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On the Continuity of Type-1 and Interval Type-2
Fuzzy Logic Systems

Dongrui Wu, Member, IEEE, and Jerry M. Mendel, Life Fellow, IEEE

Abstract—This paper studies the continuity of the input–output
mappings of fuzzy logic systems (FLSs), including both type-1 (T1)
and interval type-2 (IT2) FLSs. We show that a T1 FLS being
an universal approximator is equivalent to saying that a T1 FLS
has a continuous input–output mapping. We also derive the con-
dition under which a T1 FLS is discontinuous. For IT2 FLSs,
we consider six type-reduction and defuzzification methods (the
Karnik–Mendel method, the uncertainty bound method, the Wu–
Tan method, the Nie–Tan method, the Du–Ying method, and the
Begian–Melek–Mendel method) and derive the conditions under
which continuous and discontinuous input–output mappings can
be obtained. Guidelines for designing continuous IT2 FLSs are also
given. This paper is to date the most comprehensive study on the
continuity of FLSs. Our results will be very useful in the selection
of the parameters of the membership functions to achieve a desired
continuity (e.g., for most traditional modeling and control appli-
cations) or discontinuity (e.g., for hybrid and switched systems
modeling and control).

Index Terms—Continuity, discontinuity, fuzzy logic modeling
and control, hybrid and switched systems, interval type-2 fuzzy
logic systems (FLSs), monotonicity, smoothness.

I. INTRODUCTION

MODELING and control is the most widely used applica-
tion of both type-1 (T1) fuzzy logic systems (FLSs) [3],

[10], [22], [52], [65], [66] and interval type-2 (IT2) FLSs [20],
[21], [34], [42], [50], [61]–[63]. Essentially, an FLS implements
a function representing a mapping between inputs and outputs.
For modeling, an FLS represents the relationship between the
inputs and outputs of a system, e.g., the force applied to the
acceleration pedal of a car and its acceleration. For control, usu-
ally the inputs are signals related to the errors (e.g., the error
between the desired speed and the car’s actual speed, and/or the
change of error, and/or the integral of the error), and the out-
puts are the control signals that will be applied to the plant under
control (e.g., the force that should be applied to the acceleration
pedal) to reduce such errors; therefore, the FLS implements a
control law.

In many cases, continuous and smooth input–output mapping
is desired for an FLS, because most physical systems are con-
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tinuous, and a continuous and smooth control surface is usually
more favorable in terms of stability and performance, e.g., Wu
and Tan [59], [61], [62] and Jammeh et al. [21] have shown
that an IT2 fuzzy logic controller may outperform its T1 coun-
terpart because it gives a smoother control surface, especially
in the region around the steady state (both the error and the
change of error approach 0). Therefore, for such applications,
we need to avoid abrupt changes, especially discontinuities, in
the input–output mappings. It would be very beneficial to find
the conditions under which an FLS gives a continuous input–
output mapping so that we can ensure a continuous mapping
when it is desired.

In this paper, we distinguish between continuity and smooth-
ness. A continuous function is defined in Section II-A. A smooth
function requires the continuity of not only itself, but also its
derivatives. Therefore, a smooth function is more difficult to
obtain than a continuous function. The continuity of FLSs is
studied in this paper. The smoothness of FLSs will be investi-
gated in the future.

Surprisingly, though fuzzy sets have been used for more than
40 years [67], little research has been conducted directly on the
continuity of FLSs. Many results have shown that T1 FLSs are
universal approximators [8], [9], [11], [27], [29], [30], [51]. This
is equivalent to saying that a T1 FLS can implement any real
continuous function, as we will prove in this paper; however,
it is still unclear whether and when a T1 FLS can implement
a discontinuous real function. Furthermore, to the best of the
authors’ knowledge, no researcher has considered the continuity
of IT2 FLSs.

The rest of this paper is organized as follows: Section II stud-
ies the continuity of T1 FLSs. Section III studies the continuity
of IT2 FLSs with Karnik–Mendel type-reduction and center-
of-sets defuzzification, the most popular IT2 FLSs in practice.
Section IV studies the continuity of IT2 FLSs with uncertainty-
bound type-reduction and center-of-sets defuzzification.
Section V studies the continuity of IT2 FLSs using another
four methods, which combine type-reduction and defuzzifica-
tion. Section VI summarizes the continuity of IT2 FLSs with
different configurations and proposes design guidelines for con-
tinuous IT2 FLSs and several new research directions. Finally,
Section VII draws conclusions. The proofs for all theorems are
given in the Appendix.

II. CONTINUITY OF T1 FUZZY LOGIC SYSTEMS

This section studies the continuity of T1 FLSs. First, proper-
ties of continuous functions are reviewed.

1063-6706/$26.00 © 2010 IEEE
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A. Properties of Continuous Functions

Definition 1: A single-variable function f(x) is continuous at
c if and only if f(x) is defined at c, and limx→c f(x) = f(c),
i.e., for any ε > 0, there exists a δ > 0 such that |x − c| < δ ⇒
|f(x) − f(c)| < ε.

Recall the following facts about continuous functions from
elementary calculus [12], [24].

1) If f(x) is differentiable at c, then it is continuous at c.
2) Suppose both f1(x) and f2(x) are continuous at c:

a) For any constant k, the function k · f1(x) is contin-
uous at c.

b) f1(x) + f2(x) is continuous at c.
c) f1(f2(x)) is continuous at c if f1(x) is continuous

at f2(c).
d) f1(x)/f2(x) is continuous at c if f2(c) �= 0.

We distinguish between two types of discontinuities in this
paper.

Definition 2: A function f(x) has a gap discontinuity at c if
f(c) is undefined.

For example, f1(x)/f2(x) has a gap discontinuity at c if
f2(c) = 0.

Definition 3: A function f(x) has a jump discontinuity at c
if f(c) is defined but limx→c+ f(x) �= limx→c− f(x), i.e., both
f(c) and f(c + δ) are defined, but f(c + δ) does not approach
f(c) as δ approaches 0.

For example, f(x) =
{

2, x<0
3, x≥0 has a jump discontinuity at

x = 0.
A multivariable continuous function f(x) of an M -dimension

input x = (x1 , x2 , . . . , xM ) is defined as follows.
Definition 4: A multivariable function f(x) is continuous at

c = (c1 , c2 , . . . , cM ) if and only if it is defined at c, and for any
ε > 0, there exists a δ > 0 such that maxm=1,...,M |xm − cm | <
δ ⇒ |f(x) − f(c)| < ε.

The facts about continuous single-variable functions, which
were introduced after Definition 1, also hold for continuous
multivariable functions.

B. Structure of the T1 FLSs

For simplicity, we consider only multiantecedent single-
consequent T1 FLSs in this paper; however, our results can
be easily extended to multiantecedent multiconsequent T1
FLSs, because the latter can be decomposed into several multi-
antecedent single-consequent T1 FLSs [31].

