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On the Vulnerability of CNN Classifiers
in EEG-Based BCIs

Xiao Zhang and Dongrui Wu , Senior Member, IEEE

Abstract— Deep learning has been successfully used
in numerous applications because of its outstanding
performance and the ability to avoid manual feature engi-
neering. One such application is electroencephalogram
(EEG)-based brain-computer interface (BCI), where multiple
convolutional neural network (CNN) models have been pro-
posed for EEG classification. However, it has been found
that deep learning models can be easily fooled with adver-
sarial examples, which are normal examples with small
deliberate perturbations. This paper proposes an unsuper-
vised fast gradient sign method (UFGSM) to attack three
popular CNN classifiers in BCIs, and demonstrates its effec-
tiveness. We also verify the transferability of adversarial
examples in BCIs, which means we can perform attacks
even without knowing the architecture and parameters of
the target models, or the datasets they were trained on.
To the best of our knowledge, this is the first study on
the vulnerability of CNN classifiers in EEG-based BCIs, and
hopefully will trigger more attention on the security of BCI
systems.

Index Terms— Electroencephalogram, brain-computer
interfaces, convolutional neural networks, adversarial
examples.

I. INTRODUCTION

A BRAIN-COMPUTER interface (BCI) is a commu-
nication pathway between the human brain and a

computer [13]. Electroencephalogram (EEG), which measures
the brain signal from the scalp, is the most widely used input
signal in BCIs, due to its simplicity and low cost [25]. There
are different paradigms in using EEG signals in BCIs, e.g.,
P300 evoked potentials [10], [33], [40], [43], motor imagery
(MI) [29], steady-state visual evoked potential (SSVEP) [47],
drowsiness/reaction time estimation [41], [42], [44], etc.

As shown in Fig. 1, a BCI system usually consists of
four parts: signal acquisition, signal preprocessing, machine
learning, and control action. The machine learning block
usually includes feature extraction and classification/regression
if traditional machine learning algorithms are applied.
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Fig. 1. The procedure of a BCI system when traditional machine learning
algorithms are used. Manual feature extraction is not necessary if deep
learning is employed.

However, feature extraction and classification/regression can
also be seamlessly integrated into a single deep learning
model.

Deep learning has achieved state-of-the-art performance
in various applications, without the need of manual fea-
ture extraction. Recently, multiple deep learning models,
particularly those based on convolutional neural networks
(CNNs), have also been proposed for EEG classification in
BCIs. Lawhern et al. (2016) [19] proposed EEGNet, which
demonstrated outstanding performance in several BCI appli-
cations. Schirrmeister et al. (2017) [31] designed a deep CNN
model (DeepCNN) and a shallow CNN model (ShallowCNN)
to perform end-to-end EEG decoding. There were also some
works converting EEG signals to images and then classifying
them with deep learning models [4], [35], [37]. This paper
focuses on the CNN models that accept the raw EEG signal
as the input, more specifically, EEGNet, DeepCNN, and Shal-
lowCNN. A CNN model using the spectrogram as the input
is briefly discussed in Section III-J.

Albeit their outstanding performance, deep learning models
are vulnerable to adversarial attacks. In such attacks, delib-
erately designed small perturbations, many of which may
be hard to notice even by human, are added to normal
examples to fool the deep learning model and cause dramatic
performance degradation. This phenomena was first investi-
gated by Szegedy et al. in 2013 [34] and soon received great
attention. Goodfellow et al. (2014) [12] successfully confused
a deep learning model to misclassify a panda into a gibbon.
Kurakin et al. (2016) [18] found that deep learning systems
might even make mistakes on printed photos of adversarial
examples. Brown et al. (2017) [6] made an adversarial patch
which was able to confuse deep learning models when attached
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on a picture. Athalye et al. (2017) [2] built an adversarial
3D-printed turtle which was classified as a riffle at every view-
point with randomly sampled poses. Additionally, adversarial
examples have also been used to attack speech recognition
systems, e.g., a piece of speech, which is almost the same as
a normal one but with a small adversarial perturbation, could
be transcribed into any phrase the attacker chooses [8].

Adversarial examples could significantly damage deep
learning models, which have been an indispensable compo-
nent in computer vision, automatic driving, natural language
processing, speech recognition, etc. To our knowledge, the vul-
nerability of deep learning models in EEG-based BCIs has not
been investigated yet, but it is critical and urgent. For example,
EEG-based BCIs could be used to control wheelchairs or
exoskeleton for the disabled [20], where adversarial attacks
could make the wheelchair or exoskeleton malfunction. The
consequence could range from merely user confusion and
frustration, to significantly reducing the user’s quality of life,
and even to hurting the user by driving him/her into danger
on purpose. In clinical applications of BCIs in awareness eval-
uation/detection for disorder of consciousness patients [20],
adversarial attacks could lead to misdiagnosis.

