
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 28, NO. 5, MAY 2020 1003

Optimize TSK Fuzzy Systems for Regression
Problems: Minibatch Gradient Descent

With Regularization, DropRule, and
AdaBound (MBGD-RDA)

Dongrui Wu , Senior Member, IEEE, Ye Yuan , Member, IEEE, Jian Huang , Senior Member, IEEE,
and Yihua Tan, Member, IEEE

Abstract—Takagi–Sugeno–Kang (TSK) fuzzy systems are very
useful machine learning models for regression problems. However,
to our knowledge, there has not existed an efficient and effective
training algorithm that ensures their generalization performance
and also enables them to deal with big data. Inspired by the connec-
tions between TSK fuzzy systems and neural networks, we extend
three powerful neural network optimization techniques, i.e., mini-
batch gradient descent (MBGD), regularization, and AdaBound,
to TSK fuzzy systems, and also propose three novel techniques
(DropRule, DropMF, and DropMembership) specifically for train-
ing TSK fuzzy systems. Our final algorithm, MBGD with regular-
ization, DropRule, and AdaBound, can achieve fast convergence
in training TSK fuzzy systems, and also superior generalization
performance in testing. It can be used for training TSK fuzzy
systems on datasets of any size; however, it is particularly useful
for big datasets, on which currently no other efficient training
algorithms exist.

Index Terms—AdaBound, Adaptive-network-based fuzzy
inference system (ANFIS), DropRule, fuzzy systems, minibatch
gradient descent (MBGD), regularization.

NOMENCLATURE

Notations
N Number of labeled training examples.
xn = (xn,1, . . ., xn,M )T . M -dimensional feature

vector of the nth training example, n ∈ [1, N ].
yn Groundtruth output corresponding to xn.
R Number of rules in the TSK fuzzy system.
Xr,m MF for themth feature in the rth rule, r ∈ [1, R]

and m ∈ [1,M ].
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br,0, . . ., br,M Consequent parameters of the rth rule, r ∈
[1, R].

yr(xn) Output of the rth rule for xn, r ∈ [1, R] and
n ∈ [1, N ].

μXr,m
(xn,m) Membership grade of xn,m onXr,m, r ∈ [1, R],

m ∈ [1,M ], and n ∈ [1, N ].
fr(xn) Firing level of xn on the rth rule, r ∈ [1, R] and

n ∈ [1, N ].
y(xn) Output of the TSK fuzzy system for xn.
L �2-regularized loss function for training the TSK

fuzzy system.
λ �2 regularization coefficient in ridge regression,

MBGD-R, MBGD-RA, and MBGD-RDA.
Mm Number of Gaussian MFs in each input domain.
Nbs Minibatch size in MBGD-based algorithms.
K Number of iterations in MBGD training.
α Initial learning rate in MBGD-based algorithms.
P DropRule rate in MBGD-D, MBGD-RD, and

MBGD-RDA.
β1, β2 Exponential decay rates for moment estimates

in AdaBound.
ε Small positive number in AdaBound to avoid

dividing by zero.

I. INTRODUCTION

FUZZY systems [1], particularly Takagi–Sugeno–Kang
(TSK) fuzzy systems [2], have achieved great success in

numerous applications. This article focuses on the applications
of TSK fuzzy systems in machine learning [3], particularly
supervised regression problems. In such problems, we have a
training dataset with N labeled examples {xn, yn}Nn=1, where
xn ∈ RM×1, and would like to train a TSK fuzzy system to
model the relationship between y and x so that an accurate
prediction can be made for any future unseen x.

There are generally following three different strategies for
optimizing a TSK fuzzy system in supervised regression.1

1Some novel approaches for optimizing evolving fuzzy systems have also
been proposed recently [4], [5]; however, they are not the focus of this article,
so their details are not included.
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1) Evolutionary algorithms [6], in which each set of the
parameters of the antecedent membership functions (MFs)
and the consequents are encoded as an individual in a pop-
ulation, and genetic operators, such as selection, crossover,
mutation, and reproduction, are used to produce the next
generation. Generally, the overall fitness improves in each
new generation, and a global optimum may be found given
enough number of generations.

2) Gradient descent (GD) [7], in which the parameters are
moved in the negative gradient direction of the loss func-
tion to find its local minimum. Backpropagation [8] is
frequently used to calculate the gradients. These fuzzy
systems are called neurofuzzy systems in the literature [9].

3) GD and least squares estimation (LSE) [10], which is used
in the popular adaptive-network-based fuzzy inference
system (ANFIS). The antecedent parameters are opti-
mized by GD, and the consequent parameters by LSE.
This approach usually converges much faster than using
GD only.

