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Abstract—Interval type-2 fuzzy logic controllers (IT2 FLCs)
have recently been attracting a lot of research attention. Many
reported results have shown that IT2 FLCs are better able to han-
dle uncertainties than their type-1 (T1) counterparts. A challenging
question is the following: What are the fundamental differences be-
tween IT2 and T1 FLCs? Once the fundamental differences are
clear, we can better understand the advantages of IT2 FLCs and,
hence, make better use of them. This paper explains two fundamen-
tal differences between IT2 and T1 FLCs: 1) Adaptiveness, meaning
that the embedded T1 fuzzy sets used to compute the bounds of
the type-reduced interval change as input changes; and 2) Novelty,
meaning that the upper and lower membership functions of the
same IT2 fuzzy set may be used simultaneously in computing each
bound of the type-reduced interval. T1 FLCs do not have these
properties; thus, a T1 FLC cannot implement the complex control
surface of an IT2 FLC given the same rulebase. We also present
several methods to visualize and analyze the effects of these two
fundamental differences, including the control surface, the P-map,
the equivalent generalized T1 fuzzy sets, and the equivalent PI
gains. Finally, we examine five alternative type reducers for IT2
FLCs and explain why they do not capture the fundamentals of
IT2 FLCs.

Index Terms—Continuity, equivalent generalized type-1 fuzzy
sets (EGT1FSs), equivalent PI gains, interval type-2 fuzzy logic
controller (IT2 FLC), P-map.

I. INTRODUCTION

INTERVAL type-2 fuzzy logic controllers (IT2 FLCs) have
recently been attracting a lot of research attention. Many re-

ported results have shown that IT2 FLCs are better able to handle
uncertainties than their type-1 (T1) counterparts [8], [21], [31],
[60], [61]. For example, Hagras [20] implemented a hierarchi-
cal IT2 FLC for different types of mobile robots navigating in
indoor and outdoor environments. It outperformed a T1 FLC
and had significantly fewer rules. Wu and Tan [57], [60], [61]
showed through both simulation and experiments that IT2 FLCs
are better able to cope with modeling uncertainties, and hence,
IT2 FLCs optimized from simulations are more likely to perform
well on the actual plant than T1 FLCs.

A challenging question is the following: What are the fun-
damental differences between IT2 and T1 FLCs? Once the fun-
damental differences are clear, we can better understand the
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advantages of IT2 FLCs and, hence, make better use of them.
In the literature, there has been considerable effort on answer-
ing this challenging and fundamental question. Some important
arguments are the following.

1) An IT2 fuzzy set (FS) can better model intrapersonal1 and
interpersonal2 uncertainties, which are intrinsic to natural
language, because the membership grade of an IT2 FS is an
interval instead of a crisp number in a T1 FS. Mendel [33]
also showed that IT2 FS is a scientifically correct model
for modeling linguistic uncertainties, whereas T1 FS is
not.

2) Using IT2 FSs to represent the FLC inputs and outputs will
result in the reduction of the rulebase when compared with
using T1 FSs [21], [31], as the ability of the footprint of
uncertainty (FOU) to represent more uncertainties enables
one to cover the input/output domains with fewer FSs.
This makes it easier to construct the rulebase using expert
knowledge, as well as increase robustness [57], [60], [61].

3) An IT2 FLC can give a smoother control surface than its
T1 counterpart, especially in the region around the steady
state (for a proportional-integral (PI) controller, this means
both the error and the change of error approach 0) [23],
[57], [60], [61]. Wu and Tan [62] (see also Section VII
of this paper) showed that when the baseline T1 FLC
implements a linear PI control law and the IT2 FSs of an
IT2 FLC are obtained from symmetrical perturbations of
the T1 FSs, the resulting IT2 FLC implements a variable
gain PI controller around the steady state. These gains are
smaller than the PI gains of the baseline T1 FLC, which
result in a smoother control surface around the steady
state. The PI gains of the IT2 FLC also change with the
inputs, which cannot be achieved by the baseline T1 FLC.

4) IT2 FLCs are more adaptive and they can realize more
complex input–output relationships which cannot be
achieved by T1 FLCs. Karnik and Mendel [26] pointed
out that an IT2 fuzzy logic system can be thought of as a
collection of many different embedded T1 fuzzy logic sys-
tems. Wu and Tan [59] (see also Section VI of this paper)
proposed a systematic method to identify the equivalent

1According to Mendel [33], intrapersonal uncertainty describes “the un-
certainty a person has about the word.” It is also explicitly pointed out by
psychologists Wallsten and Budescu [46] as “except in very special cases, all
representations are vague to some degree in the minds of the originators and in
the minds of the receivers,” and they suggest to model it by a T1 FS.

2According to Mendel [33], interpersonal uncertainty describes “the uncer-
tainty that a group of people have about the word,” i.e., “words mean different
things to different people.” It is also explicitly pointed out by psychologists
Wallsten and Budescu [46] as “different individuals use diverse expressions to
describe identical situations and understand the same phrases differently when
hearing or reading them.”
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generalized T1 FSs (EGT1FSs) that can be used to replace
the FOU. They showed that the EGT1FSs are significantly
different from traditional T1 FSs, and there are different
EGT1FSs for different inputs. Du and Ying [12], and Nie
and Tan [38], also showed that a symmetrical IT2 fuzzy-
PI (or the corresponding PD) controller, which is obtained
from a baseline T1 PI FLC, partitions the input domain
into many small regions, and in each region it is equivalent
to a nonlinear PI controller with variable gains. The con-
trol law of the IT2 FLC in each small region is much more
complex than that of the baseline T1 FLC, and, hence, it
can realize more complex input–output relationship that
cannot be achieved by a T1 FLC using the same rulebase.

5) IT2 FLCs have a novelty that does not exist in traditional
T1 FLCs. Wu [49] (see also Section III of this paper)
showed that, in an IT2 FLC, different membership grades
from the same IT2 FS can be used in different rules,
whereas, for traditional T1 FLC, the same membership
grade from the same T1 FS is always used in different
rules. This again implies that an IT2 FLC is more com-
plex than a T1 FLC and it cannot be implemented by a T1
FLC using the same rulebase.

This paper summarizes some recent research results on un-
derstanding the fundamental differences between IT2 and T1
FLCs. It explains why adaptiveness and novelty are two fun-
damental differences and proposes several methods to visualize
and analyze the effects of these two differences.

The rest of this paper is organized as follows: Section II intro-
duces background materials on IT2 FSs and FLCs, and shows
two numerical examples on IT2 FLCs. Section III explains adap-
tiveness and novelty, two fundamental differences between IT2
and T1 FLCs. Sections IV–VI introduce the control surface, the
P-map, and the EGT1FSs, respectively, which are three meth-
ods to visualize the effect of the two fundamental differences.
Section VII analyzes the effect of the two fundamental differ-
ences by deriving the equivalent PI gains for a special IT2 FLC
near the steady state. Section VIII examines five alternative
type-reduction strategies against adaptiveness and novelty, and
explains why they do not capture the fundamentals of IT2 FLCs.
Finally, Section IX draws conclusions.

II. INTERVAL TYPE-2 FUZZY SETS AND CONTROLLERS

A. Interval Type-2 Fuzzy Sets

T1 FS theory was first introduced by Zadeh [66] in 1965 and
has been successfully applied in many areas, including modeling
and control [6], [47], [65], data mining [22], [40], [69], time-
series prediction [27], [29], [45], linguistic summarization [24],
[54], [64], computing with words [41], [42], [68], etc.

Definition 1: A T1 FS X is comprised of a domain DX of real
numbers (also called the universe of discourse of X) together
with a membership function (MF) μ

X
: DX → [0, 1], i.e.,

X =
∫

DX

μ
X

(x)/x.

Here,
∫

denotes the collection of all points x ∈ DX with asso-
ciated membership grade μ

X
(x).

Fig. 1. IT2 FS. X (the LMF), X (the UMF), and Xe are three embedded T1
FSs.

Despite having a name that carries the connotation of uncer-
tainty, research has shown that there are limitations in the ability
of T1 FSs to model and minimize the effect of uncertainties [20],
[21], [31], [60]. This is because a T1 FS is certain in the sense
that its membership grades are crisp values. Recently, type-2
FSs [67], which are characterized by MFs that are themselves
fuzzy, have been attracting much interest. IT2 FSs3 [31], a spe-
cial case of type-2 FSs, are currently the most widely used for
their reduced computational cost, and are also the focus of this
paper.