The T1 FLS has M inputs, {xm}m=1,2,...,M , and one output,
y. Assume the mth input has Nm membership functions (MFs)
in its universe of discourse, Xm . Denote the nth MF in the mth

input domain as Xmn . A complete rulebase with all possible
combinations of the input MFs consists of K =

∏M
m=1 Nm rules

in the form of

Rk : IF x1 is X1,n1 k
and . . . and xM is XM,nM k

THEN y is yk , nik = 1, 2, . . . , Ni, k = 1, 2, . . . ,K

where yk is a constant, and generally it is different for different
rules. An example rulebase for a T1 FLS with two inputs (M =
2) and three MFs for each input (N1 = N2 = 3) is shown in

TABLE I
EXAMPLE RULEBASE OF A T1 FLS WITH TWO INPUTS AND THREE MFS FOR

EACH INPUT

Table I. Note that this T1 FLS can be viewed as the simplest
TSK model, where each rule consequent is represented by a
crisp number. It can also be viewed as a Mamdani model with
height defuzzification [42], i.e., yk represents the point with the
maximum membership degree of the consequent T1 FS of the
kth rule. Though the rulebase looks simple, it actually represents
the most frequently used T1 FLS in practice.

For an input x = (x1 , x2 , . . . , xM ), the output of a T1 FLS
with the aforesaid structure is computed as

y(x) =
∑K

k=1 fkyk∑K
k=1 fk

(1)

where fk is the firing level of x for the kth rule, which is
computed by a t-norm, i.e.,

fk = μX 1 , n 1 k
(x1) � μX 2 , n 2 k

(x2) � · · · � μXM , n M k
(xM ). (2)

Only minimum and product t-norms [25] are considered in this
paper since they are the most frequently used ones in practice.

In this paper, we consider only continuous fuzzy sets (FSs)
as MFs because discontinuous T1 FSs are almost never used in
modeling and control.

Definition 5: A T1 FS X is continuous if and only if its
MF, μX (x), is a continuous function of x, i.e., for any c in its
universe of discourse X and any ε > 0, there exists a δ > 0 such
that |x − c| < δ ⇒ |μX (x) − μX (c)| < ε, where μX (x) is the
membership grade of x on X .

C. Universal Approximators

Many authors have shown that various configurations of T1
FLSs are universal approximators [8], [9], [11], [27], [29], [30],
[51], i.e., a T1 FLS can uniformly approximate any real contin-
uous function on a compact domain to any degree of accuracy.
For example, Wang and Mendel [51] proved that T1 FLSs with
Gaussian MFs, product t-norm, and centroid defuzzification are
universal approximators; Kreinovich et al. [30] further showed
that such T1 FLSs are universal approximators for a smooth
function, and also its derivatives, i.e., not only the smooth func-
tion is approximated by the T1 FLS, but also its derivatives;
Castro [11] showed that T1 FLSs with Gaussian, triangular, or
trapezoidal MFs, any t-norm, and any practical defuzzification
method are universal approximators; Kosko [27] showed that all
additive T1 FLSs1 [26] are universal approximators. Kreinovich
et al. [29] also gave a comprehensive review of many such
results.

1Additive T1 FLSs [26] use summation (instead of maximum, as suggested
by the extension principle [25], [67]) to combine the scaled consequent FSs and
then use centroid defuzzification to obtain a crisp output.
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Fig. 1. Example input–output mappings of T1 FLSs with only one input.

Intuitively, a T1 FLS must realize a continuous input–output
mapping in order to approximate a continuous function to any
degree of accuracy. This conjecture is mathematically proved in
the following.

Theorem 1: A universal approximator f(x) of a continuous
function g(x) must be continuous.

The proof of Theorem 1, in addition to proofs for all other
theorems in this paper, are given in the Appendix.

So far, we have shown that as long as a T1 FLS is a uni-
versal approximator, it is continuous. According to Castro [11],
T1 FLSs with Gaussian, triangular, or trapezoidal MFs, any
t-norms, and centroid defuzzification are universal approxima-
tors, and hence, they are continuous. However, there are still
two questions that remain unanswered.

1) Are T1 FLSs with arbitrary continuous MFs (not neces-
sarily Gaussian, triangular, or trapezoidal) continuous?

2) In order to be a universal approximator, the T1 FSs must
cover all input domains completely. What if there are gaps
in at least one input domain?

These two questions are considered next.

D. Continuity of T1 FLSs

Consider the T1 FLS structure introduced in Section II-B.
Theorem 2: The T1 FLS y(x) is continuous at c =

(c1 , c2 , . . . , cM ) if and only if maxn=1,2,...,Nm
μXm n

(cm ) > 0
for ∀m = 1, 2, . . . M , i.e., every cm is covered by some contin-
uous T1 FSs.

Note that in this paper, “cm is covered by some continuous
T1 FSs” means that the membership grade of cm on at least one
of the T1 FSs is larger than 0, e.g., in the right column of Fig. 1,
x1 = 0 is covered by X12 , but x1 = ±0.3 are not covered.

Theorem 3: The T1 FLS y(x) has a gap discontinuity at
c = (c1 , c2 , . . . , cM ) if and only if there exists a cm such that
maxn=1,2,...,Nm

μXm n
(cm ) = 0, i.e., there is at least one cm

not covered by any continuous T1 FS in its domain.

TABLE II
RULEBASE FOR THE T1 FLSS SHOWN IN FIG. 1

Fig. 2. Example input–output mappings of T1 FLSs with two inputs.

Observe that T1 FLSs cannot have jump discontinuities be-
cause Theorems 2 and 3 have covered all possible T1 FLSs.

For practical T1 FLSs, usually all inputs domains are fully
covered by continuous T1 FSs, and hence, the T1 FLSs are
continuous. Hence, people have not paid much attention to the
continuity of T1 FLSs; however, the case is quite different and
complicated for IT2 FLSs, as we will see in the next three
sections.

E. Examples

Examples demonstrating Theorems 2 and 3 are presented in
this section.

Fig. 1 shows two input–output mappings of T1 FLSs with
only one input. The rulebase is shown in Table II, and product
t-norm is used. The numbers in Table II are chosen only for
illustration purpose. The first row of Fig. 1 shows the two MFs
in the input domain and the second row the corresponding input–
output mappings. Observe the following.

1) When the input MFs fully cover the input domain, as
shown in the first column of Fig. 1, the correspond-
ing input–output mapping is continuous, as indicated by
Theorem 2.

2) When at least one point in the input domain is not covered
by the MFs, the corresponding input–output mapping has
gap discontinuities, as shown in the second column of
Fig. 1. This result is consistent with Theorem 3.