According to how much the attacker can get access to the
target model, attacks can be categorized into three types:

1) White-box attacks, which assume that the attacker has
access to all information of the target model, including
its architecture and parameters. Most of the white-box
attacks are based on some optimization strategies or gra-
dient strategies, such as L-BFGS [34], DeepFool [24],
the C&W method [7], the fast gradient sign method
(FGSM) [12], the basic iterative method [18], etc.

2) Black-box attacks, which assume the attacker knows
neither the architecture nor the parameters of the target
model, but can observe its responses to inputs. Papernot
et al. (2016) [27] developed a black-box attack approach
which can be used to generate adversarial examples by
interacting with the target model and training a substitute
model. Su et al. (2017) [32] successfully fooled three
different models by changing just one pixel of an image.
Brendel et al. (2017) [5] proposed a black-box attack
approach that starts from a large adversarial perturbation
and then tries to reduce the perturbation while staying
adversarial.

3) Gray-box attacks, which assume the attacker knows
some but not all information about the target model,
e.g., the training data that the target model is tuned on,
but not its architecture and parameters.

In order to better compare the application scenarios of
the three attack types, we summarize their characteristics in
Table I. ‘−’ means that whether the information is available
or not will not affect the attack strategy, since it will not
be used in the attack. It is clear that we need to know less
and less information about the target model when going from
white-box attack to gray-box attack and then to black-box
attack. This makes the attack more and more practical, but
we would also expect that knowing less information about the
target model may affect the attack performance. This paper
considers all three types of attacks in EEG-based BCIs.

TABLE I
SUMMARY OF THE THREE ATTACK TYPES

Fig. 2. Our proposed attack framework: inject a jamming module
between signal preprocessing and machine learning to generate adver-
sarial examples.

Fig. 3. A normal EEG epoch and its adversarial example. The two
inputs could be classified into different classes, although they are almost
identical.

According to its purpose, an attack can also be regarded as
a target attack, which forces a model to classify an adversarial
example into a specific class, or a nontarget attack, which only
forces a model to misclassify the adversarial examples.

This paper aims at exploring the vulnerability of CNN
classifiers under nontarget adversarial examples in EEG-based
BCIs. We propose an attack framework which converts a
normal EEG epoch into an adversarial example by simply
injecting a jamming module before machine learning to per-
form adversarial perturbation, as shown in Fig. 2. We then
propose an unsupervised fast gradient sign method (UFGSM),
an unsupervised version of FGSM [12], to design the adver-
sarial perturbation. The adversarial perturbation could be so
weak that it is hardly noticeable, as shown in Fig. 3, but can
effectively fool a CNN classifier. We consider three attack
scenarios – white-box attack, gray-box attack, and black-box
attack – separately. For each scenario, we provide the attack
strategy to craft adversarial examples, and the corresponding
experimental results. We show that our approaches can work
in most cases and can significantly reduce the classification
accuracy of the target model. To our knowledge, this is the first
study on the vulnerability of CNN classifiers in EEG-based
BCIs. It exposes an important security problem in BCI, and
hopefully will lead to the design of safer BCIs.

The remainder of the paper is organized as follows:
Section II proposes the strategies we use to attack the CNN
classifiers. Section III presents the details of the experiments
and the results on white-box attack, gray-box attack, and
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black-box attack. Section IV draws conclusion and points out
some future research directions.

II. STRATEGIES TO ATTACK BCI SYSTEMS

This section introduces our strategies to attack EEG-based
BCI systems when CNN is used as the classifier. We assume
the attacker is able to invade a BCI system and inject a
jamming module between signal preprocessing and machine
learning, as shown in Fig. 2. This is possible in practice,
as many BCI systems transmit preprocessed EEG signals to
a computer, a smart phone, or the cloud, for feature extrac-
tion and classification/regression. The attacker could attach
the jamming module to the EEG headset signal transmitter,
or to the receiver at the other side, to perform adversarial
perturbation.

The jamming module needs to satisfy two requirements:
1) the adversarial perturbation it generates should be so small
that it is hardly detectable; and, 2) the adversarial example
can effectively fool the CNN classifier. We propose UFGSM
to construct it.

Let

xi =
⎡
⎢⎣

xi (1, 1), · · · , xi (1, T )
...