Definition 2 [31], [34]: An IT2 FS X̃ is characterized by its
MF μ

X̃
(x, u), i.e.

X̃ =
∫

x∈D
X̃

∫
u∈Jx ⊆[0,1]

μ
X̃

(x, u)/(x, u)

=
∫

x∈D
X̃

∫
u∈Jx ⊆[0,1]

1/(x, u)

=
∫

x∈D
X̃

[∫
u∈Jx ⊆[0,1]

1/u

]/
x

where x, called the primary variable, has domain D
X̃

; u ∈
[0, 1], called the secondary variable, has domain Jx ⊆ [0, 1] at
each x ∈ D

X̃
; Jx is also called the support of the secondary

MF; and, the amplitude of μ
X̃

(x, u), called a secondary grade

of X̃ , equals 1 for ∀x ∈ D
X̃

and ∀u ∈ Jx ⊆ [0, 1].
The connection between IT2 FSs notations and mathemat-

ical notation and terminology of functions on space has been
established in [1].

An example of an IT2 FS, X̃ , is shown in Fig. 1. Observe
that unlike a T1 FS, whose membership grade for each x is a
number, the membership of an IT2 FS is an interval. Observe
also that an IT2 FS is bounded from above and below by two T1
FSs X and X , which are called upper MF (UMF) and lower MF
(LMF), respectively. The area between X and X is the FOU.
An embedded T1 FS4 is any T1 FS within the FOU. X and X
are two such sets.

3IT2 FSs have also been called interval-valued FSs in the literature [7],
[15], [44]. They can also be mapped into intuitionistic FSs [4]. Deschrijver
and Kerre [11] had a comprehensive study on the relationships among some
important extensions of T1 FSs, including interval-valued FSs, intuitionistic
FSs, interval-valued intuitionistic FSs [3], and L-FSs [14].

4According to the Mendel–John representation theorem [34], an embedded
T1 FS can be subnormal and nonconvex. Recently, there have been arguments
that only convex and normal T1 FSs [48], or only T1 FSs assuming a particular
shape [2], [13], should be considered as embedded T1 FSs.
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Fig. 2. Schematic diagram of an IT2 FLC.

B. Interval Type-2 Fuzzy Logic Controllers

Fig. 2 shows the schematic diagram of an IT2 FLC. It is
similar to its T1 counterpart; the major difference being that
at least one of the FSs in the rulebase is an IT2 FS. Hence,
the outputs of the inference engine are IT2 FSs, and a type
reducer [26], [31] is needed to convert them into a T1 FS before
defuzzification can be carried out.

In practice, the computations in an IT2 FLC can be signifi-
cantly simplified. Consider the rulebase of an IT2 FLC consist-
ing of N rules assuming the following form:

R̃n : IF x1 is X̃n
1 and · · · and xI is X̃n

I , THEN y is Y n

where X̃n
i (i = 1, . . . , I;n = 1, 2, . . . , N) are IT2 FSs, and

Y n = [yn , yn ] is an interval, which can be understood as the
centroid [25], [31] of a consequent IT2 FS,5 or the simplest
Takagi–Sugeno–Kang (TSK) model. In many applications [57],
[60], [61], we use yn = yn , i.e., each rule consequent is repre-
sented by a crisp number.

For an input vector x′ = (x′
1 , x

′
2 , . . . , x

′
I ), typical computa-

tions in an IT2 FLC involve the following steps:
1) Compute the membership interval of x′

i on each
Xn

i , [μX n
i
(x′

i), μ
X

n

i
(x′

i)], i = 1, 2, . . . , I and n =
1, 2, . . . , N .

2) Compute the firing interval of the nth rule, Fn (x′)

Fn (x′) = [μX n
1
(x′

1) × · · · × μX n
I
(x′

I ),

μ
X

n

1
(x′

1) × · · · × μ
X

n

I
(x′

I )]

≡ [fn , f
n
], n = 1, . . . , N. (1)

Note that the minimum t-norm may also be used in (1).
However, this paper focuses only on the product t-norm.

3) Perform type reduction to combine Fn (x′) and the cor-
responding rule consequents. There are many such meth-
ods [31], [51], [52]. The most commonly used one is the
center-of-sets type reducer [31], which is derived from the
extension principle [66]

Ycos(x′) =
⋃

f n ∈F n (x ′)
y n ∈Y n

∑N
n=1 fnyn

∑N
n=1 fn

= [yl , yr ]. (2)

It has been shown that [31], [35], [53]

yl = min
k∈[1,N −1]

∑k
n=1 f

n
yn +

∑N
n=k+1 fnyn

∑k
n=1 f

n
+

∑N
n=k+1 fn

5The rule consequents can be IT2 FSs; however, when the popular center-of-
sets type-reduction method [31] is used, these consequent IT2 FSs are replaced
by their centroids in the computation; therefore, it is more convenient to represent
the rule consequents as intervals directly.

Fig. 3. Switch points in computing yl and yr . (a) Computing yl : Switch from
the upper bounds of the firing intervals to the lower bounds. (b) Computing yr :
Switch from the lower bounds of the firing intervals to the upper bounds.

≡
∑L

n=1 f
n
yn +

∑N
n=L+1 fnyn

∑L
n=1 f

n
+

∑N
n=L+1 fn

(3)

yr = max
k∈[1,N −1]

∑k
n=1 fnyn +

∑N
n=k+1 f

n
yn

∑k
n=1 fn +

∑N
n=k+1 f

n

≡
∑R

n=1 fnyn +
∑N

n=R+1 f
n
yn

∑R
n=1 fn +

∑N
n=R+1 f

n (4)

where the switch points L and R are determined by

yL ≤ yl ≤ yL+1

yR ≤ yr ≤ yR+1

and {yn}n=1,...,N and {yn}n=1,...,N have been sorted in
ascending order, respectively.

yl and yr can be computed by the Karnik–Mendel (KM)
algorithms [26], [31] or their many variants [53], [56]. The
main idea of the KM algorithms is to find the switch points
for yl and yr . Take yl as an example. yl is the minimum of
Ycos(x′). Since yn increases from the left to the right along
the horizontal axis of Fig. 3(a), we should choose a large
weight (upper bound of the firing interval) for yn on the
left and a small weight (lower bound of the firing interval)
for yn on the right. The KM algorithm for yl finds the
switch point L. For n ≤ L, the upper bounds of the firing
intervals are used to calculate yl ; for n > L, the lower
bounds are used. This ensures that yl is the minimum.

4) Compute the defuzzified output as

y =
yl + yr

2
. (5)
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Fig. 4. MFs of FLC1 and F̃LC1 . (a) MFs in the ė domain. (b) MFs in the e
domain.

C. Two Pairs of Type-1 and Interval Type-2 Fuzzy
Logic Controllers

A linear PI control law is usually implemented as

u̇ = KP · ė + KI · e (6)

where u̇ is the change of the control signal, e is the feedback er-
ror, ė is the change of error, and KP and KI are the proportional
and integral gains, respectively. A T1 FLC with rulebase

If ė is Xė
i and e is Xe

j , then u̇ is yij .

where i = 1, . . . , N and j = 1, . . . , M implements the linear PI
controller in (6) if [36]:

1) triangular T1 FSs are used for input MFs Xė
i and Xe

j , and
they are constructed in such a way that, for any input, the
firing levels of all MFs add to 1; and,

2) the consequents of the rules are crisp numbers defined as

yij = KP · pė
i + KI · pe

j (7)

where pė
i and pe

j are located at the apexes of the antecedent
triangular T1 FSs.

The following two pairs of T1 and IT2 PI FLCs are used
throughout this paper.

1) FLC1 and F̃LC1 : The first pair of T1 and IT2 PI FLCs,
FLC1 and F̃LC1 , are shown in Fig. 4, where the T1 FLC,
FLC1 , is shown as the bold dashed lines. Its four rules are

R1 : IF ė is Xė
1 and e is Xe

1 , THEN u̇ is y11

R2 : IF ė is Xė
1 and e is Xe

2 , THEN u̇ is y12

R3 : IF ė is Xė
2 and e is Xe

1 , THEN u̇ is y21

R4 : IF ė is Xė
2 and e is Xe

2 , THEN u̇ is y22

where y11 , y12 , y21 , and y22 are defined in (7). When
ė ∈ [pė

1 , pė
2 ] and e ∈ [pe

1 , pe
2 ], FLC1 implements the linear

PI control law in (6).

Fig. 5. MFs of FLC2 and F̃LC 2 . (a) MFs in the ė domain. (b) MFs in the e
domain.