3) The gaps in the output domain are determined by
the uncovered intervals in the input domain, e.g., as
shown in the second column of Fig. 1, x1 has gaps
at x1 = [−0.6,−0.3] ∪ [0.3, 0.6], and hence, its input–
output mapping also has gap discontinuities at x1 =
[−0.6,−0.3] ∪ [0.3, 0.6].

Fig. 2 shows the input–output mappings of three T1 FLSs
with two inputs. The rulebase is shown in Table III, and product
t-norm is used. Again, the numbers in Table III are chosen only
for illustration purposes. From Fig. 2, observe the following.
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TABLE III
RULEBASE FOR THE T1 FLSS SHOWN IN FIG. 2

Fig. 3. IT2 FS X̃m n and its UMF Xm n and LMF Xm n . Shaded area is the
footprint of uncertainty (FOU).

1) When the input MFs fully cover the input domains, as
shown in the first column of Fig. 2, the correspond-
ing input–output mapping is continuous, as indicated by
Theorem 2.

2) When at least one point in the input domain is not covered
by the MFs, the corresponding input–output mapping has
gap discontinuities, as shown in the last two columns of
Fig. 2. These results are consistent with Theorem 3.

3) The gaps in the output domain are determined by the
uncovered intervals in the input domains, e.g., in the sec-
ond column of Fig. 2, x2 is uncovered at [−0.6,−0.3] ∪
[0.3, 0.6], and hence, the input–output mapping is discon-
tinuous at x2 ∈ [−0.6,−0.3] ∪ [0.3, 0.6], as indicated by
Theorem 3. Similarly, as shown in the third column of
Fig. 2, both x1 and x2 are uncovered at [−0.6,−0.3] ∪
[0.3, 0.6], and hence, the input–output mapping has gap
discontinuities at [−0.6,−0.3] ∪ [0.3, 0.6] in both the x1
and x2 domains.

III. CONTINUITY OF-IT2 FUZZY LOGIC SYSTEMS:
KARNIK–MENDEL TYPE-REDUCTION AND CENTER-OF-SETS

DEFUZZIFICATION

Karnik–Mendel (KM) type-reduction and center-of-sets de-
fuzzification [23], [42], [58] are so far the most popular type-
reduction and defuzzification methods for IT2 FLSs. The con-
tinuity of such IT2 FLSs is studied in this section. IT2 FLSs
using five other type-reduction and defuzzification methods are
investigated in the next two sections.

A. Structure of the IT2 FLS

Again, we consider only multiantecedent single-consequent
IT2 FLSs in this section; however, our results can be easily
extended to multiantecedent multiconsequent IT2 FLSs, be-
cause the latter can be decomposed into several multiantecedent
single-consequent IT2 FLSs.

An example IT2 FS X̃mn is shown in Fig. 3. Its upper mem-
bership function (UMF) is denoted Xmn , and its lower mem-
bership function (LMF) is denoted Xmn .

The IT2 FLS has M inputs {xm}m=1,2,...,M and one output y.
Assume the mth input has Nm MFs in its universe of discourse

TABLE IV
EXAMPLE RULEBASE OF AN IT2 FLS WITH TWO INPUTS

AND THREE MFS FOR EACH INPUT

Xm . Denote the nth MF in the mth input domain as X̃mn . A
complete rulebase with all possible combinations of the input
MFs consists of K =

∏M
m=1 Nm rules in the form of

R̃k : IF x1 is X̃1,n1 k
and ...and xM is X̃M ,nM k

, THEN y is
[y

k
, yk ], nik = 1, 2, . . . , Ni , k = 1, 2, . . . ,K

where [y
k
, yk ] is a constant interval, and generally, it is different

for different rules. An example rulebase for an IT2 FLS with two
inputs (M = 2) and three MFs for each input (N1 = N2 = 3)
is shown in Table IV. Note that this IT2 FLS can be viewed as a
Mamdani model with center-of-sets type-reduction and centroid
defuzzification [42], i.e., [y

k
, yk ] represents the centroid of the

consequent IT2 FS of the kth rule. When y
k

= yk , this rulebase
represents the simplest TSK model, where each rule consequent
is represented by a crisp number. Again, this rulebase represents
the most commonly used IT2 FLSs in practice.

When KM type-reduction and center-of-sets defuzzification
are used, the output of an IT2 FLS with the aforesaid structure
for an input x = (x1 , x2 , . . . , xM ) is computed as [42]

y(x) =
yl(x) + yr (x)

2
(3)

where

yl(x) = min
∀fk ∈[f

k
,f k ]

∑K
k=1 fky

k∑K
k=1 fk

(4)

=

∑kl

k=1 fky
k

+
∑K

k=kl +1 f
k
y

k∑kl

k=1 fk +
∑K

k=kl +1 f
k

(5)

yr (x) = max
∀fk ∈[f

k
,f k ]

∑K
k=1 fky

k∑K
k=1 fk

(6)

=

∑kr

k=1 f
k
yk +

∑K
k=kr +1 fkyk∑kr

k=1 f
k

+
∑K

k=kr +1 fk

(7)

in which [f
k
, fk ] is the firing interval of the kth rule, i.e.

f
k

= μX 1 , n 1 k
(x1) � μX 2 , n 2 k

(x2) � · · · � μX M , n M k
(xM ) (8)

fk = μX 1 , n 1 k
(x1) � μX 2 , n 2 k

(x2) � · · · � μX M , n M k
(xM ). (9)

Observe that both f
k

and fk are continuous functions when all
IT2 MFs are continuous. Note also that {y

k
} and {yk} have been

sorted in ascending order in (5) and (7), respectively. The switch
points kl and kr are determined by the KM algorithms [23], [42]
or the Enhanced KM (EKM) algorithms [56]–[58], and they
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satisfy

y
kl

≤ yl(x) ≤ y
kl +1

(10)

ykr
≤ yr (x) ≤ ykr +1. (11)

Only continuous IT2 FSs are of interest in this paper, which
are defined as follows:

Definition 6: An IT2 FS X̃ is continuous if and only if both
its UMF and its LMF are continuous T1 FSs.

The continuity of the IT2 FLS is more interesting and com-
plicated than the T1 FLS because, unlike the T1 FLS intro-
duced in Section II-B, the output of the IT2 FLS does not have a
closed-form solution. Furthermore, the KM algorithms for type-
reduction involve switch points, which give the impression of
discontinuity.

B. Continuity of IT2 FLSs

Two theorems on the discontinuities of IT2 FLSs are intro-
duced next.