. . .
...

xi (C, 1), · · · , xi (C, T )

⎤
⎥⎦ (1)

be the i -th raw EEG epoch, where C is the number of EEG
channels and T the number of the time domain samples. Let yi

be the true class label associated with xi , f (xi ) the mapping
from xi to yi used in the target CNN model, x̃i = g(xi) the
adversarial perturbation generated by the jamming module g.
Then, g needs to satisfy:

|̃xi (c, t)− xi (c, t)| � ε, ∀c ∈ [1, C], t ∈ [1, T ] (2)

f (̃xi ) �= yi (3)

Equation (2) ensures that the perturbation is no larger than a
predefined threshold ε, and (3) requires the generated adver-
sarial example should be misclassified by the target model f .
Note that (2) must hold for every c ∈ [1, C] and t ∈ [1, T ],
but it may be impossible for every x̃i to satisfy (3), especially
when ε is small. We evaluate the performance of the jamming
module g by measuring the accuracy of the target model on
the adversarial examples. A lower accuracy of the target model
under adversarial attack indicates a better performance of the
jamming model g, i.e., the more xi satisfy (3), the better the
performance of g is.

Next we describe how we construct the jamming module g.
We first introduce FGSM, one of the most well-known adver-
sarial example generators, and then our proposed UFGSM,
which extends FGSM to unsupervised scenarios.

A. FGSM

FGSM was proposed by Goodfellow et al. (2014) [12] and
soon became a benchmark attack approach. Let f be the
target deep learning model, θ be its parameters, and J be
the loss function in training f . The main idea of FGSM is to

Algorithm 1 Our Proposed UFGSM for White-Box
Attacks

Input: f , the target model; θ , the parameters of f ; J ,
loss function of the target model; ε, the upper
bound of perturbation; xi , a normal EEG epoch.

Output: x̃i , an adversarial EEG epoch.

Calculate y ′i = f (xi );
Calculate x̃i = xi + ε · sign(∇xi J (θ , xi , y ′i )).

return x̃i

find an optimal max-norm perturbation η constrained by α to
maximize J . The perturbation can be calculated as:

η = α · sign(∇xi J (θ , xi , yi )) (4)

And hence the jamming module g can be written as:

g(xi) = xi + α · sign(∇xi J (θ, xi , yi )) (5)

The requirement in (2) holds as long as α ≤ ε.
Let α = ε so that we can perturb xi at the maximum extent.

Then, g can be re-expressed as:

g(xi ) = xi + ε · sign(∇xi J (θ, xi , yi )) (6)

FGSM is an effective attack approach since it only requires
calculating the gradients once instead of multiple times such
as in the basic iterative method [18].

B. White-Box Attack

In a white-box attack, the attacker knows the architecture
and parameters θ of the target model f . It may represent
the scenario that a BCI system designer wants to evaluate
the worst case performance of the system under attack, since
usually white-box attacks cause more damages to the classifier
than gray-box or black-box attacks. The designer then uses
all information he/she knows about the classifier to attack it.
It may also represent scenarios that the target model of a
BCI system is somehow leaked/hacked, or the target model
is publicly available.

Knowing the architecture and parameters θ of the target
model f is not enough for FGSM, because it needs to know
the true label yi of xi in order to generate the adversarial per-
turbation. Next we propose UFGSM, an unsupervised FGSM,
to cope with this problem.

UFGSM replaces the label yi by y ′i = f (xi ), i.e., the
estimated label from the target model. Consequently, g in
UFGSM can be rewritten as:

g(xi ) = xi + ε · sign(∇xi J (θ, xi , y ′i )) (7)

y ′i approaches yi when the accuracy of f is high, and hence the
performance of UFGSM approaches FGSM. However, as will
be demonstrated in the next section, our proposed UFGSM is
still effective even when y ′i is quite different from yi .

The pseudocode of our proposed UFGSM for white-box
attacks is shown in Algorithm 1.
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Algorithm 2 Our Proposed UFGSM for Gray-Box Attacks
Input: D, training data of the target model; J , loss

function of the substitute model; ε, the upper
bound of perturbation; xi , a normal EEG epoch.

Output: x̃i , an adversarial EEG epoch.

Train a substitute model f ′ from D, using loss function
J ;
Calculate y ′i = f ′(xi );
Calculate x̃i = xi + ε · sign(∇xi J (θ, xi , y ′i )), where θ

encodes the parameters of f ′.

return x̃i

C. Gray-Box Attack

UFGSM does not need the true labels when generating
adversarial examples, but it assumes that we know the para-
meters of the target model f , which is still challenging in
practice. This requirement can be eliminated by utilizing the
transferability of adversarial examples, which is the basis of
both gray-box and black-box attacks.

The transferability of adversarial examples was first
observed by Szegedy et al. (2013) [34], which may be the
most dangerous property of adversarial examples. It denotes
an intriguing phenomenon that adversarial examples generated
by one deep learning model can also, with high probabil-
ity, fool another model even the two models are different.
This property has been used to attack deep learning models,
e.g., Papernot et al. (2016) [27] attacked deep learning systems
by training a substitute model with only queried information.