An IT2 fuzzy PI controller, F̃LC1 , is constructed by
blurring the T1 FSs of FLC1 to IT2 FSs,6 as shown in
Fig. 4. For simplicity, symmetrical FOUs7 are used in this
paper, and their sizes are determined by dė and de in Fig. 4.
The rulebase of F̃LC1 is

R̃1 : IF ė is X̃ė
1 and e is X̃e

1 , THEN u̇ is y11

R̃2 : IF ė is X̃ė
1 and e is X̃e

2 , THEN u̇ is y12

R̃3 : IF ė is X̃ė
2 and e is X̃e

1 , THEN u̇ is y21

R̃4 : IF ė is X̃ė
2 and e is X̃e

2 , THEN u̇ is y22

where X̃ė
i and X̃e

j are IT2 FSs obtained by blurring Xė
i

and Xe
j , respectively, and yij are the same as those in

FLC1 .
2) FLC2 and F̃LC2 : The second pair of PI FLCs are shown

in Fig. 5, where the T1 FLC, FLC2 , is shown as the bold
dashed lines. Its nine rules are

R1 : IF ė is Xė
1 and e is Xe

1 , THEN u̇ is y11

R2 : IF ė is Xė
1 and e is Xe

2 , THEN u̇ is y12

R3 : IF ė is Xė
1 and e is Xe

3 , THEN u̇ is y13

R4 : IF ė is Xė
2 and e is Xe

1 , THEN u̇ is y21

...

R9 : IF ė is Xė
3 and e is Xe

3 , THEN u̇ is y33

6An IT2 FLC can also be constructed from scratch without using a baseline
T1 FLC [60], [61]. This paper uses a baseline T1 FLC for comparison purposes.

7Except for the results in Section VII, which are specific to a very special
IT2 FLC with symmetrical FOUs, the methods, observations, and conclusions
presented in this paper also hold for IT2 FLCs with arbitrary FOUs.
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TABLE I
RULE CONSEQUENTS OF FLC1 AND F̃LC 1

where y11 − y33 are defined in (7). When ė ∈ [pė
1 , pė

3 ] and
e ∈ [pe

1 , pe
3 ], FLC2 implements the linear PI control law

in (6).
An IT2 fuzzy PI controller, F̃LC2 , is constructed by

blurring the T1 FSs of FLC2 to IT2 FSs, as shown in Fig. 5.
Note that, again, symmetrical FOUs are used; however, the
shape of the FOUs is different from those in F̃LC1 . The
rulebase of F̃LC2 is

R̃1 : IF ė is X̃ė
1 and e is X̃e

1 , THEN u̇ is y11

R̃2 : IF ė is X̃ė
1 and e is X̃e

2 , THEN u̇ is y12

R̃3 : IF ė is X̃ė
1 and e is X̃e

3 , THEN u̇ is y13

R̃4 : IF ė is X̃ė
2 and e is X̃e

1 , THEN u̇ is y21

...

R̃9 : IF ė is X̃ė
3 and e is X̃e

3 , THEN u̇ is y33

where X̃ė
i and X̃e

j are IT2 FSs obtained by blurring Xė
i

and Xe
j , respectively, and yij are the same as those in

FLC2 .

D. Examples

In this section, the mathematical operations in an IT2 FLC,
which are introduced in Section II-B, are illustrated using two
numerical examples, which will be revisited in Section III.

For simplicity, FLC1 and F̃LC1 , in Fig. 4, are used. Addi-
tionally, we use pė

1 = pe
1 = −1, pė

2 = pe
2 = 1, dė = de = 0.5,

KP = 2.086, and KI = 0.2063, which are the same as those
used in [62]. The corresponding rule consequents are given in
Table I.

Example 1: Consider an input vector x′ = (ė′, e′) = (−0.3,
−0.6), as shown in Fig. 6. The firing levels of the four T1 FSs
of FLC1 are

μX ė
1
(ė′) = 0.65, μX ė

2
(ė′) = 0.35

μX e
1
(e′) = 0.8, μX e

2
(e′) = 0.2.

The firing levels of its four rules are shown in Table II. The
output of FLC1 is

u̇ =
f 1y1 + f 2y2 + f 3y3 + f 4y4

f 1 + f 2 + f 3 + f 4 = −1.3135.

Fig. 6. Firing levels of FLC1 , and firing intervals of F̃LC1 , when x′ =
(ė′, e′) = (−0.3,−0.6).

TABLE II
FIRING LEVELS OF THE FOUR RULES OF FLC1 IN EXAMPLE 1

For F̃LC1 , the firing intervals of the four IT2 FSs are

[μX ė
1
(ė′), μ

X
ė

1
(ė′)] = [0.4, 0.9]

[μX ė
2
(ė′), μ

X
ė

2
(ė′)] = [0.1, 0.6]

[μX e
1
(e′), μ

X
e

1
(e′)] = [0.55, 1]

[μX e
2
(e′), μ

X
e

2
(e′)] = [0, 0.45].

The firing intervals of the four rules are shown in Table III.
From the KM algorithms, we find that L = 1 and R = 2. There-
fore, yl and yr are computed by (8) and (9), shown at the bottom
of the page.

yl =
f 1y1 + f 2y2 + f 3y3 + f 4y4

f 1 + f 2 + f 3 + f 4 =
0.9 × (−2.2923) + 0 × (−1.8797) + 0.055 × 1.8797 + 0 × 2.2923

0.9 + 0 + 0.055 + 0
= −2.2685 (8)

yr =
f 1y1 + f 2y2 + f

3
y3 + f

4
y4

f 1 + f 2 + f
3

+ f
4 =

0.22 × (−2.2923) + 0 × (−1.8797) + 0.6 × 1.8797 + 0.27 × 2.2923
0.22 + 0 + 0.6 + 0.27

= 0.8132 (9)
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TABLE III
FIRING INTERVALS OF THE FOUR RULES OF F̃LC1 IN EXAMPLE 1

Fig. 7. Firing levels of FLC1 , and firing intervals of F̃LC 1 , when x′ =
(ė′, e′) = (−0.3, 0.6).

Finally, the crisp output of F̃LC1 is

u̇ =
yl + yr

2
=

−2.2685 + 0.8132
2

= −0.7277.

Example 2: Consider another input vector x′ = (ė′, e′) =
(−0.3, 0.6), as shown in Fig. 7. The firing levels of the four T1
FSs of FLC1 are

μX ė
1
(ė′) = 0.65, μX ė

2
(ė′) = 0.35

μX e
1
(e′) = 0.2, μX e

2
(e′) = 0.8.

The firing levels of its four rules are shown in Table IV. The
output of FLC1 is

u̇ =
f 1y1 + f 2y2 + f 3y3 + f 4y4

f 1 + f 2 + f 3 + f 4 = 1.1897.

For F̃LC1 , the firing intervals of the four IT2 FSs are

[μX ė
1
(ė′), μ

X
ė

1
(ė′)] = [0.4, 0.9]

[μX ė
2
(ė′), μ

X
ė

2
(ė′)] = [0.1, 0.6]

[μX e
1
(e′), μ

X
e

1
(e′)] = [0, 0.45]

[μX e
2
(e′), μ

X
e

2
(e′)] = [0.55, 1].

The firing intervals of the four rules are shown in Table V.
From the KM algorithms, we find that L = 2 and R = 3. There-
fore, yl and yr are computed by (10) and (11), shown at the
bottom of the page.

Finally, the crisp output of F̃LC1 is

u̇ =
yl + yr

2
=

−0.9435 + 2.1816
2

= 0.6191.

Observe from the aforementioned two examples that for the
same input, IT2 and T1 FLCs give quite different outputs.
The next section explains the fundamental reasons behind this
difference.

III. FUNDAMENTAL DIFFERENCES BETWEEN INTERVAL TYPE-2
AND TYPE-I FUZZY LOGIC CONTROLLERS

Observe from (5), as well as Examples 1 and 2, that the output
of an IT2 FLC is the average of two “T1 FLCs.” However, these
two “T1 FLCs” are fundamentally different from traditional T1
FLCs, for the following reasons [49].