Theorem 4: The IT2 FLS has a gap discontinuity at c =
{c1 , c2 , . . . , cM } if and only if ∃cm such that maxn=1,2,...,Nm

μX m n
(cm ) = 0, i.e., there exist at least one cm not covered by

the UMFs.
Theorem 5: The IT2 FLS has a jump discontinuity at c =

{c1 , c2 , . . . , cM } if and only if we have the following.
1) maxn=1,2,...,Nm

μX m n
(xm ) > 0 for ∀xm , i.e., each input

domain is fully covered by the UMFs; and,
2) ∃cm such that maxn=1,2,...,Nm

μX m n
(cm ) = 0, i.e., there

exists at least one cm not covered by the LMFs; and,
3) There exists an m′ �= m such that, the minimum y

k
and/or

maximum yk for all fired rules (i.e., those rules with
fk > 0) changes as cm ′ changes to cm ′ + δ, where δ is
an arbitrarily small positive or negative number.

The following corollary can be easily derived from
Theorem 5:

Corollary 1: The IT2 FLS has a jump discontinuity at c =
{c1 , c2 , . . . , cM } if we have the following.

1) The input domain is fully covered by the UMFs; and,
2) There exists at least one cm not covered by the LMFs; and,
3) All rules have different consequents.
The third criterion in Theorem 5 requires m′ �= m, i.e., there

must be at least two inputs in order to have jump discontinuities.
Hence, we have the following:

Corollary 2: An IT2 FLS with only one input does not have
jump discontinuities.

Theorems 4 and 5 suggest that an IT2 FLS can have both gap
and jump discontinuities, whereas a T1 FLS can only have gap
discontinuities.

By finding the complement of Theorems 4 and 5, we have the
following necessary and sufficient conditions of a continuous
IT2 FLS:

Theorem 6: The IT2 FLS is continuous at c = {c1 , c2 ,
. . . , cM } if and only if we have the following.

1) maxn=1,2,...,Nm
μX m n

(cm ) > 0 for ∀m; or,
2) For every m such that maxn=1,2,...,Nm

μX m n
(cm ) = 0,

the minimum y
k

and maximum yk of all fired rules do not

Fig. 4. Example input–output mappings of IT2 FLSs with only one input.

TABLE V
RULEBASE FOR THE IT2 FLSS SHOWN IN FIG. 4

change as any cm ′ (m′ �= m) changes to cm ′ + δ, where δ
is an arbitrarily small positive or negative number.

Since the second condition of Theorem 6 is more difficult to
test than the first one, we suggest that practitioners who want
to avoid both gap and jump discontinuities should focus on
satisfying the first condition. Essentially, the first condition of
Theorem 6 says that an IT2 FLS is continuous as long as its
input domain is fully covered by both the UMFs and the LMFs.
It is not a tight constraint on the shapes of the IT2 FS MFs, e.g.,
it is satisfied by all IT2 FLSs in [2], [20], [44], [60], [62], [63];
therefore, it should not limit the modeling power of IT2 FLSs.

C. Examples

Examples demonstrating Theorems 4–6 are presented in this
section.

Fig. 4 shows three input–output mappings of IT2 FLSs with
only one input. The first row shows the three MFs in the in-
put domain and the second row the corresponding input–output
mappings. The corresponding rulebase is given in Table V.
Observe from Fig. 4 that we have the following.

1) When both the input UMFs and the input LMFs fully cover
the input domain, as shown in the first column of Fig. 4,
the corresponding input–output mapping is continuous, as
indicated by Theorem 6.

2) When the input domain is fully covered by the UMFs but
at least one point in the input domain is not covered by
the LMFs, as shown in the middle column of Fig. 4, the
corresponding input–output mapping is still continuous
for the 1-input case, because it does not satisfy the third
criterion of Theorem 5.

3) When the input UMFs do not fully cover the input domain,
as shown in the last column of Fig. 4, the corresponding
input–output mapping has gap discontinuities, as indicated
by Theorem 4.

Fig. 4 demonstrates that an IT2 FLS with only one input
cannot have jump discontinuities, as suggested by Corollary 2;
however, that IT2 FLS can still have gap discontinuities.
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Fig. 5. Example input–output mappings of IT2 FLSs with two inputs. (a) Input MFs. (b) KM method. (c) UB method. (d) WT method (αm n = 0.5) and the NT
method. (e) DY method. (f) BMM method.
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TABLE VI
RULEBASE FOR THE IT2 FLSS SHOWN IN FIG. 5

Fig. 6. Detailed illustration of jump discontinuities. The input MFs are shown
in the second column of Fig. 5(a).

The following example illustrates the input–output mappings
of four IT2 FLSs with two inputs. Fig. 5(a) shows the three MFs
in each input domain, and Fig. 5(b) shows the corresponding
input–output mappings using the KM type-reducer. The rulebase
is given in Table VI. Observe from Fig. 5(b) that we have the
following.

1) When both the input UMFs and the input LMFs fully cover
the input domain, as shown in the first column of Fig. 5(a),
the corresponding input–output mapping is continuous, as
indicated by Theorem 6.

2) When the input domain is fully covered by the UMFs but
at least one point in the input domain is not covered by the
LMFs, as shown in the middle two columns of Fig. 5(a),
the corresponding input–output mapping has jump dis-
continuities [e.g., when x1 = ±0.1 and x2 ∈ [0.4, 0.7] in
the second column of Fig. 5(a)], as indicated by Theorem
5. Observe also from the second column of Fig. 5(a) that
even though it is the x2 domain that is not fully covered by
the LMFs, the jump discontinuities happen in the domain
of x1 .

3) When the input UMFs do not fully cover the input domain,
as shown in the last column of Fig. 5(a), the corresponding
input–output mapping has gap discontinuities, as indicated
by Theorem 4. Note that the x2 domain is not covered by
the UMFs; therefore, so the gap discontinuities happen in
the x2 domain, which is also indicated by Theorem 4.

Theorems 4 is intuitive. Next, the second column of Fig. 5(a)
is used as an example to explain in detail how the jump disconti-
nuities suggested by Theorem 5 are generated. A more detailed
plot of the input–output mapping shown in the second column
of Fig. 5(b) is depicted in Fig. 6. Observe that when x1 = ±0.1,
there are jump discontinuities at x2 ∈ [−0.7,−0.4] ∪ [0.4, 0.7].
The reason is analyzed next.

Observe from the second column of Fig. 5(a) that
maxn=1,2,3 μX 1 n

(x1) > 0 and maxn=1,2,3 μX 2 n
(x2) > 0, i.e.,

the first criterion in Theorem 5 is satisfied. Consider x2 = 0.4,
where maxn=1,2,3 μX 2 n

(x2) = 0, i.e., the second criterion of
Theorem 5 is also satisfied. Further, consider the case that x1
changes from 0.1 to 0.1 + δ, where δ > 0 is an arbitrarily small
number. Then, we have the following.