To better secure deep learning systems, a lot of studies
have been done to understand the transferability of adversarial
examples. Papernot et al. (2016) [28], Liu et al. (2016) [21]
and Tramer et al. (2017) [39] all attributed this property
to some kind of similarity between the models. However,
Wu et al. (2018) [45] questioned these explanations since they
found that the transferability of adversarial examples is not
symmetric, which does not satisfy the definition of similarity.

Although more theoretical research is needed to understand
both the adversarial example and its transferability property,
this does not hinder us from using them in gray-box attack.
Assume we have access to the training dataset used to con-
struct the target model f , e.g., we know that f was trained
using some public databases. The basic idea of gray-box attack
is to train our own model f ′ to replace the target model f
in UFGSM, so that we can get rid of the dependency on the
target model f .

The pseudocode of UFGSM for gray-box attacks is shown
in Algorithm 2.

D. Black-Box Attack

Gray-box attack assumes the attacker has access to the
training data of the target model, e.g., the target model
is trained on some classic public datasets. An even more
challenging situation is black-box attack, in which the attacker
has access to neither the parameters of the target model nor its

Algorithm 3 Our Proposed UFGSM for Black-Box
Attacks

Input: f , the target model; J , loss function of the
substitute model; λ, the parameter to control the
step to generate the new training dataset; N ,
the maximum number of iterations; ε, the upper
bound of perturbation; xi , a normal EEG epoch.

Output: x̃i , an adversarial EEG epoch.

Construct a set of unlabeled EEG epochs S;
Pass S through f to generate a training dataset D;
Train a substitute model f ′ from D, using loss function
J ;
for n = 1 to N do

�S = {x + λ · sign(∇x J (θ, x, y)) : (x, y) ∈ D}, where
θ encodes the parameters of f ′;
�D = {(xi , f (xi ))}xi∈�S ;
D← D

⋃
�D;

Train a substitute model f ′ from D, using loss
function J ;

end

Calculate y ′i = f ′(xi );
Calculate x̃i = xi + ε · sign(∇xi J (θ , xi , y ′i )), where θ

encodes the parameters of f ′.

return x̃i

training data. Instead, the attacker can only interact with the
target model and observe its output for an input. One example
is to attack a commercial proprietary EEG-based BCI system.
The attacker can buy such a system and observe its responses,
but does not have access to the parameters or the training data
of the target model.

Papernot et al. [27] proposed an approach to perform
black-box attacks. A similar idea is used in this paper.
We record the inputs and outputs of the target model to train a
substitute model f ′, which is then used in UFGSM to generate
adversarial examples, as shown in Algorithm 3. Note that the
way we augment the training set is different from the original
one in [27]. In [27], the new training set was constructed by
calculating the Jacobian matrix corresponding to the labels
assigned to the inputs, whereas we use the loss computed from
the inputs instead.

III. EXPERIMENTS AND RESULTS

This section validates the performances of the three attack
strategies. Three EEG datasets and three CNN models were
used.

A. The Three EEG Datasets

The following three EEG datasets were used in our
experiments:

1) P300 Evoked Potentials (P300): The P300 dataset for
binary-classification, collected from four disabled subjects
and four healthy ones, was first introduced in [15]. In the
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experiment, a subjects faced a laptop on which six images
were flashed randomly to elicit P300 responses. The goal was
to classify whether the image is target or non-target. The EEG
data were recorded from 32 channels at 2048Hz. We bandpass
filtered the data to 1-40Hz and downsampled them to 256Hz.
Then we extracted EEG epochs in [0,1]s after each image
onset, normalized them using x−mean(x)

10 , and truncated the
resulting values into [-5, 5], as the input to the CNN classifiers.
Each subject had about 3,300 epochs.

2) Feedback Error-Related Negativity (ERN): The ERN
dataset [23] was used in a Kaggle competition1 for two-class
classification. It was collected from 26 subjects and partitioned
into training set (16 subjects) and test set (10 subjects).
We only used the 16 subjects in the training set as we do not
have access to the test set. The 56-channel EEG data had been
downsampled to 200Hz. We bandpass filtered them to 1-40Hz,
extracted EEG epochs between [0,1.3]s, and standardized them
using z-score normalization. Each subject had 340 epochs.

3) Motor Imagery (MI): The MI dataset is Dataset 2A2 in
BCI Competition IV [36]. It was collected from nine subjects
and consisted of four classes (imagined movements of the
left hand, right hand, feet, and tongue). The 22-channel EEG
signals were sampled at 128Hz. As in [19], we bandpass
filtered the data to 4-40Hz, and standardized them using
an exponential moving average window with a decay factor
of 0.999. Each subject had 576 epochs, 144 in each class.