1) Adaptiveness: meaning that the embedded T1 FSs that are
used to compute the bounds of the type-reduced interval
change as input changes. Take yl in (8) and (10) as an
example. The firing levels of the four rules in (8) are f 1 ,
f 2 , f 3 , and f 4 , respectively, which are computed from
different lower and upper MFs, as shown in the first part
in Table VI and Fig. 8(a). The firing levels of the four
rules in (10) are shown in the second part in Table VI and
Fig. 8(b). Comparing the two parts in Table VI, and the
two subfigures in Fig. 8, we can observe that when the
input (ė′, e′) changes from (−0.3,−0.6) to (−0.3, 0.6),

yl =
f 1y1 + f 2y2 + f 3y3 + f 4y4

f 1 + f 2 + f 3 + f 4 =
0.405 × (−2.2923) + 0.9 × (−1.8797) + 0 × 1.8797 + 0.055 × 2.2923

0.405 + 0.9 + 0 + 0.055
= −0.9435

(10)

yr =
f 1y1 + f 2y2 + f 3y3 + f

4
y4

f 1 + f 2 + f 3 + f
4 =

0 × (−2.2923) + 0.22 × (−1.8797) + 0 × 1.8797 + 0.6 × 2.2923
0 + 0.22 + 0 + 0.6

= 2.1816 (11)
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TABLE IV
FIRING LEVELS OF THE FOUR RULES OF FLC1 IN EXAMPLE 2

TABLE V
FIRING INTERVALS OF THE FOUR RULES OF F̃LC1 IN EXAMPLE 2

TABLE VI
EMBEDDED T1 FSS FROM WHICH THE FOUR FIRING LEVELS IN (8) AND (10)

ARE OBTAINED

different embedded T1 FSs of X̃ė
1 and X̃e

2 are used in
computing the firing levels for Rule R̃2 and, hence, yl .
This adaptiveness is impossible for a T1 FLC since it does
not have such embedded T1 FSs.

2) Novelty: meaning that the UMF and LMF of the same
IT2 FS may be used, simultaneously, in computing each
bound of the type-reduced interval. Observe from the first
part of Table VI, as well as Fig. 8(a), that both the upper
and lower MFs of X̃ė

1 are used in computing yl , and they
are used in different rules: The UMF of X̃ė

1 is used in
computing f 1 , the firing level of Rule R̃1 , whereas the
LMF of X̃ė

1 is used in computing f 2 , the firing level of

Rule R̃2 . Similarly, the upper and lower MFs of X̃e
1 are

used, simultaneously, in different rules for computing yl .
Observe also from the second part in Table VI and Fig. 8(b)
that the upper and lower MFs of X̃e

1 and X̃e
2 are used,

simultaneously, in different rules for computing yl . This
novelty is again impossible for a T1 FLC because it does
not have embedded T1 FSs and the same MFs are always
used in computing the firing levels of all rules.

Fig. 8. Embedded T1 FSs used. (a) In (8) for computing yl , where (ė′, e′) =
(−0.3,−0.6) and the LMFs of X̃ ė

1 and X̃ e
2 are used in computing the firing

level f
2

of Rule R̃2 . (b) In (10) for computing yl , where (ė′, e′) = (−0.3, 0.6),

and the UMFs of X̃ ė
1 and X̃ e

2 are used in computing the firing level f 2 of Rule

R̃2 . Observe that in (a), both the UMFs and LMFs of X̃ ė
1 and X̃ e

1 are used in

computing yl , and in (b), both the UMFs and LMFs of X̃ e
1 and X̃ e

2 are used in
computing yl .

We consider adaptiveness and novelty as two fundamental
differences between IT2 and T1 FLCs. Although they are illus-
trated by specific numerical examples, they are fundamental to
an arbitrary IT2 FLC.

Theorem 1: yl in (3) cannot be implemented by a T1 FLC
using the same rulebase.

The proof is given in Appendix A.
Theorem 2: yr in (4) cannot be implemented by a T1 FLC

using the same rulebase.
The proof is very similar to that for Theorem 1; therefore, it

is omitted.
Based on Theorems 1 and 2, we can easily reach the following

conclusion.
Theorem 3: An IT2 FLC using the KM type reducer cannot

be implemented by a T1 FLC using the same rulebase.
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Fig. 9. Control surface of (a) FLC1 , (b) F̃LC 1 with dė = de = 0.5, and

(c) F̃LC 1 with dė = de = 0.8.

Theorem 3 is very helpful in understanding why IT2 FLCs
may outperform T1 FLCs. It suggests that an IT2 FLC can
implement a more complex control surface than a T1 FLC:
When there is no FOU, an IT2 FLC collapses to a T1 FLC;
with FOU, an IT2 FLC can implement a control surface that
cannot be obtained from a T1 FLC using the same rulebase.
Note that Theorem 3 does not conflict with the fact that T1
fuzzy logic systems are universal approximators [9], [28]: Being
a universal approximator requires a T1 fuzzy logic system to
have an arbitrarily large number of MFs, whereas, in this paper,
we only consider IT2 and T1 FLCs with the same rulebase and
a fixed (small) number of MFs.

Having pointed out the fundamental differences between IT2
and T1 FLCs, next, we will introduce several methods to visu-
alize and analyze the effects of these differences.

IV. VISUALIZE THE DIFFERENCE BETWEEN INTERVAL TYPE-2
AND TYPE-1 FUZZY LOGIC CONTROLLERS:

CONTROL SURFACE

The control surfaces of FLC1 , F̃LC1 with dė = de = 0.5,
and F̃LC1 with dė = de = 0.8 are shown in Fig. 9(a)–(c), re-
spectively. The control surfaces of FLC2 , F̃LC2 with dė = de =
0.3, and F̃LC2 with dė = de = 0.6 are shown in Fig. 10(a)–(c),
respectively. Observe that the control surfaces of FLC1 and
FLC2 are linear and monotonic, as they are constructed to be
so; however, the control surfaces of F̃LC1 and F̃LC2 are non-
linear, nonmonotonic, and more complex. As the area of FOU
increases (i.e., as de and dė increase), the control surfaces of the
IT2 FLCs become more nonlinear and more complex.

Interestingly, the control surface of F̃LC2 with dė =
de = 0.6, which is shown in Fig. 10(c), has several jump
discontinuities,8 e.g., when ė = ±0.6. This can never happen

8According to Wu and Mendel [55], a function f (x) has a jump discontinuity
at c if f (c) is defined but limx→c+ f (x) 	= limx→c− f (x), i.e., both f (c) and
f (c + δ) are defined, but f (c + δ) does not approach f (c) as δ approaches 0.

Fig. 10. Control surface (a) FLC2 , (b) F̃LC 2 with dė = de = 0.3, and

(c) F̃LC 2 with dė = de = 0.6.

in a T1 FLC. The reason is explained in a theorem (The-
orem 5) and illustrated by an example by Wu and Mendel
in [55]. We repeat their most important discovery ([55, Corol-
lary 1]) in the following for the completeness of this paper.
Note that it is applicable to any IT2 FLC with any num-
ber of IT2 FSs, whether the IT2 FSs are symmetrical or
not.

Theorem 4: An IT2 FLC has a jump discontinuity at x =
{x1 , x2 , . . . , xI } if we have the following.

1) The input domains are fully covered by the UMFs.
2) There exists at least one xi , i ∈ [1, I] not covered by the

LMFs.
3) All rules have different consequents.
The input IT2 FSs for F̃LC2 when dė = de = 0.6 are shown

in Fig. 11. Clearly, ė and e domains are fully covered by
the UMFs; however, there exist intervals that are not cov-
ered by the LMFs (see the intervals marked by red thick lines,
e.g., ė ∈ [−0.6, −0.4] ∪ [0.4, 0.6]). As all nine rules have dif-
ferent consequents, according to Theorem 4, there are jump
discontinuities.

Because many times people want to design continuous IT2
FLCs, Wu and Mendel [55] also proposed the following guide-
lines to design continuous IT2 FLCs.

1) To guarantee a continuous control surface regardless of
which type reduction and defuzzification method is used,
Gaussian IT2 FSs should be employed.

2) When triangular and/or trapezoidal IT2 FSs are
used, to guarantee a continuous control surface, the
LMFs should cover every input domain. This im-
plies that the UMFs must also cover every input do-
main.

The aforementioned Guideline 2 implies that the design
of a continuous IT2 FLC using triangular and/or trape-
zoidal IT2 FSs is a constrained problem, and the cover-
ing constraint must be considered at the beginning of the
design.
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Fig. 11. Input IT2 FSs for F̃LC2 when dė = de = 0.6. (a) IT2 FSs for ė.
(b) IT2 FSs for e. The dashed blue lines are the T1 FSs for FLC2 .