1) When x1 = 0.1 and x2 = 0.4, the firing intervals of the
antecedents and rules are given in Table VII. Observe
that only the two rules with antecedents (X̃12 , X̃22) and
(X̃12 , X̃23) are fired, and the lower bounds of both firing
intervals are 0; hence, from the KM algorithms

yl(x) =
.54 × 4.8 + 0 × 5.8

.54 + 0
= 4.8 (12)

yr (x) =
0 × 5.2 + .3 × 6.2

0 + .3
= 6.2 (13)

y(x) =
4.8 + 6.2

2
= 5.5. (14)

2) When x1 = 0.1 + δ and x2 = 0.4, the firing intervals of
the antecedents and rules are given in Table VIII. Observe
that only four rules are fired, and the lower bounds of all
firing intervals are again 0. Observe also that the minimum
y

k
for all fired rules is 4.8 in both Tables VII and VIII;

however, the maximum yk for all fired rules changes from
6.2 to 9.2. Therefore, according to Theorem 5, there must
be a jump discontinuity. Indeed

yl(x) =
(.54 − .6δ) × 4.8 + 0 × 5.8 + 0 × 7.8 + 0 × 8.8

.54 − .6δ + 0 + 0 + 0
= 4.8 (15)

yr (x) =
0 × 5.2 + 0 × 6.2 + 0 × 8.2 + δ/2.7 × 9.2

0 + 0 + 0 + δ/2.7

= 9.2 (16)

y(x) =
4.8 + 9.2

2
= 7. (17)

Therefore, y(x) jumps from 5.5 to 7 when x2 = 0.4 and x1
moves from 0.1 to 0.1 + δ. Other jump discontinuities can be
analyzed in a similar way.

IV. CONTINUITY OF IT2 FLSS: UNCERTAINTY BOUND

TYPE-REDUCTION AND CENTER-OF-SETS DEFUZZIFICATION

The uncertainty bound (UB) type-reducer, proposed by Wu
and Mendel [64], has also been widely used in fuzzy modeling
and control [20], [38], [39]. The continuity of IT2 FLS using
UB type-reduction and center-of-sets defuzzification is studied
in this section.

Using the structure and notations introduced in Section III-A,
the output of an IT2 FLS using UB type-reduction and center-
of-sets defuzzification is again computed by (3), but now

yl(x) =
y

l
(x) + yl(x)

2
(18)



186 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 19, NO. 1, FEBRUARY 2011

TABLE VII
FIRING INTERVALS OF THE IT2 FLSS SHOWN IN THE MIDDLE COLUMN OF FIG. 5 WHEN x1 = 0.1 AND x2 = 0.4

TABLE VIII
FIRING INTERVALS OF THE IT2 FLSS SHOWN IN THE MIDDLE COLUMN OF FIG. 5 WHEN x1 = 0.1 + δ AND x2 = 0.4

yr (x) =
y

r
(x) + yr (x)

2
(19)

where

yl(x) = min{y(0)(x), y(K )(x)} (20)

y
r
(x) = max{y(0)(x), y(K )(x)} (21)

y
l
(x) = yl(x) −

∑K
k=1(fk − f

k
)

∑K
k=1 fk

∑K
k=1 f

k

∑K
k=1 f

k
(y

k
− y

1
)
∑K

k=1 fk (y
K
− y

k
)

∑K
k=1 f

k
(y

k
− y1) +

∑K
k=1 fk (y

K
− y

k
)

(22)

yr (x) = y
r
(x) +

∑K
k=1(fk − f

k
)

∑K
k=1 fk

∑K
k=1 f

k

∑K
k=1 fk (yk − y1)

∑K
k=1 f

k
(yK − yk )

∑K
k=1 fk (yk − y1) +

∑K
k=1 f

k
(yK − yk )

(23)

in which

y(0)(x) =

∑K
k=1 f

k
y

k∑K
k=1 f

k

(24)

y(K )(x) =

∑K
k=1 fky

k∑K
k=1 fk

(25)

y(K )(x) =

∑K
k=1 f

k
yk∑K

k=1 f
k

(26)

y(0)(x) =
∑K

k=1 fkyk∑K
k=1 fk

. (27)

Theorem 7: The IT2 FLS using UB type-reduction and
center-of-sets defuzzification is continuous at c if and only if
maxn=1,2,...,Nm

μX m n
(cm ) > 0 for ∀cm , i.e., every cm is cov-

ered by some LMFs.
Theorem 8: The IT2 FLS using UB type-reduction and center-

of-sets defuzzification has a gap discontinuity at c if and only if
there exists cm such that maxn=1,2,...,Nm

μX m n
(cm ) = 0.

Observe from Theorems 7 and 8 that an IT2 FLS using UB
type-reduction and center-of-sets defuzzification cannot have

jump discontinuities because the conditions in Theorems 7 and
8 have covered all possible such IT2 FLSs.

Examples illustrating Theorems 7 and 8 are shown in
Fig. 5(c). Observe that the UB method more easily results in
gap discontinuities than the KM method. Additionally, observe
from the last columns of Fig. 5(b) and (c) that the gaps resulting
from the UB method are larger than those from the KM method
because the former are determined by the gaps of the LMFs,
whereas the latter are determined by the gaps of the UMFs.

V. CONTINUITY OF IT2 FUZZY LOGIC SYSTEMS WITH OTHER

TYPE-REDUCTION AND DEFUZZIFICATION METHODS

In this section, four other methods,2 which combine type-
reduction and defuzzification, are introduced, and the continu-
ities of the corresponding IT2 FLSs are investigated. All four of
these methods require y

k
= yk ≡ yk for ∀k = 1, 2, . . . ,K.

A. Wu–Tan (WT) Method

Wu and Tan [60] proposed a closed-form type-reduction
and defuzzification method by making use of the equivalent
T1 FSs [61]. The basic idea is to first find an equivalent T1
membership grade μXm n

(xm ) to replace each firing interval
[μX m n

(xm ), μX m n
(xm )], i.e.,

μXm n
(xm ) = μX m n

(xm )

− hmn (x)[μX m n
(xm ) − μX m n

(xm )] (28)

where hmn (x) is a function of the inputs and is different for
different IT2 FSs. Then, the firing strengths of the rules be-
come point (instead of interval) numbers computed from these
μXm n

(xm ), and the output of the IT2 FLS is then computed as

y(x) =
∑K

k=1 fkyk∑K
k=1 fk

. (29)

2There are several other methods [18], [19], [43], [45] which bypass type-
reduction; however, they require the rule consequents to be IT2 FSs so that the
union of the fired rule output sets can be computed and used, whereas our IT2
FLS structure defined in Section III-A only uses the centroids of the consequent
IT2 FSs. Because our structure is simpler and much more widely used in fuzzy
logic modeling and control, those methods proposed in [18], [19], [43], [45] are
not considered in this paper.
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Theorem 9: The IT2 FLS computed by the WT method is
continuous at c if and only if maxn=1,2,...,Nm

μX m n
(cm ) > 0

for ∀cm , i.e., every cm is covered by some UMFs.
Theorem 10: The IT2 FLS computed by the WT method has

a gap discontinuity at c if and only if there exists cm such
that maxn=1,2,...,Nm

μX m n
(cm ) = 0, i.e., at least one cm is not

covered by any UMF.
Note that an IT2 FLS computed by the WT method cannot

have jump discontinuities because the two conditions considered
in Theorems 9 and 10 have covered all possible such IT2 FLSs.