B. The Three CNN Models

The following three different CNN models were used in our
experiments:

1) EEGNet: EEGNet [19] is a compact CNN architecture
with only about 1000 parameters (the number may change
slightly according to the nature of the task). EEGNet contains
an input block, two convolutional blocks and a classification
block. To reduce the number of model parameters, it replaces
the traditional convolution operation with a depthwise sep-
arable convolution, which is the most important block in
Xception [9].

2) DeepCNN: Compared with EEGNet, DeepCNN [31] is
deeper and hence has much more parameters. It consists of
four convolutional blocks and a classification block. The first
convolutional block is specially designed to handle EEG inputs
and the other three are standard ones.

3) ShallowCNN: ShallowCNN [31] is a shallow version of
DeepCNN, inspired by filter bank common spatial patterns [1].
Its first block is similar to the first convolutional block of
DeepCNN, but with a larger kernel, a different activation
function, and a different pooling approach.

C. Training Procedure and Performance Measures

The first two datasets have high class imbalance. To accom-
modate this, in training we applied a weight to each class,
which was the inverse of its number of examples in the
training set. We used the Adam optimizer [16], and cross

1https://www.kaggle.com/c/inria-bci-challenge
2http://www.bbci.de/competition/iv/

Fig. 4. Baseline classification accuracies of the three CNN classifiers
on different datasets. (a) RCAs; (b) BCAs.

entropy as our loss function. Early stopping was used to reduce
overfitting.

The test set still had class imbalance, which resembled the
practical application scenario. We employed two metrics to
evaluate the test performance:

1) Raw classification accuracy (RCA), which is the ratio
of the total number of correctly classified test examples
to the total number of test examples.

2) Balanced classification accuracy (BCA) [40], which is
the average of the individual RCAs of different classes.

D. Baseline Performances on Clean EEG Data

We first evaluated the baseline performances of the three
CNN models.

1) Within-Subject Experiments: For each individual subject,
epochs were shuffled and divided into 80% training and 20%
test. We further randomly sampled 25% epochs from the
training set as our validation set in early stopping. We cal-
culated the mean RCAs and BCAs from all subjects as the
performance measures.

2) Cross-Subject Experiments: For each dataset, leave-one-
subject-out cross-validation was performed, and the mean
RCAs and BCAs were calculated. Epochs from all subjects
in the training set were mixed, shuffled, and divided into 75%
training and 25% validation.

The baseline results are shown in Fig. 4 and Table II, and
the corresponding models were regarded as our target models.
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TABLE II
RCAS/BCAS OF DIFFERENT CNN CLASSIFIERS IN WHITE-BOX AND GRAY-BOX ATTACKS

ON THE THREE DATASETS (ε = �.�/�.�/�.�� FOR P300/ERN/MI)

Note that the RCAs and BCAs on the MI dataset were consid-
erably lower, because MI was 4-class classification, whereas
P300 and ERN were 2-class classification. For all datasets and
all classifiers, RCAs and BCAs of within-class experiments
were higher than their counterparts in cross-subject exper-
iments, which is reasonable, because individual differences
cause inconsistency among examples from different subjects.

E. Baseline Performances Under Random Noise

Before attacking these three target models using our pro-
posed approaches, we corrupted the clean EEG data with
random noise η0 to check if that can significantly deteriorate
the classification performances. If so, then we do not need
to use a sophisticated approach to construct the adversarial
examples: just adding random noise is enough.

The random noise was designed to be:

η0 = ε · sign (N (0, 1)) (8)

i.e., η0 is either −ε or ε, so that its amplitude resembles that
of the adversarial perturbations in (2). Although the EEG in
all three datasets had similar standard deviations, empirically
we found that the CNN classifiers trained on the MI dataset
were more sensitive to noise than those on P300 or ERN. So,
we set ε = 0.1 for P300 and ERN, and ε = 0.05 for MI in
the experiments.

The results are shown in Table II. The classification accu-
racies on the noisy EEG data were comparable with, and
sometimes even slightly better than, those on the clean EEG
data, suggesting that adding random noise did not have a
significant influence on the target models. In other words,
adversarial perturbations cannot be implemented by simple
random noise; instead, they must be deliberately designed.

F. White-Box Attack Performance

In a white-box attack, we know the target model exactly,
including its architecture and parameters. Then, we can use

Fig. 5. An example of the EEG epoch before and after adversarial
perturbation (MI dataset). ε = �.��.