However, all three strategies may have challenges in big data
applications [11], [12]. It is well known that big data have at
least three Vs2 [13]: volume (the size of the data), velocity (the
speed of the data), and variety (the types of data). Volume means
that the number of training examples (N ) is very large, and/or
the dimensionality of the input (M ) is very high. Fuzzy systems,
and actually almost all machine learning models, suffer from the
curse of dimensionality, i.e., the number of rules (parameters)
increases exponentially with M . However, in this article, we
assume that the dimensionality can be reduced effectively to
just a few, e.g., using principal component analysis [14]. We
mainly consider how to deal with large N .

Evolutionary algorithms are not suitable for optimizing TSK
fuzzy systems when N is large, because they have very high
memory and computing power requirement. They need to eval-
uate the fitness of each individual on the entire training dataset
(which may be too large to be loaded into the memory com-
pletely), and there are usually tens or hundreds of individuals in
a population and tens or hundreds of generations are needed to
find a good solution. ANFIS may result in significant overfitting
in regression problems, as demonstrated in Section III-E of this
article. Therefore, we focus on GD.

When N is small, batch GD can be used to compute the
average gradients over all N training examples, and then update
the model parameters. WhenN is large, there may not be enough
memory to load the entire training dataset, and hence batch GD
may be very slow or even impossible to perform. In such cases,
stochastic GD can be used to compute the gradients for each
training example, and then update the model parameters. How-
ever, the stochastic gradients may have very large variance, and
hence the training may be unstable. A good compromise between
batch GD and stochastic GD, which has achieved great success
in deep learning [15], is minibatch GD (MBGD). It randomly
selects a small number (typically 32 or 64 [16]) of training exam-
ples to compute the gradients and update the model parameters.
MBGD is a generic approach not specific to a particular model
to be optimized, so it should also be applicable to the training

2There may be also other Vs, e.g., veracity and value.

of fuzzy systems. In fact, Nakasima-Lpez et al. [17] compared
the performances of full-batch GD, MBGD, and stochastic GD
on the training of Mamdani neurofuzzy systems, and showed
that MBGD achieved the best performance. This article applies
MBGD to the training of TSK fuzzy systems.

In MBGD, the learning rate is very important to the conver-
gence speed and quality in training. Many different schemes,
e.g., momentum [8], averaging [18], AdaGrad [19], RM-
SProp [20], and Adam [21], have been proposed to optimize
the learning rate in neural network training. Adam may be the
most popular one among them. However, to the knowledge of
the authors, only a short conference paper [22] has applied
Adam to the training of simple single-input rule modules’
fuzzy systems [23]. Very recently, an improvement to Adam,
AdaBound [24], was proposed, which demonstrated faster con-
vergence and better generalization than by Adam. To our knowl-
edge, no one has used AdaBound for training TSK fuzzy
systems.

In addition to fast convergence, the generalization ability of
a machine learning model is also crucially important. General-
ization means that the model must perform well on previously
unobserved inputs (not just the known training examples).

Regularization is frequently used to reduce overfitting and
improve generalization. According to Goodfellow et al. [15],
regularization is “any modification we make to a learning al-
gorithm that is intended to reduce its generalization error but
not its training error.” It has also been used in training TSK
fuzzy systems to increase their performance and interpretabil-
ity [25]–[29]. For example, Johansen [25] and Lughofer and
Kindermann [29] used �2 regularization (also known as weight
decay, ridge regression, or Tikhonov regularization) to stabilize
the matrix inversion operation in LSE. Jin [26] used regulariza-
tion to merge similar MFs into a single one to reduce the size
of the rulebase and, hence, to increase the interpretability of the
fuzzy system. Lughofer and Kindermann [27] and Luo et al.
[28] used sparsity regularization to identify a TSK fuzzy system
with a minimal number of fuzzy rules and a minimal number of
nonzero consequent parameters. All these approaches used LSE
to optimize the TSK rule consequents, which may result in sig-
nificant overfitting in regression problems (see Section III-E). To
our knowledge, no one has integrated MBGD and regularization
for TSK fuzzy system training.

Additionally, some unique approaches have also been pro-
posed in the last few years to reduce overfitting and increase
generalization of neural networks, particularly deep neural net-
works, e.g., DropOut [30] and DropConnect [31]. DropOut
randomly discards some neurons and their connections during
the training, which prevents units from coadapting too much.
DropConnect randomly sets some connection weights to zero
during the training. Although DropOut and DropConnect have
demonstrated outstanding performance and hence widely used
in deep learning, no similar techniques exist for training TSK
fuzzy systems.

This article fills the gap in efficient and effective training of
TSK fuzzy systems, particularly for big data regression prob-
lems. Its main contributions are as follows.

1) Inspired by the connections between TSK fuzzy systems
and neural networks [32], we extend three powerful neural
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network optimization techniques, i.e., MBGD, regulariza-
tion, and AdaBound, to TSK fuzzy systems.