Examples illustrating Theorems 9 and 10 are shown in
Fig. 5(d). αmn = 0.5 is used in all examples. Observe that the
WT method is less easily to have discontinuities, and the input–
output mappings are generally less complex than those obtained
from the KM method.

B. Nie–Tan (NT) Method

Nie and Tan [44] proposed another closed-form type-
reduction and defuzzification method called NT method, where
the output of an IT2 FLS is computed as

y(x) =

∑K
k=1(fk

+ fk )yk∑K
k=1(fk

+ fk )
. (30)

Observe that the NT method is a special case of the WT method
when hmn (x) = 0.5. Therefore, it has the same properties as
the WT method. The following two theorems are, hence, given
without proofs:

Theorem 11: The IT2 FLS computed by the NT method is
continuous at c if and only if maxn=1,2,...,Nm

μX m n
(cm ) > 0

for ∀cm , i.e., every cm is covered by some UMFs.
Theorem 12: The IT2 FLS computed by the NT method has

a gap discontinuity at c if and only if there exist xm such
that maxn=1,2,...,Nm

μX m n
(cm ) = 0, i.e., at least one cm is not

covered by any UMF.
Note that an IT2 FLS computed by the NT method cannot

have jump discontinuities because the two conditions considered
in Theorems 11 and 12 have covered all possible such IT2 FLSs.

Examples illustrating Theorems 11 and 12 are shown in
Fig. 5(d). Again, observe that the NT method is less easily
to have discontinuities, and the input–output mappings are gen-
erally less complex than those obtained from the KM method.

C. Du–Ying (DY) Method

Du and Ying [13] proposed a closed-form type-reduction and
defuzzification method, which is referred to as the Du–Ying
(DY) method in this paper. It first computes the crisp outputs
obtained by all possible combinations of the lower and upper
firing levels, i.e.,

yi(x) =
∑K

k=1 f ∗
k yk∑K

k=1 f ∗
k

, i = 1, 2, . . . , 2K (31)

where f ∗
k ∈ {f

k
, fk}. The final defuzzified output is then com-

puted as the average of all these 2K yi(x), i.e.,

y(x) =
1

2K

2K∑
i=1

yi(x). (32)

Theorem 13: The IT2 FLS computed by the DY method is
continuous at c if and only if maxn=1,2,...,Nm

μX m n
(cm ) > 0

for ∀cm , i.e., every cm is covered by some LMFs.
Theorem 14: The IT2 FLS computed by the DY method has

a gap discontinuity at c if and only if there exist cm such that
maxn=1,2,...,Nm

μX m n
(cm ) = 0, i.e., at least one cm is not cov-

ered by any LMF.
Note that an IT2 FLS computed by the DY method cannot

have jump discontinuities, because the two conditions consid-
ered in Theorems 13 and 14 have covered all possible such IT2
FLSs.

Examples illustrating Theorems 13 and 14 are shown in
Fig. 5(e). Observe that the DY method is more easily to have gap
discontinuities than the KM method, and the gaps in the input–
output mappings are larger than those from the KM method.

D. Begian–Melek–Mendel (BMM) Method

Begian et al. [2] proposed another closed-form type-reduction
and defuzzification method for TSK IT2 FLSs, i.e.,

y(x) = m

∑K
k=1 f

k
yk∑K

k=1 f
k

+ n

∑K
k=1 fkyk∑K

k=1 fk

(33)

where m and n are adjustable coefficients.
Theorem 15: The IT2 FLS computed by the BMM method is

continuous at c if and only if maxn=1,2,...,Nm
μX m n

(cm ) > 0
for ∀cm , i.e., every cm is covered by some LMFs.

Theorem 16: The IT2 FLS computed by the BMM method
has a gap discontinuity at c if and only if there exist cm such
that maxn=1,2,...,Nm

μX m n
(cm ) = 0, i.e., at least one cm is not

covered by any LMF.
The proofs of Theorems 15 and 16 are very similar to those

of Theorems 13 and 14, and therefore, they are left to the reader
as an exercise.

Note that an IT2 FLS computed by the BMM method cannot
have jump discontinuities because the two conditions considered
in Theorems 15 and 16 have covered all possible such IT2 FLSs.

Examples illustrating Theorems 15 and 16 are shown in
Fig. 5(f). Observe that the DY method is more easily to have gap
discontinuities than the KM method, and the gaps in the input–
output mappings are larger than those from the KM method.

VI. SUMMARIZATION AND DISCUSSIONS

This section summarizes our results on the six type-reduction
and defuzzification methods for IT2 FLSs and proposes some
design guidelines and new research directions.

A. Summarization

Table IX summarizes the continuities of IT2 FLSs, con-
structed by the six different type-reduction and defuzzification
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TABLE IX
SUMMARIZATION OF THE CONTINUITIES OF SIX TYPE-REDUCTION AND DEFUZZIFICATION METHODS AT c

methods introduced in the previous three sections. Note that the
table only compares the continuities of different type-reduction
and defuzzification methods. It does not concern the perfor-
mance of these methods. As a verification of our results, we
find that no discontinuities of IT2 FLSs were observed in [2],
[20], [44], [60], [62], [63] because all their IT2 FLSs satis-
fied the conditions that maxn=1,2,...,Nm

μX m n
(xm ) > 0 and

maxn=1,2,...,Nm
μX m n

(xm ) > 0 for ∀xm .
Summarizing the results in the first column of Table IX,

and noting that Gaussian IT2 FSs always give
maxn=1,2,...,Nm

μX m n
(xm ) > 0 and maxn=1,2,...,Nm

μX m n

(xm ) > 0 for ∀xm , we have the following:
Theorem 17: All six type-reduction and defuzzification meth-

ods introduced in this paper always give continuous input–
output mappings when Gaussian IT2 FSs are used.

Again, Theorem 17 only concerns the continuity of IT2 FLSs
with Gaussian MFs; it does not imply that such IT2 FLSs would
have better performance than those with triangular or trapezoidal
MFs.

B. Guidelines for Designing Continuous IT2 FLSs

Based on all results introduced so far in this paper, particularly
those summarized in Table IX, we have the following guidelines
for practitioners who want to design continuous IT2 FLSs.

1) To guarantee a continuous input–output mapping regard-
less of which type-reduction and defuzzification method
is used, Gaussian IT2 FSs should be employed.

2) When triangular and/or trapezoidal IT2 FSs are used, to
guarantee a continuous input–output mapping, the LMFs
should cover every input domain. This implies that the
UMFs must also cover every input domain.