UFGSM in Algorithm 1 to attack the target model. The
results are shown in Table II. Clearly, there were significant
performance deteriorations in all cases, and in most cases
the classification accuracies after attack were even lower than
random guess. Interestingly, though UFGSM is based on the
assumption that the target model should have high accuracy
so that we can replace the true class labels with the predicted
ones, Table II shows that significant damages could also be
made even when the target model has low accuracy, e.g., on the
MI dataset.

An example of the EEG epoch before and after adversarial
perturbation is shown in Fig. 5. The perturbation was so small
that it is barely visible, and hence difficult to detect.

In summary, our results showed that the three CNN classi-
fiers can all be easily fooled with tiny adversarial perturbations
generated by the proposed UFGSM in Algorithm 1, when the
attacker has full knowledge of the target model.
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Fig. 6. BCAs of the target model after within-subject white-box attack,
with respect to different ε. a) P300 dataset; b) ERN dataset; and,
c) MI dataset.

ε = 0.1 for P300/ERN and ε = 0.05 for MI were used in
the above experiments. Since ε is an important parameter in
Algorithm 1, we also evaluated the performance of white-box
attack with respect to different values of ε. The results are
shown in Fig. 6. In all cases, the post-attack accuracy first
decreased rapidly as ε increased, and then converged to a low
value.

G. Gray-Box Attack Performance

Gray-box attack considers a more practical scenario than
white-box attack: instead of knowing the architecture and
parameters of the target model, here we only know its training
data. In gray-box attack, we train a substitute model f ′ on
the same training data, and use it in Algorithm 2 to generate

adversarial examples. This subsection verifies the effectiveness
of gray-box attack. Again, we set ε = 0.1/0.1/0.05 for
P300/ERN/MI, respectively.

Assume the target model is EEGNet, but the attacker does
not know. The attacker randomly picks a model architecture,
e.g., DeepCNN, and trains it using the known training data.
This model then becomes the substitute model f ′ and is
used in Algorithm 2 to generate adversarial examples. When
different target models and different substitute models are
used, the attacking performances are shown in the last part
of Table II for the three datasets. We can observe that:

1) The RCAs and BCAs after gray-box attacks were lower
than the corresponding baseline accuracies, suggest-
ing the effectiveness of the proposed gray-box attack
approach.

2) The RCAs and BCAs after gray-box attacks were gen-
erally higher than the corresponding accuracies after
white-box attacks, especially when the attacker did not
guess the architecture of the target model right, suggest-
ing that knowing more target model information (white-
box attack) can lead to more effective attacks.

3) In gray-box attacks, when the attacker guessed the right
architecture of the target model, the attack performance
was generally better than when he/she guessed the
wrong architecture.

H. Black-Box Attack Performance

This subsection considers a hasher but most practical sce-
nario: the attacker knows neither the parameters nor the
training set of the target model.

To simulate such a scenario, we partitioned 8/16/9 subjects
in the P300/ERN/MI dataset into two groups: 7/14/7 subjects
in Group A, and the remaining 1/2/2 in Group B. We assume
that the CNN classifier in the EEG-based BCI system was
trained on Group A. The attacker, who belongs to Group B,
bought such a system and would like to collect some data from
himself/herself, train a substitute model f ′ using Algorithm 3,
and then attack the CNN classifier. It’s important to note that
we used 80% epochs in Group A for training the target model
f (among which 75% were used for tuning the parameters,
and 25% for validation in early stopping), and the remaining
20% epochs in Group A for testing f and f ′. Before training
on the P300 and ERN datasets, to balance the classes of our
initial dataset, we randomly downsampled the majority class
according to the labels that the target model predicted at the
first time.

λ = 0.5 and N = 2 (Algorithm 3) were used in our
experiments. We only performed black-box attack on the
mixed epochs from all the subjects in the training set, since
it was too time-consuming to train cross-subject models
or within-subject model for each subject. The baseline and
black-box attack results are shown in Table III. Note that the
baseline results were slightly different from those in Table II,
because here we only used a subset of the subjects to train
the baseline models, whereas previously we used all subjects.
After black-box attack, the RCAs and BCAs of all target
models decreased, suggesting that our proposed black-box
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TABLE III
MIXED-SUBJECT RCAS/BCAS BEFORE AND AFTER BLACK-BOX ATTACK ON THE THREE DATASETS (ε = �.�/�.�/�.�� FOR P300/ERN/MI)

TABLE IV
SNRS (dB) OF NOISY EXAMPLES (NORMAL EXAMPLES PLUS RANDOM

NOISE) AND ADVERSARIAL EXAMPLES. ε = �.�/�.�/�.��

FOR P300/ERN/MI

attack strategy was effective. Generally, when the substitute
model f ′ had the same structure as the target model f ,
e.g., both were EEGNet, the attack was most effective. This
is intuitive.