V. VISUALIZE THE DIFFERENCES BETWEEN INTERVAL TYPE-2
AND TYPE-1 FUZZY LOGIC CONTROLLERS: P-MAP

The control surfaces in the previous section give us some
intuitive understandings about the FLCs, e.g., complexity, con-
tinuity, monotonicity, etc; however, it is not easy to connect
these properties with control performance. In this section, we
use P-map [50] to compare the output of a baseline T1 PI FLC
u̇1(ė, e) and the output of an IT2 PI FLC u̇2(ė, e), as well as to
relate the difference to control performance.

The P-map represents the difference between the IT2 and T1
FLCs as a variable gain proportional controller

K ′
P (ė, e) =

u̇2(ė, e) − u̇1(ė, e)
ė

.

By visualizing the magnitude of K ′
P (ė, e) for different ė and e,

we can get some intuitive understanding on the control perfor-
mance difference between the two FLCs, taking advantage of the
simple and well-known properties of a proportional controller.

As an example, the left column in Fig. 12 shows the differ-
ence between the control surfaces of F̃LC1 and FLC1 . Observe
that the difference is nonlinear and nonmonotonic, but it is diffi-
cult to discover other useful information. However, observe the
following from the P-maps in the right column in Fig. 12.

1) The difference is nonlinear, as the proportional gain in the
P-maps is not a constant.

2) Most parts of the P-maps are negative, especially for
the area around the steady state (the origins in the two
P-maps); therefore, generally, F̃LC1 has a smaller propor-
tional gain than FLC1 , which may result in less oscilla-
tions, as confirmed by previous experimental results [21],

Fig. 12. (a) Difference between the two control surfaces in Fig. 9(b) and (a)
and the corresponding P-map. (b) Difference between the two control surfaces
in Fig. 9(c) and (a) and the corresponding P-map.

[57], [60], [61]. An intuitive reason, which is offered by
one of the reviewers, is that the “blurring” of the an-
tecedent MFs in an IT2 FLC introduces imprecision into
the rulebase in determining the proper control response.
Therefore, a more “cautious” control response is indicated
as a result of the propagation of this imprecision to the out-
put of the FLC.

In Section VII, we also derive the equivalent PI gains for
F̃LC1 ; however, because of the iterative nature of the KM al-
gorithms, it is very difficult, if not impossible, to extend those
results to IT2 FLCs with arbitrary FOUs. The P-map serves a
tool to, conveniently, visualize the difference between the pro-
portional gains of an IT2 FLC and a baseline controller, and to
qualitatively understand the effect of this difference in control
performance.

VI. VISUALIZE THE DIFFERENCE BETWEEN INTERVAL TYPE-2
AND TYPE-1 FUZZY LOGIC CONTROLLERS: EQUIVALENT

GENERALIZED TYPE-1 FUZZY SETS

We have visualized the differences between the outputs of IT2
and T1 FLCs using control surface and P-map. In this section,9

we further visualize the differences between IT2 and T1 FLCs
by comparing their MFs. First, two important definitions are
introduced.

Definition 3: A generalized T1 FS is similar to an ordinary
T1 FS, except that its generalized membership grade is not
necessarily constrained in [0, 1], i.e., the generalized member-
ship grade can be negative or larger than 1.

9Preliminary results in this section have been presented in [59].
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Fig. 13. Slice (ė = −1) of the control surface in Fig. 10(b).

Definition 4: A generalized T1 FLC is an FLC using gener-
alized T1 FSs.

The key idea that is used in this section is that an IT2 FLC
may be viewed as being equivalent to a group of general-
ized T1 FLCs, referred to as equivalent generalized T1 FLCs
(EGT1FLCs), as long as both controllers have identical con-
trol surfaces. To identify the EGT1FLCs that can be used in
place of an IT2 FLC, the FOU is first reduced into a group
of EGT1FSs. By analyzing the characteristics of the EGT1FSs
and EGT1FLCs, conclusions about the effects of FOU can be
drawn, and the differences between IT2 and T1 FLCs can be
made clear.

A. Theory of Equivalent Generalized Type-1 Fuzzy Sets and
Equivalent Generalized Type-1 Fuzzy Logic Controllers

Although the control surface of an IT2 FLC is generally
more nonlinear and more complex than that of a baseline T1
FLC, the output corresponding to a particular input is still fixed
once the system parameters are selected. As a T1 FLC has the
same property, the implication is that the interval firing levels
of the IT2 FSs corresponding to a particular input–output pair
can, effectively, be replaced by crisp values without affecting
the system output. The task of finding the EGT1FSs can be
achieved by first making a vertical cut to obtain a slice of the
control surface where all points have the same ė (or e) value.
That is, for a particular input ė (or e), a curve representing
the relationship between the output u̇ and the input e (or ė)
can be plotted [e.g., see Fig. 13 for a slice (ė = −1) of the
control surface in Fig. 10(b)]. Each slice is, then, replicated
by replacing the IT2 FLC with a generalized T1 FLC, called
EGT1FLC. There are countless generalized T1 FLCs that can
duplicate that slice of the control surface. For best understanding
and comparison, we would like the EGT1FLC to be meaningful
and the EGT1FLC corresponding to different slices to share
some common structure.

Assume the IT2 FLC has N IT2 FSs in its rulebase. We
preassign an embedded T1 FS (chosen arbitrarily or based on
intuitions) to N − 1 of them and then identify the EGT1FS to
replace the N th IT2 FS so that the slice of the control surface is
duplicated. The technique of designating the embedded T1 FSs
for all but one IT2 FS is akin to amassing in the N th IT2 FS
the degrees of freedom provided by all the IT2 FSs. Since the
control surface of the IT2 FLC is more complex, the shape of
the slice may change as ė (or e) is varied; therefore, different
EGT1FSs may be needed to reproduce the curve corresponding
to different ė (or e). By considering all ė (or e) within the

Fig. 14. EGT1FSs of X̃ e
2 when the size of the FOU of X̃ e

2 changes. (a) Input

MFs for F̃LC2 in the ė domain. (b) Input MFs and the EGT1FSs for F̃LC 2

in the e domain when de = 0.3 in X̃ e
2 . (c) Input MFs and the EGT1FSs for

F̃LC2 in the e domain when de = 0.6 in X̃ e
2 .

universe of discourse, the collection of EGT1FSs that duplicates
all the slices and, therefore, the control surface can be found.

The formal definitions of EGT1FLCs and EGT1FSs are given
in the following.

Definition 5: EGT1FLCs are the group of generalized T1
FLCs that, together, has the same control surface as an IT2 FLC.
For an IT2 FLC that has N IT2 FSs, its EGT1FLCs comprise
N − 1 embedded (traditional) T1 FS and a group of EGT1FSs.

Definition 6: EGT1FSs are the collection of generalized T1
FSs that can be used in place of the FOUs in an IT2 FLC.

The detailed procedure to identify the EGT1FSs and
EGT1FLCs is given in Appendix B.

B. Results and Discussions

For ease of understanding, we introduce symmetrical FOU
to only Xe

2 to obtain X̃e
2 and keep all other FSs in F̃LC2

the same as those in FLC2 and then use the EGT1FSs to
visualize the effect of the FOU. When different FOU sizes
are used, the resulting EGT1FSs are shown in Fig. 14. Note
that, for clarity, we only plot the EGT1FSs corresponding to
ė = {−0.2,−0.1, 0, 0.1, 0.2}. Observe the following.

1) As the FOUs of an IT2 FLC grow, its EGT1FSs become
more diverse. This characteristics is very intuitive. Recall
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that an EGT1FS at ė′ is a curve that can be used to replace
the FOUs when ė = ė′ without changing the output, which
is a slice of the control surface of F̃LC2 at ė = ė′. Since
the control surface of F̃LC2 is more complex when the
FOU is larger, the EGT1FSs become more diverse.

2) The EGT1FSs may not lie in the FOU of the correspond-
ing IT2 FS. Moreover, the EGT1FSs are different from
traditional T1 FSs in that their generalized membership
grades can be larger than 1. The reason is explained by
an example in [59].

In summary, an IT2 FLC can be viewed as a combination
of many different EGT1FLCs. A different EGT1FLC is uti-
lized when the input is changed, thereby providing an IT2 FLC
with more adaptiveness. Additionally, the EGT1FSs are differ-
ent from traditional T1 FSs because of the novelty. These prop-
erties enable an IT2 FLC to implement more complex control
surface than its T1 counterpart.