2) We propose three novel techniques (DropRule, DropMF,
and DropMembership) specifically for training TSK fuzzy
systems.

3) Our final algorithm, MBGD with regularization,
DropRule, and AdaBound (MBGD-RDA), demonstrates
superior performance on ten real-world datasets from
various application domains, of different sizes.

The remainder of this article is organized as follows. Section II
introduces our proposed MBGD-RDA algorithm. Section III

presents our experimental results. Section IV concludes this
article and points out some future research directions.

II. MBGD-RDA ALGORITHM

This section introduces our proposed MBGD-RDA algorithm
for training TSK fuzzy systems, whose pseudocode is given in
Algorithm 1 and MATLAB implementation is available online.3

Note that θK returned from Algorithm 1 is not necessarily the

3[Online]. Available: https://github.com/drwuHUST/MBGD_RDA
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optimal one among {θk}Kk=1, i.e., the one that gives the smallest
test error. The iteration number corresponding to the optimal
θ∗ can be estimated using early stopping [15]; however, this is
beyond the scope of this article. Herein, we assume that the user
has predetermined K.

The key notations used in this article are summarized in
nomenclature. The details of MBGD-RDA are explained next.

A. TSK Fuzzy System

Assume the input x = (x1, . . ., xM )T ∈ RM×1, and the TSK
fuzzy system has the following R rules:

Ruler : IF x1 is Xr,1 and · · · and xM is Xr,M

THEN yr(x) = br,0 +

M∑

m=1

br,mxm (1)

where Xr,m (r = 1, . . ., R; m = 1, . . .,M ) are fuzzy sets, and
br,0 and br,m are consequent parameters. This article considers
only Gaussian MFs, because their derivatives are easier to com-
pute [33]. However, our algorithm can also be applied to other
MF shapes, as long as their derivatives can be computed.

The membership grade of xm on a Gaussian MF Xr,m is

μXr,m
(xm) = exp

(
− (xm − cr,m)2

2σ2
r,m

)
(2)

where cr,m is the center of the Gaussian MF, and σr,m is the
standard deviation.

The firing level of Ruler is given as follows:

fr(x) =

M∏

m=1

μXr,m
(xm) (3)

and the output of the TSK fuzzy system is

y(x) =

∑R
r=1 fr(x)yr(x)∑R

r=1 fr(x)
(4)

or if we define the normalized firing levels as

f̄r(x) =
fr(x)∑R
k=1 fk(x)

, r = 1, . . ., R (5)

then, (4) can be rewritten as

y(x) =
R∑

r=1

f̄r(x) · yr(x). (6)

To optimize the TSK fuzzy system, we need to tune cr,m,
σr,m, br,0, and br,m, where r = 1, . . ., R and m = 1, . . .,M .

B. Regularization

Assume there are N training examples {xn, yn}Nn=1, where
xn = (xn,1, . . ., xn,M )T ∈ RM×1.

In this article, we use the following �2-regularized loss
function:

L =
1

2

Nbs∑

n=1

[yn − y(xn)]
2 +

λ

2

R∑

r=1

M∑

m=1

b2r,m (7)

where Nbs ∈ [1, N ], and λ ≥ 0 is a regularization parameter.
Note that br,0 (r = 1, . . ., R) are not regularized in (7). As
pointed out by Goodfellow et al. [15], for neural networks, one
typically penalizes only the weights of the affine transformation
at each layer and leaves the biases unregularized. The biases
typically require less data to fit accurately than the weights.
The biases in neural networks are corresponding to the br,0
terms here, so we take this typical approach and leave br,0
unregularized.

C. Minibatch Gradient Descent

The gradients of the loss function (7) are given in (8)–(10),
shown at bottom of this page, where Φ(r,m) is the index set of
the rules that contain Xr,m, xn,0 ≡ 1, and I(m) is an indicator

∂L

∂cr,m
=

1

2

Nbs∑

n=1

R∑

k=1

∂L

∂y(xn)

∂y(xn)

∂fk(xn)

∂fk(xn)

∂μXk,m
(xn,m)

∂μXk,m
(xn,m)

∂cr,m

=

Nbs∑

n=1

∑

k∈Φ(r,m)

⎡

⎢⎣(y(xn)− yn)
yk(xn)

∑R
i=1 fi(xn)−

∑R
i=1 fi(xn)yi(xn)[∑R

i=1 fi(xn)
]2 fk(xn)

xn,m − cr,m
σ2
r,m

⎤

⎥⎦ (8)

∂L

∂σr,m
=

1

2

Nbs∑

n=1

R∑

k=1

∂L

∂y(xn)

∂y(xn)

∂fk(xn)

∂fk(xn)

∂μXk,m
(xn,m)

∂μXk,m
(xn,m)

∂σr,m

=

Nbs∑

n=1

∑

k∈Φ(r,m)

⎡

⎢⎣(y(xn)− yn)
yk(xn)