I. Characteristics of the Perturbations

To better understand the characteristics of adversarial pertur-
bations, this subsection studies the signal-to-noise ratio (SNR)
of the adversarial examples, and the spectrogram of the
perturbations.

We had no clue of the SNR of the normal epochs, so we
had to assume that they contained very little noise. To com-
pute the SNR of the noisy epochs [the random noise was
generated using (8)], we treated the normal epochs as the
clean signals, and the noise in (8) as the noise. To compute
the SNR of the adversarial examples, we treated the normal
epochs as the clean signals, and the adversarial perturbations
as noise. The SNRs are shown in Table IV. In all three
datasets, the SNRs of the noisy examples were roughly the
same as those in the adversarial examples, which is intuitive,
since they were controlled by the same parameter ε in our
experiments. With the same amount of noise, the deliberately
generated perturbations can significantly degrade the perfor-
mances of the CNN classifiers, whereas random noise cannot,
suggesting again the effectiveness of our proposed algorithms.

Next we analyze the spectrogram of the adversarial
examples. Consider within-subject white-box attacks on the
P300 dataset. For each classifier we partitioned the misclassi-
fied adversarial examples into two groups. Group 1 consisted
of non-target examples whose adversarial examples were clas-
sified as targets, and Group 2 consisted of target examples
whose adversarial examples were classified as non-targets.
We then computed the spectrograms of all such examples

using wavelet decomposition, the mean spectrogram of each
group, and the difference of the two group means. The results
are shown in the first and third row of Fig. 7 for the three
classifiers. They were very similar to each other, in terms
of their patterns and ranges. We could observe a clear peak
around 0.2s for all three classifiers, maybe corresponding to
the onset of P300 responses.

We then computed the mean spectrogram of the adversarial
perturbations. The results are shown in the second row of
Fig. 7 (note that their scales were much smaller than those
in the first row). The patterns and ranges are now noticeably
different. For EEGNet, the energy of the perturbations was
concentrated in a small region, i.e., [0, 0.8]s and [3, 5]Hz,
whereas that for DeepCNN was a little more scattered, and
that for ShallowCNN was almost uniformly distributed in the
entire time-frequency domain. These results suggest that the
perturbations from the three CNN classifiers had dramatically
different shapes, maybe specific to the characteristics of the
classifiers. They also explain the within-subject gray-box
attack results on the P300 dataset in Table II: the perturbations
generated from EEGNet and DeepCNN were similar, and
hence EEGNet (DeepCNN) as a substitute model could effec-
tively attack DeepCNN (EEGNet). However, the perturbations
generated from EEGNet/DeepCNN and ShallowCNN were
dramatically different, and hence EEGNet/DeepCNN were less
effective in attacking ShallowCNN, and vice versa.

J. Additional Attacks

To increase the robustness of a P300-based BCI system,
a CNN classifier may be applied to the synchronized average
of multiple epochs, instead of a single epoch. It’s interesting
to know if this averaging strategy can help defend adversarial
attacks.

As mentioned in Section III-A, the P300 dataset was
collected from eight subjects. Each subject completed four
recording sessions, and each session consisted of six runs,
one for each of the six images. The number of epochs of
each run was about 120 as each image was flashed about
20 times. We constructed an averaged epoch as the average
of 10 epochs from the same image. Thus, two averaged
epochs were obtained from each image, and for each subject,
4× 6× 2 = 48 averaged target (P300) epochs were obtained.
Similarly, we obtained 248 averaged non-target epochs for
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Fig. 7. Mean spectrogram of the normal examples (top row), mean spectrogram of the corresponding perturbations (middle row), and mean
spectrogram difference between target and non-target normal examples (bottom row), in within-subject white-box attack on the P300 dataset. Note
that the scales are different. The channel was randomly chosen. (a) EEGNet; (b) DeepCNN; and, (c) ShallowCNN.

each subject. These epochs were shuffled and divided into 80%
training and 20% test for each subject.

We then compared the following three white-box attacks
(ε = 0.1) in within-subject experiments:

1) Perturbation on each single epoch (PSE), in which an
adversarial example was generated for each single (un-
averaged) epoch, as shown in Fig. 8(a). This was also
the main attack considered before this subsection.

2) Averaged adversarial examples (AAE), in which an
adversarial example was generated for each of the
10 single epochs, as in PSE, and then their average was
taken, as shown in Fig. 8(b).

3) Perturbation on the averaged epochs (PAE), in which
an adversarial example was generated directly on each
averaged epoch, as shown in Fig. 8(c).