VII. ANALYZE THE DIFFERENCE BETWEEN INTEGRAL TYPE-2
AND TYPE-1 FUZZY LOGIC CONTROLLERS: EQUIVALENT

PROPORTIONAL-INTEGRAL GAINS

We have visualized the difference between IT2 and T1 FLCs
using three methods. Several researchers tried to explore the
underlying reason mathematically. However, it is very difficult
since the KM algorithms do not have a closed-form solution.
Du and Ying [12] partitioned the input domain into many small
regions and, then, derived and analyzed the analytical solutions
in each region. They found that it is very difficult to perform
the derivation and analysis using the popular center-of-sets type
reducer; therefore, they proposed an average defuzzifier. How-
ever, as explained in [49] and [55] as well as the next section
of this paper, the average defuzzifier is quite different from
the center-of-sets type reducer, which is consistent with the ex-
tension principle and is theoretically well grounded. Nie and
Tan [38] also partitioned the input domain into many small re-
gions and, then, derived and analyzed the analytical solutions in
each region. However, because there are too many small regions
and the analytical expression in each region is very complex,
it is difficult to gain useful insights. Furthermore, both previ-
ous works used the Zadeh AND operator (min), whereas the
product AND operator is more popular in fuzzy modeling and
control.

In this section, we study how the control law is changed
when symmetrical FOUs are introduced to the baseline T1 FLC
FLC1 . We consider a very special case (F̃LC1) because the
iterative nature of the KM algorithms makes it very challenging
to derive nice closed-form solutions for IT2 FLCs with arbitrary
FOUs. However, we believe that our analysis can still shed light
on more general cases. Moreover, for general cases in which
accurate quantitative analysis is challenging or even impossible,
we can always use the P-map introduced earlier to qualitatively
compare the equivalent PI gains of an IT2 FLC with a baseline
PI controller.

Fig. 15. Region of the input domain determined by (12) and (13). Observe
that it is around the origin.

A. Equivalent Proportional-Integral Gains

We use the product AND operator. To simplify the com-
putation, we only consider the region around the steady state
bounded by the following inequalities:

pė
1 + dė ≤ ė ≤ pe

2 − dė (12)

pe
1 + de ≤ e ≤ pe

2 − de (13)

which are motivated by the observations that the robustness
improvement occurs mainly when the system output is near
the setpoint [60], [61]. A graphical illustration of the region is
shown in Fig. 15. Note that pė

1 = −pė
2 and pe

1 = −pe
2 are used

in this section.
According to the derivations given in Appendix C, when an

input (ė, e) satisfies (12), (13), and the following constraint:

|(KP pė
2p

e
2 − KP pė

2de + KI p
e
2de)ė + KI p

ė
2p

e
2e|

≤ KP pė
2(p

ė
2 − dė)(pe

2 − de) − KI p
e
2(p

ė
2p

e
2 + dėde) (14)

the output of F̃LC1 is

u̇ = αKP ė + βKI e (15)

where

α =
pė

2
2(pe

2
2 − d2

e )
(pė

2p
e
2 + dėde)2 − d2

e ė
2 (16)

β =
pė

2p
e
2(p

ė
2p

e
2 + dėde)

(pė
2p

e
2 + dėde)2 − d2

e ė
2 (17)

αKp is the equivalent proportional gain of F̃LC1 , and βKI is
the equivalent integral gain. Observe the following.

1) Both α and β are functions of ė, i.e., the equivalent PI
gains of F̃LC1 change as the input ė changes.

2) α is always smaller than 1; when |ė| is small, e.g., |ė| ≤
dė , β is also smaller than 1. Therefore, for small inputs
(disturbances) around the steady state, the equivalent PI
gains of F̃LC1 are smaller than the PI gains of FLC1 .
Consequently, the same amount of disturbance will cause a
smaller control signal change in F̃LC1 and, hence, reduces
the risk of oscillation.
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Fig. 16. Input regions where (15) is applicable when (a) dė = de = 0.2 and

(b) dė = de = 0.5 in F̃LC 1 . Observe that they are around the origin. The
dashed squares are the input regions when the constraint (14) is not imposed.

Fig. 17. Relationship between α, β , and ė.

3) Because ∂α
∂de

< 0, ∂β
∂de

< 0, ∂α
∂dė

< 0, and ∂β
∂dė

< 0 for
small ė, generally, an increase in de and/or dė will re-
duce both α and β, i.e., larger FOUs will result in smaller
equivalent PI gains around the steady state, and, hence,
F̃LC1 is potentially more robust.

4) Dividing (16) by (17) yields

α

β
=

pė
2p

e
2
2 − pė

2d
2
e

pė
2p

e
2
2 + pe

2dėde
< 1

i.e., the equivalent proportional gain decreases, relatively,
faster than the equivalent integral gain. Observe also that
when the FOUs increase, i.e., dė and/or de increase, α/β
decreases. Consequently, a larger FOU will increase the
damping of F̃LC1 , and, hence, reduces overshoots and
oscillations.

B. Examples

Recent experimental results on IT2 fuzzy PI controller [21],
[57], [60], [61] indicate that IT2 PI FLCs are more robust and are
better able to eliminate oscillations. This section uses equivalent
PI gains to explain the underlying reason.

Example 3: Consider FLC1 and F̃LC1 introduced in
Section II-C, where KP = 2.086, KI = 0.2063, and P ė

2 =
pe

2 = 1.
As KP · pė

2 > KI · pe
2 , the equivalent PI gains of F̃LC1 are

determined by (15). The closed-form solutions of the equivalent
PI gains are derived using the assumption in (21). Using (12)–
(14), the input regions in which the equivalent PI gains of F̃LC1
are valid when dė = de = {0.2, 0.5} are plotted in Fig. 16(a)
and (b), respectively. The diagrams indicate that the constraint
(14) further restricts the region where the equivalent PI gains of
F̃LC1 are applicable.

Fig. 17 shows how α and β vary with ė in the range where the
equivalent PI gains are valid. Observe that the extra degrees of
freedom provided by the FOUs result in varying equivalent PI

gains. Unlike FLC1 whose input–output relationship is linear,
F̃LC1 realizes a nonlinear PI control law around the steady state,
as we have seen in previous sections from the control surface
and the P-map. Because both α and β are smaller than unity,
the equivalent PI gains of F̃LC1 are smaller than the PI gains
of FLC1 . The deviation of F̃LC1 from FLC1 becomes larger
as dė increases, i.e., as the FOU increases.

Simulation results on comparing the control performances of
FLC1 and F̃LC1 can be found in [62], and they are consistent
with the theoretical analysis in this section.

VIII. ALTERNATIVE TYPE REDUCERS: DO THEY

CAPTURE THE FUNDAMENTALS?

In the literature, there are many alternative type reducers,
which are used to approximate the KM algorithms, or to simplify
computation [51], [52]. With the two fundamental differences
between IT2 and T1 FLCs, and Theorems 1–3, in mind, it is
interesting to examine their reasonableness. Five10 alternative
type reducers are studied in this paper.

A. Five Alternative Type Reducers

Five popular alternative type reducers [5], [12], [37], [58],
[63] are the following.

1) Uncertainty Bound Method: The UB type educer, which
was proposed by Wu and Mendel [63], computes the out-
put of the IT2 FLC by (5), but

yl =
y

l
+ yl

2

yr =
y

r
+ yr

2
where

yl = min{y(0) , y(N )}

y
r

= max{y(0) , y(N )}

y
l
= yl −

∑N
n=1(f

n − fn )∑N
n=1 f

n ∑N
n=1 fn

·
∑N

n=1 fn (yn − y
1
)
∑N

n=1 f
n
(yN − yn )∑N

n=1 fn (yn − y1) +
∑N

n=1 f
n
(yN − yn )

yr = y
r

+

∑N
n=1(f

n − fn )∑N
n=1 f

n ∑N
n=1 fn

·
∑N

n=1 f
n
(yn − y1)

∑N
n=1 fn (yN − yn )∑N

n=1 f
n
(yn − y1) +

∑N
n=1 fn (yN − yn )

10There are several other methods [16], [17], [32], [39] that bypass type
reduction; however, they require the rule consequents to be IT2 FSs so that the
union of the fired rule output sets can be computed and used, whereas our IT2
FLC structure, which was defined in Section II, only uses the centroids of the
consequent IT2 FSs. Because our structure is simpler and much more widely
used in fuzzy logic modeling and control, those methods are not considered
in this paper. Additionally, these are some new algorithms for computing the
centroid of IT2 FSs [10], [18], [19], which may also be used for type reduction
and defuzzification of IT2 fuzzy logic systems; however, since they have not
been used in fuzzy logic control, they are not considered in this paper.
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in which

y(0) =

∑N
n=1 fnyn

∑N
n=1 fn

, y(N ) =

∑N
n=1 f

n
yn

∑N
n=1 f

n

y(N ) =

∑N
n=1 fnyn

∑N
n=1 fn

, y(0) =
∑N

n=1 f
n
yn

∑N
n=1 f

n .