∑R
i=1 fi(xn)−

∑R
i=1 fi(xn)yi(xn)[∑R

i=1 fi(xn)
]2 fk(xn)

(xn,m − cr,m)2

σ3
r,m

⎤

⎥⎦ (9)

∂L

∂br,m
=

1

2

Nbs∑

n=1

∂L

∂y(xn)

∂y(xn)

∂yr(xn)

∂yr(xn)

∂br,m
+

λ

2

∂L

∂br,m

=

Nbs∑

n=1

[
(y(xn)− yn)

fr(xn)∑R
i=1 fi(xn)

· xn,m

]
+ λI(m)br,m (10)
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Fig. 1. DropRule, where Xm,i is the ith MF in the mth input domain. (a) Red
cross indicates that the first rule will be dropped. (b) Equivalent fuzzy system
after dropping the first rule.

function given by:

I(m) =

{
0, m = 0
1, m > 0.

I(m) ensures that br,0 (r = 1, . . ., R) are not regularized.
In MBGD, each time we randomly sample Nbs ∈ [1, N ]

training examples, compute the gradients from them, and then
update the antecedent and consequent parameters of the TSK
fuzzy system. Let θk be the model parameter vector in the kth
iteration, and ∂L/∂θk be the first-order gradients computed
from (8)–(10). Then, the update rule is given by

θk = θk−1 − α
∂L

∂θk−1
(11)

where α > 0 is the learning rate (step size).
When Nbs = 1, MBGD degrades to the stochastic GD. When

Nbs = N , it becomes the batch GD.

D. DropRule

DropRule is a novel technique to reduce overfitting and in-
crease generalization in training TSK fuzzy systems, inspired by
the well-known DropOut [30] and DropConnect [31] techniques
in deep learning. DropOut randomly discards some neurons
and their connections during the training. DropConnect ran-
domly sets some connection weights to zero during the training.
DropRule randomly discards some rules during the training, but
uses all rules in testing.

Let the DropRule rate be P ∈ (0, 1). For each training ex-
ample in the iteration, we set the firing level of a rule to its
true firing level with probability P , and to zero with probability
1− P . The output of the TSK fuzzy system is again computed
by a firing-level weighted average of the rule consequents. Since
the firing levels of certain rules are artificially set to zero, they do
not contribute anything to the fuzzy system output, i.e., they are
artificially dropped for this particular training example, as shown
in Fig. 1.4 Then, GD is applied to update the model parameters

4The ANFIS representation of a TSK fuzzy system is used here. For details,
please refer to Section III-E

in rules that are not dropped (the parameters in the dropped rules
are not updated for this particular training example).

When the training is done, all rules will be used in computing
the output for a new input, just as in a traditional TSK fuzzy
system. This is different from DropOut and DropConnect for
neural networks, which need some special operations in testing
to ensure that the output does not have a bias. We do not need to
pay special attention in using a TSK fuzzy system trained from
DropRule, because the final step of a TSK fuzzy system is a
weighted average, which removes the bias automatically.

The rationale behind DropOut is that [30] “each hidden unit in
a neural network trained with dropout must learn to work with
a randomly chosen sample of other units. This should make
each hidden unit more robust and drive it toward creating useful
features on its own without relying on other hidden units to
correct its mistakes.” This is also the motivation of DropRule: by
randomly dropping some rules, we force each rule to work with
a randomly chosen subset of rules, and hence each rule should
maximize its own modeling capability, instead of relying too
much on other rules. This may help increase the generalization
of the final TSK fuzzy system. Our experiments in the next
section demonstrate that DropRule alone may not always offer
advantages, but it works well when integrated with an efficient
learning rate adaptation algorithm such as AdaBound.

E. Adam and AdaBound

As mentioned in Section I, the learning rate is a very important
hyperparameter in neural network training, which is also the case
for TSK fuzzy system training. Among the various proposals for
adjusting the learning rate, Adam [21] may be the most popular
one. It computes an individualized adaptive learning rate for
each different model parameter from the estimates of the first
and second moments of the gradient. Essentially, it combines
the advantages of two other approaches: AdaGrad [19], which
works well with sparse gradients, and RMSProp [20], which
works well in online and nonstationary settings.

Very recently, an improvement to Adam, AdaBound [24],
have been proposed. It bounds the individualized adaptive learn-
ing rate from the upper and the lower, so that an extremely
large or small learning rate cannot occur. Additionally, the
bounds become tighter as the number of iterations increases,
which forces the learning rate to approach a constant (as in the
stochastic GD). AdaBound has demonstrated faster convergence
and better generalization than Adam in [24], so it is adopted in
this article.

