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Abstract—Drowsy driving is a pervasive problem among
drivers, and is also an important contributor to motor vehicle
accidents. It is very important to be able to estimate a driver’s
drowsiness level online so that preventative actions could be
taken to avoid accidents. However, because of large individual
differences, it is very challenging to design an estimation al-
gorithm whose parameters fit all subjects. Some subject-specific
calibration data must be used to tailor the algorithm for each new
subject. This paper proposes a domain adaptation with model
fusion (DAMF) online drowsiness estimation approach using EEG
signals. By making use of EEG data from other subjects in a
transfer learning framework, DAMF requires very little subject-
specific calibration data, which significantly increases its utility in
practice. We demonstrate using a simulated driving experiment
and 15 subjects that DAMF can achieve much better performance
than several other approaches.

Keywords—Drowsy driving; EEG; domain adaptation;

model fusion; transfer learning

I. INTRODUCTION

Drowsy driving is a pervasive problem among drivers. A

nationally representative telephone survey of 4,010 drivers

conducted by the National Highway Traffic Safety Admin-

istration (NHTSA) in 2002 [17] found that 37% of drivers

had “nodded off for at least a moment or fallen asleep while

driving at least once in their driving career”, including 4%

within the past month, 8% within the past six months, and

11% within the past year. AAA Foundation for Traffic Safety

conducted a telephone survey to 2,000 drivers in 2010 [18],

and reported similar findings: 41.0% of drivers had ever fallen

asleep or nodded off while driving, including 3.9% within the

past month, 7.1% within the past six months, and 11.0% within

the past year. The National Sleep Foundation’s 2005 Sleep in

America poll [15] showed that drowsy driving may be much

more pervasive: 60% of adult drivers said they had driven a

vehicle while feeling drowsy in the past year, 37% had actually

fallen asleep at the wheel, and 13% said they had done so at

least once a month.

As the driver’s cognition and reaction abilities are signif-

icantly impaired while drowsy, drowsy driving becomes an

important cause of motor vehicle accidents. According to the

NHTSA [19], between 2005 and 2009, 2.5% of fatal motor

vehicle crashes (on average 886 per year in the U.S.) and

2.5% of fatalities (on average 1,004 per year in the U.S.)

involved drowsy driving. The National Sleep Foundation poll

[15] showed that 4% of drivers admitted they had had an

accident or near accident because they dozed off or were too

tired to drive. Some modeling studies [13], [18] even estimated

that 15%-33% of fatal crashes might involve drowsy drivers.

As a result, it is very important to be able to recognize

a driver’s drowsiness level, and allow preventative actions

(e.g., 1750Hz tone-burst to arouse the driver from drowsiness

[20]) to be taken to avoid accidents. As summarized in [20],

generally there are two approaches in the literature and also

applications: 1) computer vision based approach [1], [5],

which uses cameras to monitor the driver’s eye, face and/or

nodding activities and then to infer the drowsiness level; and,

2) driving behavior based approach [8], [20], which may use

response time (RT), the time interval between the onset of

lane deviation and the driver’s first response, as an indicator

of drowsiness level. RT can be inferred from the driver’s

EEG signals using a brain-computer interface (BCI) system.

The two approaches are complementary to each other. As

pointed out in [14], “neural signals are just another signal

modality that can supplement video or voice analysis: less

dependent on overt behavior, less susceptible to deception,

but requiring more intrusive sensors.” This paper adopts the

second approach.

Although there has been considerable literature on drowsi-

ness classification/estimation from EEG signals [7]–[9], [20],

[21], many studies focused on offline recognition, e.g., feature

extraction used information from all EEG data. However, a

practical drowsiness recognition system needs to recognize

a driver’s drowsiness level online, in real-time. Additionally,

because of large individual differences, it is very challenging,

if not impossible, to design a drowsiness recognition algo-

rithm whose parameters fit all subjects. Some subject-specific

calibration data must be used to tailor the algorithm for a

new subject. To increase the utility of the BCI system, we

need to reduce the amount of subject-specific calibration data.

Transfer learning (TL) [16], which makes use of data from

other existing subjects, can be used for this purpose.