The UB method explicitly considers the case that the
rule consequents are intervals [yn , yn ]. For the other four
methods introduced in the following, yn = yn ≡ yn is
used.

2) Wu–Tan Method: Wu and Tan [58] proposed a closed-form
type reduction and defuzzification method by making use
of the equivalent T1 membership grades. The basic idea is
to first find an equivalent T1 membership grade μX n

i
(xi)

to replace each firing interval [μX n
i
(xi), μX

n

i
(xi)], i.e.,

μX n
i
(xi) = μ

X
n

i
(xi) − hn

i (x)[μ
X

n

i
(xi) − μX n

i
(xi)]

where hn
i (x) is a function of the input x, and is differ-

ent for different IT2 FSs. Then, the firing strengths of
the rules become point (instead of interval) numbers com-
puted from these μX n

i
(xi), and the output of the IT2 FLC

is then computed as

y =
∑N

n=1 fnyn

∑N
n=1 fn

.

3) Nie–Tan Method: Nie and Tan [37] proposed another
closed-form type reduction and defuzzification method,
where the output of an IT2 FLC is computed as

y =

∑N
n=1(f

n + f
n
)yn

∑N
n=1(f

n + f
n
)

.

Observe that the NT method is a special case of the WT
method when hn

i (x) = 0.5.
4) Du–Ying Method: Du and Ying [12] proposed an average

defuzzifier. It first computes 2N crisp outputs obtained by
all possible combinations of the lower and upper firing
levels, i.e.,

ym =
∑N

n=1 fn∗
yn

∑N
n=1 fn∗ , m = 1, 2, . . . , 2N

where fn∗ ∈ {fn , f
n}. The final defuzzified output is then

computed as the average of all these 2N ym , i.e.,

y =
1

2N

2N∑
m=1

ym .

5) Begian–Melek–Mendel Method: Begian et al. [5] pro-
posed another closed-form type reduction and defuzzi-
fication method for TSK IT2 FLCs, i.e.,

y = α

∑N
n=1 fnyn

∑N
n=1 fn

+ β

∑N
n=1 f

n
yn

∑N
n=1 f

n .

where α and β are adjustable coefficients.

B. Do the Alternative Type Reducers Capture
the Fundamentals?

We examine the reasonableness of the five alternative type
reducers using adaptiveness, novelty, and Theorem 3. The con-
clusions are the following.

1) The NT method, DY method, and BMM method use a
T1 FLC or a linear combination of several T1 FLCs to
approximate the KM type reducer. According to Theorem
3, they cannot exactly duplicate the output of a KM type-
reducer-based IT2 FLC.

2) The WT method, explicitly, captures adaptiveness in the
sense that the embedded T1 FSs used to construct the T1
FLC change as input changes. However, whether there
exists a group of hn

i (x) to also capture the novelty is an
open problem.

3) For the UB method, y
l

and yr involve complex combina-
tions which cannot be decomposed into T1 FLCs; thus,
the results in this paper cannot be directly applied to it. yl

and y
r

exhibit limited adaptiveness as yl can be chosen

from y(0) and y(N ) , and y
r

can be chosen from y(0) and

y(N ) . However, these terms do not incorporate novelty.
In summary, none of the five alternative type reducers cap-

tures both adaptiveness and novelty, which are demonstrated
in the KM type-reducer-based IT2 FLCs. We emphasize a KM
type-reducer-based IT2 FLC because the KM type reducer is
consistent with the extension principle and is, theoretically, well
grounded. However, this does not mean that the five alternative
type reducers are not good. Actually, some of them are very
close approximations to the KM type reducer. They have less
computational cost and have demonstrated good performance
in some applications [30], [37], [43].

IX. CONCLUSION

IT2 FLCs have been widely used and demonstrated for their
better ability to handle uncertainties than their T1 counterparts.
A challenging question is what the fundamental differences be-
tween IT2 and T1 FLCs are. Once the fundamental differences
are clear, we can better understand the advantages of IT2 FLCs
and, hence, better make use of them. In this paper, we have
pointed out two fundamental differences between IT2 and T1
FLCs: 1) Adaptiveness, meaning that the embedded T1 FSs used
to compute the bounds of the type-reduced interval change as
input changes, and 2) Novelty, meaning that the UMF and LMF
of the same IT2 FS may be used simultaneously in computing
each bound of the type-reduced interval. As a result, an IT2
FLC can implement a complex control surface that cannot be
achieved by a T1 FLC using the same rulebase.

We have also introduced several methods to visualize and
analyze the effects of these two differences, including

1) the control surface, in which we have shown that the con-
trol surface of an IT2 FLC can have discontinuities that
cannot be achieved by a T1 FLC;

2) the P-map, in which we have shown that the difference
between the control surfaces of an IT2 FLC and a T1
FLC may be equivalent to a variable gain proportional
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controller, whose proportional gain is usually negative
around the steady state;

3) the EGT1FSs, in which we have shown that the FOUs may
be replaced by a group of EGT1FSs, whose shape changes
as the input changes, and whose generalized membership
grade can be larger than 1.

4) the equivalent PI gains, in which we have shown that a
special IT2 PI FLC is equivalent to a variable gain PI
controller, whose PI gains change with the input and are
smaller than the PI gains of a baseline T1 PI FLC.

All the aforementioned results help understand why an IT2
FLC can be better at eliminating oscillations than a T1 FLC. We
have also examined five alternative type reducers for IT2 FLCs
and explained why they do not capture the fundamentals of IT2
FLCs.

Finally, we need to point out that although the results in this
paper explain the fundamental differences between IT2 and T1
FLCs, they do not directly answer another fundamental question
on how to ensure that an IT2 FLC outperforms a T1 FLC. That
will be one of our future research directions.

APPENDIX A

PROOF OF THEOREM 1

In this proof, we make use of the following two facts.
1) Fact 1: The rule firing levels that are used in the KM algo-

rithms are the bounds of the firing intervals. For an upper
bound, all involved embedded T1 FSs must be UMFs, and
for a lower bound, all involved embedded T1 FSs must
be LMFs. There is no mixture of UMFs and LMFs in
computing the firing level of any rule.

2) Fact 2: f 1 and fN are, always, used for computing yl in
(3), although we are not sure about whether the upper or
lower firing levels should be used for the rest of the rules.
For f 1 , all involved embedded T1 FSs must be UMFs. For
fN , all involved embedded T1 FSs must be LMFs.

We consider the following two cases separately.
1) Rules R̃1 and R̃N share at least one IT2 FS X̃i . In this case,

according to Fact 2, for Rule R̃1 , Xi must be used, whereas
for Rule R̃N , Xi must be used. This novelty cannot be
implemented by a T1 FLC using the same rulebase.

2) Rules R̃1 and R̃N do not have any IT2 FS in common,
(e.g., for yl in (10), R̃1 involves X̃ė

1 and X̃e
1 , whereas R̃4

involves X̃ė
2 and X̃e

2 ). This case is more complicated than
the previous one. We prove it by contradiction. Assume yl

in (3) can be implemented by a T1 FLC, where the same
T1 MFs are used in computing all firing levels, e.g., if the
UMF of X̃ė

1 is used in computing the firing level of Rule
R̃1 , it must also be used in computing the firing levels of
all other rules involving X̃ė

1 .
In this second case, it is always possible to find a Rule

R̃k such that Rules R̃1 and R̃k share at least one common
IT2 FS X̃i , and Rules R̃k and R̃N share at least one
common IT2 FS X̃j (e.g., for yl in (10), Rules R̃1 and R̃2

share X̃ė
1 , and Rules R̃2 and R̃4 share X̃e

2 ). According to
Fact 2, Xi must be used in Rule R̃1 to comput f 1 . If yl

TABLE VII
FIRING LEVELS OF THE NINE RULES OF THE EGT1FLC

can be implemented by a T1 FLC using the same rulebase,
then Xi must also be used in Rule R̃k . According to
Fact 1, Xj must also be used for Rule R̃k . For a T1 FLC,
this means Xj must also be used in Rule R̃N , which is a
contradiction with Fact 2. Therefore, again, yl in (3) cannot
be implemented by a T1 FLC using the same rulebase.