The pseudocode of AdaBound can be found in Algorithm 1.
By substituting L from (7) into it, we can use the bounded
individualized adaptive learning rates for different elements
of θ, which may result in better training and generalization
performance than using a fixed learning rate. The lower and
upper bound functions used in this article are similar to those
in [24]

l(k) = 0.01− 0.01

(1− β2)k + 1
(12)
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TABLE I
SUMMARY OF THE TEN REGRESSION DATASETS

1http://lib.stat.cmu.edu/datasets/
2https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
3https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
4https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise
5https://archive.ics.uci.edu/ml/datasets/Wine+Quality
6https://archive.ics.uci.edu/ml/datasets/Abalone
7https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
8https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary
+Structure

u(k) = 0.01 +
0.01

(1− β2)k
. (13)

When k = 0, the bound is [0,+∞). When k approaches +∞,
the bound approaches [0.01, 0.01].

III. EXPERIMENTS

This section presents experimental results to demonstrate the
performance of our proposed MBGD-RDA.

A. Datasets

Ten regression datasets from the CMU StatLib Datasets
Archive5 and the UCI Machine Learning Repository6 were used
in our experiments. Their summary is given in Table I. Their sizes
range from small to large.

Nine of the ten datasets have only numerical features. Abalone
has a categorical feature (sex: male, female, and infant), which
was ignored in our experiments.7 Each numerical feature was
z-normalized to have zero mean and unit variance, and the
output mean was also subtracted. Because fuzzy systems have
difficulty dealing with high-dimensional data, we constrained
the maximum input dimensionality to be five: if a dataset had
more than five features, then principal component analysis was
used to reduce them to five.

The TSK fuzzy systems had Mm = 2 Gaussian MFs in
each input domain. For M inputs, the TSK fuzzy system has
2MMm + (M + 1) · (Mm)M parameters.

5[Online]. Available: http://lib.stat.cmu.edu/datasets/
6[Online]. Available: http://archive.ics.uci.edu/ml/index.php
7We also tried to convert the categorical feature into numerical ones using

one-hot coding and use them together with the other seven numerical features.
However, the root-mean-square errors (RMSEs) were worse than simply ignor-
ing it.

TABLE II
PARAMETERS OF THE SEVEN ALGORITHMS USED IN THE EXPERIMENTS

The definitions of the parameters can be found in nomenclature.

B. Algorithms

We compared the performances of the following seven
algorithms.8

1) Ridge regression [35], with ridge coefficient λ = 0.05.
This algorithm is denoted as RR in the sequel.

2) MBGD, which is a minibatch version of the batch GD
algorithm introduced in [10]. The batch size Nbs was
64, the initial learning rate α was 0.01, and the adaptive
learning rate adjustment rule in [10] was implemented: α
was multiplied by 1.1 if the loss function was reduced in
four successive iterations and by 0.9 if the loss function
had two consecutive combinations of an increase followed
by a decrease. This algorithm is denoted as MBGD in the
sequel.

3) MBGD with regularization, which was essentially iden-
tical to MBGD, except that the loss function had an �2
regularization term on the consequent parameters [see
(7)]. λ = 0.05 was used. This algorithm is denoted as
MBGD-R in the sequel.

4) MBGD with DropRule, which was essentially identical
to MBGD, except that DropRule with P = 0.5 was also
used in the training, i.e., for each training example, we
randomly set the firing level of 50% rules to zero. This
algorithm is denoted as MBGD-D in the sequel.

5) MBGD with regularization and DropRule, which inte-
grated MBGD-R and MBGD-D. This algorithm is denoted
as MBGD-RD in the sequel.

6) MBGD with AdaBound, which was essentially identical to
MBGD, except that the learning rates were adjusted by Ad-
aBound. α = 0.01, β1 = 0.9, β2 = 0.999, and ε = 10−8

were used. This algorithm is denoted as MBGD-A in the
sequel.

7) MBGD with regularization, DropRule, and AdaBound,
which combined MBGD-R, MBGD-D, and MBGD-A. This
algorithm is denoted as MBGD-RDA in the sequel.

For clarity, the parameters of these seven algorithms are also
summarized in Table II.

For each dataset, we randomly selected 70% examples for
training, and the remaining 30% for test. RR was trained in

8We also tried to use support vector regression [34] as a baseline regression
model; however, it was too time consuming to train on big datasets. Therefore,
we abandoned it.
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Fig. 2. Average test RMSEs of the seven algorithms on the ten datasets.

one single pass on all training examples, and then its RMSE
on the test examples was computed. The other six MBGD-based
algorithms were iterative. The TSK fuzzy systems had two Gaus-
sian MFs in each input domain. Their centers were initialized
at the minimum and maximum of the input domain, and their
standard deviations were initialized to the standard deviation of
the corresponding input. All rule consequent parameters were
initialized to zero. The maximum number of iterations was 500.
After each training iteration, we recorded the corresponding
test RMSE of each algorithm. Because there was randomness
involved (e.g., the training/test data partition and the selection
of the minibatches), each algorithm was repeated ten times on
each dataset, and the average test results are reported next.