There has not been much work on TL for online drowsiness

estimation. To our best knowledge, the only one is [21], which

showed that selective TL (STL), which selectively turns TL

on or off based the level of session generalizability (more

details will be given in Section III-D), can achieve better

estimation performance than approaches that always turns TL
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on or off. However, it used a long calibration session, and

did not show how the learning performance changed with

the amount of subject-specific calibration data. This paper

proposes a domain adaptation with model fusion (DAMF)

online drowsiness estimation approach. By making use of

data from other subjects in a TL framework, DAMF requires

very little subject-specific calibration data, which significantly

increases its ease of use in practice. We also show that DAMF

outperforms the TL and STL approaches in [21].

The rest of the paper is organized as follows: Section II in-

troduces the details of the online DAMF algorithm. Section III

presents experimental results and performance comparisons of

different algorithms. Section IV draws conclusions.

II. ONLINE DOMAIN ADAPTATION WITH MODEL FUSION

This section introduces the online DAMF algorithm. As-

sume there are data from Z existing (auxiliary) subjects, which

could be used to help the learning for a new subject. We

apply the online domain adaptation (DA) algorithm for each

auxiliary subject separately to obtain Z different models, and

then fuse them for a final model.

A. Background

A domain [10], [16] D in TL consists of a d-dimensional

feature space X and a marginal probability distribution P (x),
i.e., D = {X , P (x)}, where x ∈ X . Two domains Dz and Dt

are different means X z 6= X t, and/or P z(x) 6= P t(x).

A task [10], [16] T in TL consists of a output space Y and

a conditional probability distribution Q(y|x). Two tasks T z

and T t are different means Yz 6= Yt, or Qz(y|x) 6= Qt(y|x).

Given the zth source domain Dz with nz samples

{(xz
i , y

z
i )}i=1,...,nz

, and a target domain Dt with m calibration

samples {(xt
j , y

t
j)}j=1,...,m, DA aims to learn a target predic-

tion function f : xt 7→ yt with low expected error on Dt,

under the assumptions X z = X t, Yz = Yt, P z(x) 6= P t(x),
and Qz(y|x) 6= Qt(y|x).

For example, in driver’s drowsiness estimation from EEG

signals, EEG signals from a new subject are in the target

domain, while EEG signals from the zth existing subject

are in the zth source domain. A single data sample would

consist of the feature vector for a single EEG epoch in either

domain. Though the features in source and target domains

are computed in the same way, generally their marginal

and conditional probability distributions are different, i.e.,

P z(x) 6= P t(x) and Qz(y|x) 6= Qt(y|x), because the two

subjects usually have different drowsy neural responses. As

a result, data from a source domain cannot represent data

in the target domain accurately, and must be integrated with

some data in the target domain to induce the target predictive

function.

B. DA Using Ridge Regression

Given a feature matrix X (each row represents a different

sample and each column a different feature) and its corre-

sponding output vector y, ridge regression (RR) tries to find

a coefficient vector βRR such that [6]:

βRR = argmin
β

||y −Xβ||22 + λ||β||22 (1)

where λ > 0 is the ridge parameter, which has primarily two

effects:

1) It improves the conditioning of the problem. This is

important because at the beginning of the calibration

the number of samples may be smaller than the number

of features, and hence regular least squares regression is

ill-conditioned, whereas RR can always find a solution.

2) It reduces the variance of the estimates. Although RR

usually gives more biased estimates than regular least

squares regression, the reduced variance of ridge esti-

mates often result in a smaller root mean squared error

(RMSE).

The solution of (1) is:

βRR = (XTX+ λI)−1XTy (2)

where XT is the transpose of X, and I is the identity matrix.

To use RR in DA, we simply combine features and outputs

in the zth source domain and the target domain, i.e.,

Xz =


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(3)

and then use them in (2) to compute βz . Note that more

sophisticated DA methods [16] could be used; however, we

chose the above method for its simplicity and speed, and

also because a similar method has demonstrated superior

performance in a previous work on classification [23].

C. Model Fusion

After all Z βz have been computed, they can be aggregated

by a simple average1 to give a final RR model, whose

coefficient vector is computed as:

β =
1

Z

Z
∑

z=1

βz. (4)

The pseudo-code for the complete online DAMF algorithm

is shown in Algorithm 1. It is simple and fast; however, as we

will demonstrate in the next section, it can achieve superior

performance.

III. EXPERIMENTS AND DISCUSSIONS

Experimental results on simulated driving data are presented

in this section to demonstrate the performance of DAMF.