To better explore the transferability of adversarial examples,
we also tested a traditional approach,3 xDAWN+ RG, which

3https://github.com/alexandrebarachant/bci-challenge-ner-2015

Fig. 8. Three approaches to generate adversarial examples on the
synchronized-averaging epochs. (a) PSE (no average); (b) AAE (attack,
then average); and, (c) PAE (average, then attack).

won the Kaggle BCI competition in 2015 and was also tested
in [19]. xDAWN+RG used xDAWN spatial filtering [30], Rie-
mannian geometry [3] and ElasticNet to classify the epochs.
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TABLE V
WITHIN-SUBJECT RCAS/BCAS BEFORE AND AFTER WHITE-BOX ATTACKS ON THE AVERAGED P300 EPOCHS. ε = �.�

Fig. 9. The CNN classification pipeline on the MI dataset, when EEG
spectrogram is used as the input feature.

We attacked it using PAE adversarial examples generated by
different CNN models.

The results are shown in Table V.4 All four approaches
had improved performance when trained and tested on the
averaged epochs, suggesting the rationale to take the syn-
chronized average (of course, this also has the side effect of
reducing the speed of the BCI system). For each CNN model,
all three attack approaches were effective, but the attack was
most effective when the adversarial examples were generated
on the averaged epochs (i.e., PAE). The second part of Table V
shows that adversarial examples generated by CNN models
could be used to attack xDAWN+RG, but not as effective as
in attacking the CNN models. However, this does not mean
that traditional machine learning approaches are example from
adversarial attacks [26]. They may require different attack
strategies.

In all previous experiments we used raw EEG signals as the
input to the CNN models. However, the spectrograms are also
frequently used in MI based BCIs. Next, we study whether
our attack strategies can still work for the spectrogram input.
The CNN classification pipeline is shown in Fig. 9, where
common spatial pattern (CSP) filtering [17] was used to reduce
the number of EEG channels from 22 to 8, short-time Fourier
transform (STFT) was used to convert EEG signals into spec-
trograms, and PragmatricCNN [37] was used as the classifier
(EEGNet, DeepCNN and ShallowCNN cannot work on the
spectrograms). Because both CSP and STFT are differentiable

4The baseline single epoch attack results were different from those in
Table II, especially for ShallowCNN, because here the CNN classifiers were
trained on the averaged epochs, and then applied to the single epochs, whereas
in Table II the CNN classifiers were trained directly on the single epochs.

TABLE VI
WITHIN-SUBJECT RCAS/BCAS BEFORE AND AFTER WHITE-BOX

ATTACKS ON PRAGMATICCNN FOR THE MI DATASET. ε = �.��

operations, we can compute the gradients over the whole
pipeline to find the adversarial perturbations on the raw EEG
time series.

The within-subject white-box attack results on the MI
dataset are shown in Table VI. Clearly, the attack was very
successful, suggesting that simply extracting the spectrogram
as the input features cannot effectively defend adversarial
attacks.

IV. CONCLUSION AND FUTURE RESEARCH

This paper investigates the vulnerability of CNN classifiers
in EEG-based BCI systems. We generate adversarial examples
by injecting a jamming module before a CNN classifier to
fool it. Three scenarios – white-box attack, gray-box attack,
and black-box attack – were considered, and separate attack
strategies were proposed for each of them. Experiments on
three EEG datasets and three CNN classifiers demonstrated the
effectiveness of our proposed strategies, i.e., the vulnerability
of CNN classifiers in EEG-based BCIs.

Our future research will:

1) Study the vulnerability of traditional machine learn-
ing approaches in BCIs. As shown in Section III-J,
the adversarial examples generated from CNN models
may not transfer well to traditional machine learning
models, and hence new attack strategies are needed.

2) Investigate attack strategies to other components of the
BCI machine learning model. Fig. 10 shows that attacks
can target different components of a machine learning
model. This paper only considered adversarial examples,
targeted at the test input. Attacks to the training data,
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Fig. 10. Attack strategies to different components of a machine learning
model.

learned model parameters, and the test output, will also
be considered.

3) Study strategies to defend adversarial attacks on EEG-
based BCIs. Multiple defense approaches, e.g., adver-
sarial training [12], defensive distillation [28], ensemble
adversarial training [38], and so on [14], [22], [46], have
been proposed for other application domains. Unfortu-
nately, there has not existed a universal defense approach
because it is still unclear theoretically why adversarial
examples occur in deep learning. Goodfellow et al.
(2014) [12] believed that adversarial examples exist
because of the linearity of deep learning models. Gilmer
et al. (2018) [11] argued that adversarial examples occur
as a result of the high dimensional geometry of the data
manifold. We will investigate the root cause of adversar-
ial examples in EEG classification/regression, and hence
develop effective defense strategies for safer BCIs.
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