitely lead to different ỸIT2FOWA and

ỸOLWA. The intersection of a left leg of X̃i with a

right leg of X̃j will not lead to different ỸIT2FOWA

and ỸOLWA.

2) The intersections of W̃i have no effects on whether or

not ỸIT2FOWA and ỸOLWA are different because the

permutation function σ does not depend on W̃i.

IV. COMPARATIVE STUDIES AND DISCUSSIONS

Comparatives studies of our fuzzy extensions of the OWAs

with Zhou et al.’s approaches are presented in this section,

followed by discussions about the two kinds of extensions.

A. Comparative Studies

The following example illustrates the difference between

FWA, OFWA and T1FOWA.

Example 1: Consider Xi and Wi shown in Figs. 4(a) and

4(b). The corresponding YFWA is shown in Fig. 4(c) as the

solid curve, YOFWA the dashed curve, and YT1OFWA the

dotted curve. Note that all three results are different. The

difference between YOFWA and YT1FOWA is caused by the

facts that the left leg of X3 crosses the left legs of X1 and

X4, and the right leg of X3 crosses the right leg of X2, which

cause the permutation function σ to change as α increases

[e.g., to begin, the left leg of X3 lies to the left of the left leg

of X4, but at a certain value of α (where the two left legs

intersect), there is a reversal of this relationship]. There will

be no differences between YOFWA and YT1FOWA if Xi do

not have such kinds of intersections. �
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Fig. 4. Example 1: (a) Xi, (b) Wi, and, (c) YFWA (solid curve), YOFWA

(dashed curve) and YT1FOWA (dotted curve).



The following example illustrates the difference between

LWA, OLWA and IT2FOWA.

Example 2: Consider X̃i and W̃i shown in Figs. 5(a) and

5(b), respectively. The corresponding ỸLWA is shown in

Fig. 5(c) as the solid curve, ỸOLWA the dashed curve, and

ỸIT2OFWA the dotted curve. Note that all three results are

different. The difference between ỸOLWA and ỸIT2FOWA

is caused by the facts that the left leg of X3 (X3) crosses

the left legs of X1 and X4 (X1 and X4), and the right leg

of X3 (X3) crosses the right leg of X2 (X2), which cause

the permutation function σ to change as α increases. There

will be no differences between ỸOLWA and ỸIT2FOWA if

X̃i do not have such kinds of intersections. �
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Fig. 5. Example 2: (a) X̃i, (b) W̃i, and, (c) ỸLWA (solid curve), ỸOLWA

(dashed curve) and ỸIT2FOWA (dotted curve).

B. Discussions

The T1 and IT2 fuzzy OWAs have been derived by

considering each α-cut separately, whereas the OFWA and

OLWA have been derived by considering each sub-criterion

as a whole. Generally the two approaches give different

results. Then, a natural question is: Which approach should

be used in practice?

We believe that it is more intuitive to consider an FS in its

entirety during ranking of FSs. To the best of our knowledge

[26], all ranking methods based on α-cuts deduce a single

number to represent each FS and then sort these numbers

to obtain the ranks of the FSs. Each of these numbers is

computed based only on the FS under consideration, i.e., no

α-cuts on other FSs to be ranked are considered. Because in

OFWA and OLWA the FSs are first ranked and then the WAs

are computed, they coincide with our “FS in its entirety”

intuition, and hence they are recommended in this paper.

Interestingly, this “FS in its entirety” intuition was also

used implicitly in developing linguistic ordered weighted av-

eraging [8], uncertain linguistic ordered weighted averaging

[29], and fuzzy linguistic ordered weighted averaging [1].

Finally, note that the OFWA can be viewed as a special

case of the FWA, and the OLWA can be viewed as a special

case of the LWA.

V. CONCLUSIONS

In this paper, two fuzzy extensions of the OWA, as well

as procedures for computing them, have been introduced,

namely, ordered fuzzy weighted averages for T1 FSs and

ordered linguistic weighted averages for IT2 FSs. They were

compared with Zhou et al.’s T1 and IT2 fuzzy extensions

of the OWA. Examples showed that our extensions may

give different results from Zhou et al.’s extensions when the

legs of the FSs have intersections. Because our extensions

coincide with the “FS in its entirety” intuition (i.e., they do

not require the use of different rankings for FSs for different

values of α), they are the suggested ones to use.
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