1We have also investigated more sophisticated aggregation approaches, e.g.,
giving more weights to models performing better in training, but failed to
observe improved performance.

978-1-4799-9953-8/15/$31.00 ©2015 IEEE 905



Algorithm 1: The online DAMF algorithm.

Input: Z source domains, where the zth (z = 1, ..., Z)

domain has nz samples {xz
i , y

z
i }i=1,...,nz

;

m target domain calibration samples,

{xt
j , y

t
j}j=1,...,m;

Parameters λ in ridge regression.

Output: The DAMF RR model.

for z = 1, 2, ..., Z do

Construct Xz and yz in (3) ;

Compute βz by (2);

Compute β by (4) ;

end

Return The DAMF RR model with coefficient vector β.

A. Experiment Setup

This study recruited 16 healthy subjects with normal or

corrected to normal vision to participant in a sustained-

attention driving experiment [2], [3], which consists of a real

vehicle mounted on a motion platform with 6 degrees of

freedom immersed in a 360-degree virtual-reality (VR) scene.

Each participant read and signed an informed consent form

before the experiment began. Each experiment lasted for about

60-90 minutes and was conducted in the afternoon when the

circadian rhythm of sleepiness reached its peak. To induce

drowsiness in the subjects during driving, the VR scenes

simulated monotonous driving at a fixed speed (100 km/h) on

a straight and empty highway. During the experiment, lane-

departure events randomly appeared every 5-10 seconds, and

participants were instructed to steer the vehicle to compensate

for these perturbations immediately. Subjects’ cognitive states

and driving performance were monitored via a surveillance

video camera and the vehicle trajectory throughout the exper-

iment. The RT in response to the perturbation was recorded

and later converted to drowsiness index. Meanwhile, partici-

pants’ scalp EEG signals were recorded using a 32-channel

Neuroscan system (30-channel EEGs plus 2-channel earlobes)

with a sampling rate of 500Hz. We would verify whether the

long-RT trial was accompanied with drowsiness by observing

slow eye blinks/movements via EEG recordings.

The Institutional Review Board of the Taipei Veterans

General Hospital approved the experimental protocol.

B. Preprocessing and Feature Extraction

We used EEGLAB [4] for EEG signal preprocessing. All

30 EEG channels were used in feature extraction. A band-

pass filter (1-50 Hz) was applied to remove high-frequency

muscle artifacts, line-noise contamination and DC drift. Next

the EEG data were downsampled from 500 Hz to 250 Hz and

re-referenced to averaged earlobes.

We then defined a function to map the response time τ to

a drowsiness index y ∈ [0, 1]:

y = max

{

0,
1− e−(τ−τ0)

1 + e−(τ−τ0)

}

(5)
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Fig. 1. Drowsiness indices of the 15 subjects.

which was first proposed in [21]. τ0 = 1 was used in this

paper.

The 16 subjects had different lengths of experiment, because

the disturbances were presented randomly every 5-10 seconds.

Data from one subject was not correctly recorded, so we used

only 15 subjects. To ensure fair comparison, we used only

the first 3,600 seconds data for each subject and sampled

them every 10 seconds. The drowsiness indices were then

smoothed using a 90-second square moving-average window

to reduce variations. This does not reduce the sensitivity of

the drowsiness index because the cycle lengths of drowsiness

fluctuations are longer than 4 minutes [11]. The smoothed

drowsiness indices for the 15 subjects are shown in Fig. 1.

Each subject has some drowsiness indices at or close to 1,

indicating drowsy driving.

We then epoched 30-second EEG signals right before each

sample, and computed the average power spectral density

(PSD) in the theta band (4-7 Hz) for each channel using

Welch’s method [22], as research [12] has shown that theta

band spectrum is a strong indicator of drowsiness. Finally, we

converted the 30 theta band powers to dBs and used them

as our features. To remove noises or bad channel readings,

we removed channels whose maximal PSDs are larger than

20. The theta band powers for five selected channels and the

corresponding drowsiness index for Subject 1 are shown in

Fig. 2. Observe that drowsiness index has strong correlation

with the theta band powers.