C. Experimental Results

The average test RMSEs of the seven algorithms are shown
in Fig. 2. We can observe the following.

1) MBGD-R, MBGD-D, and MBGD-RD had comparable per-
formance with MBGD. All of them were worse than the
simple RR on seven out of the ten datasets, suggesting
that a model with much more parameters and nonlinearity
does not necessarily outperform a simple linear regression
model, if not properly trained.

2) MBGD-RDA and MBGD-A performed the best among the
seven algorithms. On nine out of the ten datasets (except
Wine-Red),MBGD-A’s best test RMSEs were smaller than

by RR. On all ten datasets, MBGD-RDA’s best test RMSEs
were smaller than by RR. MBGD-RDA and MBGD-A also
converged much faster than MBGD, MBGD-R, MBGD-D,
and MBGD-RD. As the final TSK fuzzy systems trained
from the six MBGD-based algorithms had the same struc-
ture and the same number of parameters, these results
suggest that AdaBound was indeed very effective in up-
dating the learning rates, which in turn helped obtain better
learning performances.

3) Although regularization alone (MBGD-R), DropRule alone
(MBGD-D), and the combination of regularization and
DropRule (MBGD-RD) did not result in much performance
improvement (i.e., MBGD-R, MBGD-D, MBGD-RD, and
MBGD had similar performances), MBGD-RDA outper-
formed MBGD-A on three out of the ten datasets, and they
had comparable performances on many other datasets.
These results suggest that using an effective learning rate
updating scheme such as AdaBound can help unleash the
power of regularization and DropRule, and hence achieve
better learning performance.

To better visualize the performance differences among the
six MBGD-based algorithms, we plot in Fig. 3 the percentage
improvements of MBGD-R, MBGD-D, MBGD-RD, MBGD-A, and
MBGD-RDA over MBGD: in each iteration, we treat the test
RMSE of MBGD as one, and compute the relative percentage
improvements of the test RMSEs of the other five MBGD-
based algorithms over it. For example, let RMSEGD(k) and
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Fig. 3. Percentage improvements of the test RMSEs of MBGD-R, MBGD-D, MBGD-RD, MBGD-A, and MBGD-RDA over MBGD.

RMSEMBGD-RDA(k)be the test RMSEs ofMBGD andMBGD-RDA
at iteration k, respectively. Then, the percentage improvement
of the test RMSE of MBGD-RDA over MBGD at iteration k is

p(k) = 100× RMSEGD(k)− RMSEMBGD-RDA(k)

RMSEGD(k)
. (14)

Fig. 3 confirmed the observations made from Fig. 2. Partic-
ularly, MBGD-RDA and MBGD-A converged much faster and
to smaller values than MBGD, MBGD-R, MBGD-D, and MBGD-
RD; the best test RMSEs of MBGD-RDA and MBGD-A were
also much smaller than those of MBGD, MBGD-R, MBGD-D,
and MBGD-RD. Among the five enhancements to MBGD, only
MBGD-RDA consistently outperformed MBGD. In other words,
although MBGD-RDA may not always outperform MBGD-A, its
performance was more stable than MBGD-A; so, it should be
preferred over MBGD-A in practice.

The time taken to finish 500 training iterations for the MBGD-
based algorithms on the ten datasets is shown in Table III. The
platform was a desktop computer running MATLAB 2018a and
Windows 10 Enterprise 64x, with Intel Core i7-8700 K CPU @
3.70 GHz, 16 GB memory, and 512 GB solid state drive. The
CPU has 12 cores, but each algorithm used only one core. Not
surprisingly, RR was much faster than others, because it has a
closed-form solution, and no iteration was needed. Among the
six MBGD-based algorithms, MBGD-RDA was the fastest. One
reason is that DropRule reduced the number of parameters to be
adjusted in each iteration.

TABLE III
COMPUTATIONAL COST (SECONDS) OF DIFFERENT ALGORITHMS ON THE

TEN REGRESSION DATASETS

D. Parameter Sensitivity

It is also important to study the sensitivity of MBGD-RDA to
its hyperparameters. Algorithm 1 shows that MBGD-RDA has
the following hyperparameters:

1) Mm, the number of Gaussian MFs in the mth input do-
main;

2) K, the maximum number of training iterations;
3) Nbs ∈ [1, N ], the minibatch size;
4) P ∈ (0, 1), the DropRule rate;
5) α, the initial learning rate (step size);
6) λ, the �2 regularization coefficient;
7) β1, β2 ∈ [0, 1), exponential decay rates for the moment

estimates in AdaBound;
8) ε, a small positive number in AdaBound;
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Fig. 4. Test RMSEs of MBGD-RDA w.r.t. different hyperparameters on the
PM10 dataset. (a) Different batch size Nbs. (b) Different DropRule rate P .
(c) Different initial learning rate α. (d) Different �2 regularization coefficient λ.
In each subfigure, except for the hyperparameter under consideration, the values
for other parameters are: Mm = 2, K = 500, Nbs = 64, P = 0.5, α = 0.01,
λ = 0.05, β1 = 0.9, β2 = 0.999, ε = 10−8, and l(k) and u(k) are defined in
(12) and (13), respectively.