Theorem 1 is, hence, proved.

APPENDIX B

METHOD FOR IDENTIFYING EQUIVALENT GENERALIZED

TYPE-1 FUZZY SETS AND EQUIVALENT GENERALIZED

TYPE-1 FUZZY LOGIC CONTROLLERS

In this Appendix, we use FLC2 and F̃LC2 as an example to
illustrate the procedure to identify EGT1FSs and EGT1FLCs;
however, the method can be generalized to any IT2 FLC with
any FOU shape.

We want to compare F̃LC2 and FLC2 ; therefore, we replace
X̃ė

1 , X̃ė
2 , X̃ė

3 , X̃e
1 , and X̃e

3 in F̃LC2 by Xė
1 , Xė

2 , Xė
3 , Xe

1 , and
Xe

3 in FLC2 , respectively. We, then, find EGT1FSs to replace
X̃e

2 in F̃LC2 so that its control surface can be duplicated.
Let X e

2 be an EGT1FS of F̃LC2 . Then, the rulebase of the
corresponding EGT1FLC is

R1 : IF ė is Xė
1 and e is Xe

1 , THEN u̇ is y11

R2 : IF ė is Xė
1 and e is X e

2 , THEN u̇ is y12

R3 : IF ė is Xė
1 and e is Xe

3 , THEN u̇ is y13

R4 : IF ė is Xė
2 and e is Xe

1 , THEN u̇ is y21

R5 : IF ė is Xė
2 and e is X e

2 , THEN u̇ is y22

R6 : IF ė is Xė
2 and e is Xe

3 , THEN u̇ is y23

R7 : IF ė is Xė
3 and e is Xe

1 , THEN u̇ is y31

R8 : IF ė is Xė
3 and e is X e

2 , THEN u̇ is y32

R9 : IF ė is Xė
3 and e is Xe

3 , THEN u̇ is y33 .

Consider an input pair (ė′, e′). The firing levels of the nine
rules of the EGT1FLC are shown in Table VII. The output of
the EGT1FLC is

u̇1 = [μX ė
1
(ė′)μX e

1
(e′)y11 + μX ė

1
(ė′)μX e

2
(e′)y12
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TABLE VIII
FIRING INTERVALS OF THE FOUR RULES OF F̃LC1

+ μX ė
1
(ė′)μX e

3
(e′)y13 + μX ė

2
(ė′)μX e

1
(e′)y21

+ μX ė
2
(ė′)μX e

2
(e′)y22 + μX ė

2
(ė′)μX e

3
(e′)y23

+ μX ė
3
(ė′)μX e

1
(e′)y31 + μX ė

3
(ė′)μX e

2
(e′)y32

+ μX ė
3
(ė′)μX e

3
(e′)y33 ]/[μX ė

1
(ė′)μX e

1
(e′)

+ μX ė
1
(ė′)μX e

2
(e′) + μX ė

1
(ė′)μX e

3
(e′) + μX ė

2
(ė′)μX e

1
(e′)

+ μX ė
2
(ė′)μX e

2
(e′) + μX ė

2
(ė′)μX e

3
(e′) + μX ė

3
(ė′)μX e

1
(e′)

+ μX ė
3
(ė′)μX e

2
(e′) + μX ė

3
(ė′)μX e

3
(e′)]. (18)

Denote the output of F̃LC2 for input pair (ė′, e′) as u̇2 . Then,
to duplicate a slice of the control surface, we must have

u̇1 = u̇2 . (19)

From (18) and (19), it is easy to solve for μX e
2
(e′), as

μX e
2
(e′)

= {u̇2 [μX e
1
(e′) + μX e

3
(e′)][μX ė

1
(ė′) + μX ė

2
(ė′) + μX ė

3
(ė′)]

− μX e
1
(e′)[μX ė

1
(ė′)y11 + μX ė

2
(ė′)y12 + μX ė

3
(ė′)y13 ]

− μX e
3
(e′)[μX ė

1
(ė′)y31 + μX ė

2
(ė′)y32 + μX ė

3
(ė′)y33 ]}

/{μX ė
1
(ė′)y21 + μX ė

2
(ė′)y22 + μX ė

3
(ė′)y23

− u̇2 [μX ė
1
(ė′) + μX ė

2
(ė′) + μX ė

3
(ė′)]}. (20)

When e′ changes from pe
1 to pe

3 , its μX e
2
(e′) form the EGT1FS

corresponding to ė = ė′. The complete group of EGT1FSs can,
then, be identified by discretizing the ė domain and applying
(20) repeatedly.

In summary, the procedure for finding EGT1FSs for F̃LC2 is
as follows.

1) Replace X̃ė
1 , X̃ė

2 , X̃ė
3 , X̃e

1 , and X̃e
3 in F̃LC2 by Xė

1 , Xė
2 ,

Xė
3 , Xe

1 , and Xe
3 in FLC2 , respectively.

2) Discretize the ė domain into m points {ė1 , ė2 , . . . , ėm}.
3) Discretize the e domain into k points {e1 , e2 , . . . , ek}.
4) Set ė = ė1 . Use (20) to calculate the k-generalized mem-

bership grades μX e
2
(ei) (i = 1, . . . , k) to duplicate the

slice of the control surface corresponding to ė = ė1 .
By joining the k-generalized membership grades, the
EGT1FS corresponding to ė = ė1 is obtained.

5) Repeat Step (3) for the remaining (m − 1) elements in
{ė2 , . . . , ėm}.

APPENDIX C

DERIVATION OF THE EQUIVALENT

PROPORTIONAL-INTEGRAL GAINS

When an input (ė, e) falls into the shaded region in Fig. 15,
the firing intervals of the four IT2 FSs of F̃LC1 (see Fig. 4) are

[μX ė
1
(ė), μ

X
ė

1
(ė)] =

[
pė

2 − dė − ė

2pė
2

,
pė

2 + dė − ė

2pė
2

]

[μX ė
2
(ė), μ

X
ė

2
(ė)] =

[
ė + pė

2 − dė

2pė
2

,
ė + pė

2 + dė

2pė
2

]

[μX e
1
(e), μ

X
e

1
(e)] =

[
pe

2 − de − e

2pe
2

,
pe

2 + de − e

2pe
2

]

[μX e
2
(e), μ

X
e

2
(e)] =

[
e + pe

2 − de

2pe
2

,
e + pe

2 + de

2pe
2

]
.

The firing intervals of the four rules of F̃LC1 are listed in
Table VIII. To save space, we only consider the case KP · pė

2 >
KI · pe

2 . The case KP · pė
2 < KI · pe

2 can be found in [62].
When KP · pė

2 > KI · pe
2 , observe from Table VIII that

y1 < y2 < 0 < y3 < y4 .

To derive closed-form solutions, we further impose the follow-
ing constraint:

y2 ≤ yl ≤ yr ≤ y3 . (21)

As will be shown in the next section, (21) reduces the shaded
region shown in Fig. 15; however, it still ensures that the inputs
under consideration are around the steady state.

According to the KM algorithms, (21) indicates that the
switch points11 L = 2 and R = 2. Therefore

yl =
f 1y1 + f 2y2 + f 3y3 + f 4y4

f 1 + f 2 + f 3 + f 4

=
pė

2(KP dėp
e
2 − KP pe

2 ė + KP pė
2de + KI p

e
2e)

pė
2p

e
2 + dėde − de ė

(22)

yr =
f 1y1 + f 2y2 + f

3
y3 + f

4
y4

f 1 + f 2 + f
3

+ f
4

=
pė

2(KP dėp
e
2 + KP pė

2de + KP pe
2 ė + KI p

e
2e)

pė
2p

e
2 + dėde − de ė

. (23)

11Note that {yn } has been sorted in ascending order.
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Hence, the output of F̃LC1 is

u̇ =
yl + yr

2

=
pė

2
2(pe

2
2 − d2

e )KP ė + pė
2(p

ė
2p

e
2
2 + pe

2dėde)KI e

(pė
2p

e
2 + dėde)2 − d2

e ė
2

=
pė

2
2(pe

2
2 − d2

e )
(pe

2p
ė
2 +dėde)2−d2

e ė
2 KP ė+

pė
2p

e
2(p

ė
2p

e
2 +dėde)

(pė
2p

e
2 +dėde)2−d2

e ė
2 KI e.

(24)

Knowing yl and yr in (22) and (23), constraint (21) can be
reexpressed as (14). Equation (14), together with (12) and (13),
determines the complete input region in which (24) holds.
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