Fig. 3 shows the mean topoplots of theta band powers across

the 15 subjects. To obtain the mean topoplot for the alert state

in Fig. 3(a), we first find the mean theta band powers of the

5% smallest drowsiness indices for each of the 15 subjects,

and then take their average. To obtain the mean topoplot for

the drowsy state in Fig. 3(b), we first find the mean theta

band powers of the 5% largest drowsiness indices for each of

the 15 subjects, and then take their average. Fig. 3(c) shows

the difference between the drowsy state and the alert state.

Observe that there is large differences in the topoplots between

these two states, which suggests that the theta band power is

978-1-4799-9953-8/15/$31.00 ©2015 IEEE 906
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Fig. 2. Theta band powers and drowsiness index for Subject 1.
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Fig. 3. Mean topoplots of theta band powers across the 15 subjects.

a good indicator of drowsiness.

C. Evaluation Process and Performance Measures

Among the ∼360 samples for each subject, we reserved 100

samples in a randomly chosen continuous block for calibration

(training) and the rest ∼260 samples for testing. Next we use

DAMF to illustrate the evaluation process, as shown in Fig. 4.

We start from zero subject-specific calibration data, use

DAMF to train a model, evaluate the performance of this

model on the ∼260 testing samples2, acquire and add 5 more

subject-specific calibration samples sequentially, re-train the

DAMF model, and repeat the process until all 100 calibration

samples have been used. We ran this iterative evaluation

process 30 times, each time with a randomly chosen 100-

sample calibration block, to obtain statistically meaningful

results. Finally, we repeated this entire process 15 times so that

each subject had the chance to be the “new” subject (target

domain) and the remaining 14 to be “existing” subjects (source

domains).

The primary performance measured used in this paper is

RMSE, which is directly optimized in the object function of

RR. The secondary performance measure is the correlation

coefficient (CC) between the estimates of the ∼260 testing

samples and the true drowsiness indices.

D. Algorithms

We compared the performances of DAMF with five other

algorithms:

2This performance is not available in practice in the online calibration
process because the testing data are not available. We evaluate the testing
performance in each iteration just to illustrate how it changes with the number
of subject-specific calibration samples.

Yes

No

Acquire and add new subject-
specific calibration samples

Zero subject-specific 
calibration sample

DAMF to determine the 
optimal model parameters

Massive samples 
from other 

subjects

Stop and output 
the optimal

model

Maximum number of 
iterations reached?
Or cross-validation 

performance satisfactory?

Fig. 4. The iterative online DA algorithm.

1) Baseline 1 (BL1), which combines data from all 14

existing subjects, builds a RR model, and applies it

to the new subject. That is, it tries to build a subject-

independent model and ignores data from the new sub-

ject completely.

2) Baseline 2 (BL2), which builds a RR model using

only subject-specific calibration samples from the new

subject. That is, it ignores data from existing subjects

completely.

3) DAall, which is DAMF without model fusion: in each

iteration it combines data from all 14 existing subjects

and treats them as data from a single source domain,

and builds a DA RR model by combining them with the

subject-specific calibration data.

4) TL, which is the transfer learning algorithm in [21]. It

builds 14 RR models using data from each auxiliary

subject separately, and then the 15th model using the

subject-specific data. The final model is the average of

these 15 models. TL and DAMF look similar, but there

are two important differences: i) TL is the average of

15 models, whereas DAMF is the average of 14 models

(DAMF does not include a model built from the subject-

specific data only); and, ii) each of the first 14 models

in TL is built using only data from an auxiliary subject,

whereas the corresponding model in DAMF is built by

combining the data from the auxiliary subject with the

subject-specific data.

5) STL, which is the selective TL approach in [21]. It

first computes a level of session generalizability (LSG)

for the new subject, which measures how good the

model built from the subject-specific data only can be

generalized to other subjects. If the LSG is small, e.g.,

LSG<1, then the subject may be benefited from TL, and

hence the above TL approach is adopted. Otherwise, TL

is turned off, and only the model built from the subject-

specific data is used.

The ridge parameter σ = 0.01 was used in all six algorithms.

Other σs were also tested, and the results were similar as long

as σ is not too large (i.e., σ ≤ 0.1).
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Fig. 5. Average performances of the five algorithms across the 15 subjects.

E. Experimental Results

The average RMSEs and CCs for the six algorithms across

the 15 subjects are shown in Fig. 5, and the RMSEs and CCs

for the individual subjects are shown in Fig. 6. Observe that:

1) Except for BL1, whose model does not depend on m,

all the other four methods give better models as m

increases, which is intuitive.