9) l(k) and u(k), the lower and upper bound functions in
AdaBound

Among them, Mm is a parameter for all TSK fuzzy systems,
not specific to MBGD-RDA; K can be determined by early
stopping on a validation dataset; and β1, β2, ε, l(k) and u(k) are
AdaBound parameters, whose default values are usually used.
Therefore, we only studied the sensitivity of MBGD-RDA toNbs,
P , α, and λ, which are unique to MBGD-RDA.

The results, in terms of the test RMSEs, on the PM10 dataset
are shown in Fig. 4, where each experiment was repeated 100
times and the average test RMSEs are shown. In each subfigure,
except for the hyperparameter under consideration, the val-
ues for other parameters were: Mm = 2, K = 500, Nbs = 64,
P = 0.5,α = 0.01, λ = 0.05, β1 = 0.9, β2 = 0.999, ε = 10−8,
and l(k) and u(k) are defined in (12) and (13), respectively.
Clearly, MBGD-RDA is stable with respect to each of the four
hyperparameters in a wide range, which is desirable.

E. Comparison With ANFIS

ANFIS [10] is an efficient algorithm for training TSK fuzzy
systems on small datasets. This section compares the perfor-
mance of MBGD-RDA with ANFIS on the first six smaller
datasets.

The ANFIS structure of a two-input one-output TSK fuzzy
system is shown in Fig. 5. It has the following five layers.

Layer 1: The membership grade ofxm onXr,m is computed,
by (2).
Layer 2: The firing level of each rule Ruler is computed, by
(3).
Layer 3: The normalized firing levels of the rules are com-
puted, by (5).
Layer 4: Each normalized firing level is multiplied by its
corresponding rule consequent.

Fig. 5. TSK fuzzy system represented as a five-layer ANFIS. Note thatX1,1 =
X2,1, X3,1 = X4,1, X1,2 = X3,2, and X2,2 = X4,2 are used.

Layer 5: The output is computed, by (6).
All parameters of the ANFIS, i.e., the shapes of the MFs and

the rule consequents, can be trained by GD [10]; or, to speed
up the training, the antecedent parameters can be tuned by GD,
and the consequent parameters by LSE [10].

In the experiment, we used the anfis function in MATLAB
2018b, which does not allow us to specify a batch size, but
to use all available training examples in each iteration. For
fair comparison, in MBGD-RDA, we also set the batch size to
the number of training examples. anfis in MATLAB has two
optimization options: first, batch GD for both antecedent and
consequent parameters (denoted as ANFIS-GD in the sequel);
and second, batch GD for antecedent parameters and LSE for
consequent parameters (denoted as ANFIS-GD-LSE in the
sequel). We compared MBGD-RDA with both options.

The training and test RMSEs, averaged over ten runs, are
shown in Fig. 6(a). MBGD-RDA always converged much faster
than ANFIS-GD, and its best test RMSE was also always
smaller. Additionally, it should be emphasized that MBGD-RDA
can be used also for big data, whereas ANFIS-GD cannot.

Interestingly, althoughANFIS-GD-LSE always achieved the
smallest training RMSE, its test RMSE was almost always the
largest and had large oscillations. This suggests that ANFIS-
GD-LSE had significant overfitting. If we could reduce this
overfitting, e.g., through regularization, then ANFIS-GD-LSE
could be a very effective TSK fuzzy system training algorithm
for small datasets. This is one of our future research directions.

Fig. 6(b) shows the learning rates of ANFIS-GD, ANFIS-
GD-LSE, and MBGD-RDA. For the first two ANFIS-based ap-
proaches, all model parameters shared the same learning rate.
However, in MBGD-RDA, different model parameters had dif-
ferent learning rates, and we show the average learning rate
across all model parameters on each dataset. The learning rates
in ANFIS-GD and ANFIS-GD-LSE first gradually increased
and then decreased. Interestingly, the learning rate of ANFIS-
GD-LSE was almost always smaller than that of ANFIS-GD
when the number of iterations was large. The learning rate
of MBGD-RDA was always very high at the beginning, and
then rapidly decreased. The initial high learning rate helped
MBGD-RDA in achieving rapid convergence.