C. Smoothness and Monotonicity

As mentioned in Section I, continuity and smoothness are
different concepts, i.e., smoothness requires that the derivatives
of a function are also continuous. In this paper, we only con-
sidered the continuities of T1 and IT2 FLSs. One of our future
research directions is to investigate their smoothness. To the au-
thors’ best knowledge, Kreinovich et al. [30] are the only ones
to study the smoothness of T1 FLSs. They showed that T1 FLSs
with Gaussian MFs, product t-norm, and centroid defuzzifica-
tion are universal approximators for a smooth function, as well
as its derivatives, i.e., not only the smooth function is approxi-
mated by the T1 FLS, but its derivatives as well. Using Theorem
1, this is equivalent to saying that the T1 FLS is smooth. To date,
there have been no such results for IT2 FLSs.

Another interesting future direction is the monotonicity of
FLSs. Many applications of fuzzy logic modeling and control
require monotonicity of the output with respect to inputs, e.g., in
queuing systems [28], “the control actions concerning admis-
sion and routing of customers and allocation of resources de-
pend monotonically on the queue sizes and the customer arrival
rates [68],” and a fuzzy logic controller for an air conditioner
needs to increase the motor speed as the room temperature de-
viates more from the setpoint [69], etc. There have been several
papers on the monotonicity of T1 FLSs [6], [7], [28], [36], [54],
[55], [69]; however, there has been only one paper on the mono-
tonicity of IT2 FLSs by Li et al. [32]. Additionally, Li et al. only
considered single-input IT2 FLSs and only gave the sufficient
conditions for monotonic IT2 FLSs using the KM type-reducer.
To be more practical, more works need to be done on multi-input
IT2 FLSs and IT2 FLSs using other type-reducers.

D. Applications to Hybrid and Switched Systems

So far, in this paper, we have emphasized continuous FLSs,
because they are the most frequently used FLSs in practice;
however, discontinuous FLSs may also be very useful in hybrid
and switched systems [35], [48] modeling and control, which is
becoming increasingly popular recently due to the wide appli-
cations of computers and digital controllers.

Hybrid systems [4] are finite-state machines coupled with
controllers and plants modeled by differential or difference
equations. They arise whenever logical decision making is
mixed with the generation of continuous-valued control laws.
Switched systems are an important class of hybrid systems.
They consist of “a finite number of continuous-time subsystems
and a logical rule that orchestrates switching between them”
[48. p. 3]. Real-world examples of hybrid and switched systems
include systems with relays, switches, and hysteresis [49], [53],
computer disk drives [17], transmissions, stepper motors, and
other motion controllers [5], biological applications [16], etc.

FLSs have been extensively used in hybrid and switched sys-
tems modeling and control [1], [15], [33], [37], [46], [47];
however, to the authors best knowledge, all these approaches
consider each continuous-time subsystem separately. For ex-
ample, consider a simple room temperature control problem:
If the temperature is lower than 20 ◦C, then the heater is on;
otherwise, the heater is off. Clearly, the differential equations
representing the room temperature dynamics are different in the
two states (with or without heater). The traditional modeling
approach for switched systems would model the two discrete
states separately; however, an FLS may be designed to have
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a discontinuity at 20 ◦C to model the two discrete states by a
single FLS. This would simplify the model understanding and
representation. Exactly how to do this is still under investigation.

VII. CONCLUSION

In this paper, the continuities and discontinuities of T1 and
IT2 FLSs have been defined and investigated. Particularly,
six different type-reduction and defuzzification methods for
IT2 FLSs have been studied, which cover almost all practical
IT2 FLSs. Conditions under which an FLS gives a continu-
ous/discontinous input–output mapping were derived. Guide-
lines on designing continuous IT2 FLSs were also given. These
results should be very useful in traditional fuzzy logic model-
ing and control, where usually, a continuous input–output map-
ping is desired, and in hybrid and switched systems modeling
and control, where a discontinuous input–output mapping is
needed. To date, we believe this to be the most comprehensive
study on the continuity of T1 and IT2 FLSs. Our future research
includes the study of smoothness and monotonicity of T1 and
IT2 FLSs, as well as how to apply discontinuous FLSs to hybrid
and switched systems modeling and control.

APPENDIX A
PROOF OF THEOREM 1

Consider an arbitrary small number ε > 0 and an arbitrary
point c = (c1 , c2 , . . . , cM ) in the input domain of f(x). Because
g(x) is a continuous function of x, we can always find a δ1 > 0
such that when maxm |xm − cm | < δ1 , |g(x) − g(c)| < ε/3.
Since f(x) universally approximates g(x), we always have
|g(c) − f(c)| < ε/3 for ∀c, and we can find δ2 > 0 such
that |g(x) − f(c)| < ε/3 when maxm |xm − cm | < δ2 . Let
δ = min(δ1 , δ2). Then, when maxm |xm − cm | < δ

|f(x) − f(c)| = |f(x) − f(c) + g(x) − g(x) + g(c) − g(c)|
≤ |f(x)− g(x)|+ |g(c)− f(c)|+ |g(x)− g(c)|

< ε/3 + ε/3 + ε/3 = ε (34)

i.e., f(x) is continuous at c. Since c is an arbitrary point in the
input domain of f(x), f(x) must be continuous in its entire
input domain.

APPENDIX B
PROOF OF THEOREM 2

We need to prove that y(x) in (1) is continuous at c =
(c1 , c2 , . . . , cM ). The firing level of the kth rule fk is computed
by (2). Since each μXm , n m n

(xm ) is a continuous function of xm ,
and both product and minimum t-norms are continuous func-
tions, fk must be continuous at c. Consequently,

∑K
k=1 fkyk

and
∑K

k=1 fk are also continuous at c. As a result, y(x) in (1) is
continuous at c if and only if

∑K
k=1 fk �= 0, which holds if and

only if maxn=1,2,...,Nm
μXm n

(cm ) > 0 for ∀m = 1, 2, . . . M ,
i.e., every cm is covered by some continuous T1 FSs.

APPENDIX C
PROOF OF THEOREM 3

Following the same line of reasoning in the proof of
Theorem 2, y(x) in (1) has a gap discontinuity at c if and only
if

∑K
k=1 fk = 0, which holds if and only if there exists cm such

that maxn=1,2,...,Nm
μXm n

(cm ) = 0, i.e., cm is not covered by
any continuous T1 FS in its domain.

APPENDIX D
PROOF OF THEOREM 4

To show y(x) has a gap discontinuity at c is equivalent to
showing that at least one of yl(x) and yr (x) has a gap dis-
continuity at c, i.e., y(x) is undefined as long as at least one
of yl(x) and yr (x) is undefined. We will show that yl(x)
has a gap discontinuity at c if and only if ∃cm such that
maxn=1,2,...,Nm

μX m n
(cm ) = 0, i.e., there exist at least one

cm not covered by the UMFs. The condition is also true for
yr (x). Since its proof is very similar to that for yl(x), it is left
to the reader as an exercise.