2) BL1’s average RMSE is better than BL2 when m

is small, but as m increases, all other models have

better RMSEs than BL1, and hence BL1 becomes the

worst model. This suggests that there is large individual

difference among the subjects, and hence a subject-

independent model is not optimal.

3) Because BL2 uses only subject-specific calibration data,

it cannot build a model when m = 0, i.e., when there is

no subject-specific calibration data at all. However, all

other five methods can, because they can use data from

other subjects. BL2’s performance is the worst when m

is small, because it cannot get enough training with very

few subject-specific calibration samples.

4) On average DAall has better RMSE and CC than BL1

and BL2. This is intuitive, as BL1 does not make use of

any subject-specific data, and BL2 does not make use of

any auxiliary data. This suggests that even a very simple

DA approach can be beneficial.

5) TL achieves better RMSE than BL1, but unlike BL2,

DAall, STL and DAMF, its performance does not change

much as m increases. This is because the subject-specific

model in TL only has 1/15 weight in the final model,

and all other 14 models do not depend on m.

6) STL gives worse RMSE and CC than TL. This is

interesting, because [21] showed that STL can result

in better performance. There are two reasons: 1) [21]

used LSG=1 as the threshold to turn TL on or off, but

it may not be optimal for our data; and, 2) [21] used

much more subject-specific calibration data, so LSG can

be computed more reliably, whereas we have very little

calibration data. The results suggest that STL should be

tuned for different datasets, and cautions should be paid

when the subject-specific calibration dataset is small.

7) On average DAMF gives both the smallest RMSE and

the largest CCs, which suggest that overall it is the

best algorithm among the six. However, Fig. 6(a) shows

that DAMF has worse RMSE than BL1 and DAall for

Subjects 1, 2, 9 and 13. This indicates that DAMF

still has room for improvement: maybe it is possible

to develop a mechanism to switch between DAall and

DAMF so that a more appropriate method is chosen

according to the characteristics of the new subject,

similar to the idea of STL. This is one of our future

research directions.

In summary, the four TL or DA based approaches generally

have smaller RMSEs than BL2, which do not use auxiliary

data. This suggests that TL/DA is indeed beneficial. Moreover,

our proposed DAMF achieves best overall performance among

the six algorithms.

Finally, we can conclude that given the same amount of

subject-specific calibration data, DAMF can achieve much

better performance than all the other five approaches. Or, in

other words, given a desired RMSE, DAMF needs much less

subject-specific calibration data than the other approaches. For

example, in Fig. 5(a), the RMSEs for BL2, DAall, TL and

STL when m = 100 are 0.2806, 0.2416, 0.2647, and 0.2690
respectively, whereas DAMF only needs at most 5 subject-

specific calibration samples to achieve them.

IV. CONCLUSIONS

Drowsy driving is a pervasive problem among drivers, and is

also an important cause of motor vehicle accidents. As a result,

it would be very beneficial to be able to estimate a driver’s

drowsiness level online so that preventative actions could be

taken to avoid accidents. However, because of large individual

differences, it is very challenging to design an estimation

algorithm whose parameters fit all subjects. Some subject-

specific calibration data must be used to tailor the algorithm for

each new subject. This paper has proposed an online DAMF

drowsiness estimation approach using EEG signals. By making

use of EEG data from other subjects in a transfer learning

framework, DAMF requires very little subject-specific calibra-

tion data, which significantly increases its utility in practice.

We demonstrated using a simulated driving experiment and

15 subjects that, given the same amount of subject-specific

calibration data, DAMF can achieve much better performance
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Fig. 6. Performances of the five algorithms for each individual subject. Horizontal axis: m, the number of subject-specific calibration samples.
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than several other approaches. Or, in other words, given a

desired estimation accuracy, DAMF needs much less subject-

specific calibration data.

Although this paper only demonstrated the performance of

DAMF for drowsiness estimation, we believe it can also be

used in other affective computing applications, e.g., estimating

the continuous values of arousal, valence and dominance from

speech signals [26]. In addition to domain adaptation for

estimation problems, we have also demonstrated its superior

performance for classification problems in BCI, e.g., visually-

evoked potentials classification [23]–[25]. In summary, domain

adaptation, or more generally, transfer learning, is a very

valuable machine learning technique in BCI and affective

computing.
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