F. Comparison With DropMF and DropMembership

In addition to DropRule, there could be other DropOut ap-
proaches in training a TSK fuzzy system, e.g., as follows.
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Fig. 6. (a) Performance comparison of MBGD-RDAwith ANFIS-GD and ANFIS-GD-LSE in batch GD. We use logarithmic scale on the vertical axis to make the
curves more distinguishable. (b) Learning rates of ANFIS-GD and ANFIS-GD-LSE, and the average learning rate (across all model parameters) of MBGD-RDA,
in batch GD.

Fig. 7. DropMF, where Xm,i is the ith MF in the mth input domain. (a) Red cross indicates that MF X1,1 for x1 will be dropped. (b) Equivalent fuzzy system
after dropping X1,1.

Fig. 8. DropMembership, where Xm,i is the ith MF in the mth input domain. (a) Red cross indicates that membership μX1,1
(x1) in the first rule will be

dropped. (b) Equivalent fuzzy system after dropping μX1,1
(x1) in the first rule.

1) DropMF, in which each input MF is dropped with a
probability 1− P , as illustrated in Fig. 7. Dropping an
MF is equivalent to setting the firing level of that MF
to 1 (instead of 0). Comparing DropMF in Fig. 7(b) and
DropRule in Fig. 1(b), we can observe that each DropRule
operation reduces the number of used rules by 1. On the
contrary, DropMF does not reduce the number of used

rules; instead, it reduces the number of antecedents in
multiple rules by 1.

2) DropMembership, in which the membership of an input
in each MF is dropped with a probability 1− P , as illus-
trated in Fig. 8. Dropping a membership is equivalent to
setting that membership to 1 (instead of 0). Comparing
DropMembership in Fig. 8(b) and DropMF in Fig. 7(b),
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Fig. 9. Average training and test RMSEs of MBGD-RDA, DropMF (replacing DropRule in MBGD-RDA by DropMF), and DropMembership (replacing
DropRule in MBGD-RDA by DropMembership) on the ten datasets.

Fig. 10. Average training and test RMSEs of MBGD-RDA and MBGD-RD-Adam on the ten datasets.
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we can observe that DropMembership has a smaller im-
pact on the firing levels of the rules than DropMF. For
example, in Fig. 7(b), both f1 and f2 are impacted by
DropMF, whereas in Fig. 8(b), only f1 is impacted by
DropMembership.

Next, we compare the performances of DropMF, DropMem-
bership with DropRule, by replacing DropRule in MBGD-RDA
by DropMF and DropMembership. The training and test RM-
SEs, averaged over ten runs, are shown in Fig. 9. Generally,
DropRule performed the best, and DropMembership the worst.
Comparing Figs. 1(b), 7(b), and 8(b), we can observe that
DropRule introduces the maximum change to the TSK fuzzy
system structure, and DropMembership the smallest. This sug-
gests that a dropout operation that introduces more changes to
the TSK fuzzy system may be more beneficial to the training
and test performances.

G. Comparison With Adam

We also compared the performances of AdaBound with
Adam. The learning algorithm, MBGD-RD-Adam, was identical
to MBGD-RDA, except that AdaBound was replaced by Adam,
by setting l(k) = 0 and u(k) = +∞ in Algorithm 1.

The training and test RMSEs, averaged over ten runs, are
shown in Fig. 10. MBGD-RDA converged faster than, or equally
fast with, MBGD-RD-Adam, and had smaller or comparable
best test RMSEs as MBGD-RD-Adam on most datasets. So, it is
generally safe to choose AdaBound over Adam.

IV. CONCLUSION AND FUTURE RESEARCH

TSK fuzzy systems are very useful machine learning models
for regression problems. However, to our knowledge, there has
not existed an efficient and effective training algorithm that
enables them to deal with big data. Inspired by the connec-
tions between TSK fuzzy systems and neural networks, this
article extended three powerful optimization techniques for
neural networks, e.g., MBGD, regularization, and AdaBound,
to TSK fuzzy systems, and also proposed three novel tech-
niques (DropRule, DropMF, and DropMembership) specifically
for training TSK fuzzy systems. Our final algorithm, MBGD-
RDA, which integrates MBGD, regularization, AdaBound, and
DropRule, can achieve fast convergence in training TSK fuzzy
systems, and also superior generalization performance in testing.
It can be used for training TSK fuzzy systems on datasets of any
size; however, it is particularly useful for big datasets, for which
currently no other efficient training algorithms exist. We expect
that our algorithm will help promote the applications of TSK
fuzzy systems, particularly to big data.

Finally, we need to point out that we have not considered
various uncertainties in the data, e.g., missing values, wrong
values, noise, and outliers, which frequently happen in real-
world applications. Some techniques, e.g., rough sets [36], could
be integrated with fuzzy sets to deal with them; or the type-1
TSK fuzzy systems used in this article could also be extended
to interval or general type-2 fuzzy systems [1], [37] to cope
with more uncertainties. These are some of our future research
directions.
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