Consider the sufficiency first. When ∃cm such that
maxn=1,2,...,Nm

μX m n
(cm ) = 0, all f

k
and fk , which is com-

puted by (8) and (9), equal 0; hence,
∑K

k=1 fk in the numerator
of (4) is always 0. Consequently, yl(x) is undefined at c, i.e.,
yl(x) has a gap discontinuity at c.

Next, consider the necessity. When maxn=1,2,...,Nm

μX m n
(cm ) > 0 for ∀m = 1, 2, . . . , M , there are K ′ ≥ 1 rules

whose fk > 0, and yl(x) is computed by (35), which is defined
in this case; therefore, yl(x) does not have a gap discontinuity
at c. Consequently, to have a gap discontinuity at c, there must
∃cm such that maxn=1,2,...,Nm

μX m n
(cm ) = 0.

APPENDIX E
PROOF OF THEOREM 5

A lemma on the sufficient condition of a continuous IT2 FLS
is given first. It will be used in the proof of Theorem 5.

Lemma 1: The IT2 FLS is continuous at c if maxn=1,2,...,Nm

μX m n
(cm ) > 0 for ∀m = 1, 2, . . . M , i.e., every cm is covered

by some continuous LMFs.
Proof: To prove y(x) defined in (3) is continuous at c, we

need to show that both yl(x) and yr (x) are continuous at c. We
only show that for yl(x). The proof for yr (x) is very similar
and, hence, is left to the reader as an exercise.

It has been shown in [14] and [41] that yl(x) can be written
as

yl(x) = min
k ′∈[1,K ′]

∑k ′

k=1 fky
k

+
∑K ′

k=k ′+1 f
k
y

k∑k ′

k=1 fk +
∑K ′

k=k ′+1 f
k

(35)

where K ′ is the number of fired rules, i.e., those rules
with fk > 0. Therefore, to show yl(x) is continuous at c,
we only need to show each (

∑k ′

k=1 fky
k

+
∑K ′

k=k ′+1 f
k
y

k
/∑k ′

k=1 fk +
∑K ′

k=k ′+1 f
k
) is continuous at c, because the min-

imum of several continuous functions is still continuous. When
maxn=1,2,...,Nm

μX m n
(cm ) > 0 for ∀m = 1, 2, . . . M , i.e., ev-

ery cm is covered by some continuous LMFs, all f
k

and fk
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are continuous at c, and hence,
∑k ′

k=1 fk +
∑K ′

k=k ′+1 f
k

> 0;
therefore, yl(x) is continuous at c. �

Next, we prove Theorem 5. Consider the sufficiency first.
When there exists an m such that maxn=1,2,...,Nm

μX m n
(cm ) =

0, all firing levels f
k

are zero for c. Consider yl(x) in
(35). Its minimum is achieved when k = 1, i.e., yl(x) = y

1
=

mink=1,...,K ′ y
k
.

When any cm ′ (m′ �= m) changes to cm ′ + δ, because
maxn=1,2,...,Nm

μX m n
(cm ) = 0, all firing levels f

k
are still

zero; hence, yl(x) still equals the minimum y
k

of all firing
rules. Clearly, if the minimum y

k
of all firing rules changes as

any cm ′ (m′ �= m) changes to cm ′ + δ, then there is a jump in
yl(x), and hence, the input–output mapping has a jump discon-
tinuity at c. Similarly, if the maximum yk of all firing rules
changes as any cm ′ (m′ �= m) changes to cm ′ + δ, then there
is a jump in yr (x), and hence, the input–output mapping has a
jump discontinuity at c.

Next, consider the necessity that y(c) can only have three
cases.

1) There exists cm such that maxn=1,2,...,Nm
μX m n

(cm ) =
0.

2) maxn=1,2,...,Nm
μX m n

(cm ) > 0 and maxn=1,2,...,Nm

μX m n
(cm ) > 0 for all cm .

3) maxn=1,2,...,Nm
μX m n

(cm ) > 0 for all cm , but there ex-
ists cm such that maxn=1,2,...,Nm

μX m n
(cm ) = 0.

The first case has a gap discontinuity at c, according to
Theorem 4. The second case is continuous at c, according to
Lemma 1. Then, a jump discontinuity can only happen in the
third case, as indicated by the first two criteria in Theorem 5.
When there exists cm such that maxn=1,2,...,Nm

μX m n
(cm ) =

0, the lower bounds of all fired rules are 0. In this case, yl(c)
equals the minimum y

k
of all fired rules, and yr (c) equals the

maximum yk of all fired rules. Therefore, if Criterion 3 of Theo-
rem 5 is not satisfied, then both yl(c) and yr (c) are not changed
when c changes; hence, there is no jump discontinuity at c. In
other words, to have a jump discontinuity at c, the minimum
y

k
and/or maximum yk of all fired rules must be different as c

changes.

APPENDIX F
PROOF OF THEOREM 7

Because μX m n
≥ μX m n

, maxn=1,2,...,Nm
μX m n

(cm ) > 0
for ∀cm implies that maxn=1,2,...,Nm

μX m n
(cm ) > 0 for ∀cm .

To prove that the input–output mapping of an IT2 FLS is con-
tinuous at c, we need to prove that both yl(x) and yr (x) are
continuous at c. The proof for yl(x) is given next. The proof for
yr (x) is very similar and is left to the reader as an exercise.

Observe from (24) that y(0)(x) is the output of a T1 FLS
constructed from all the LMFs, and from (25) that y(K )(x) is
the output of a T1 FLS constructed from all the UMFs. There-
fore, according to Theorem 2, both y(0)(x) and y(K )(x) are
continuous at c if and only if maxn=1,2,...,Nm

μX m n
(cm ) > 0

for ∀cm . Consequently, yl(x) is continuous at c if and only if
maxn=1,2,...,Nm

μX m n
(cm ) > 0 for ∀cm . Because the brack-

eted term in (22) is also a continuous function of f
k

and fk

(i.e., its derivatives with respect to f
k

and fk always exist) if
and only if maxn=1,2,...,Nm

μX m n
(cm ) > 0 for ∀cm , whereas

f
k

and fk are continuous at c, the bracketed term in (22) is also
continuous at c if and only if maxn=1,2,...,Nm

μX m n
(cm ) > 0

for ∀cm . Consequently, y
l
(x) is continuous at c if and only if

maxn=1,2,...,Nm
μX m n

(cm ) > 0 for ∀cm . As yl(x) is a contin-
uous function of y

l
(x) and yl(x), it is continuous at c if and

only if maxn=1,2,...,Nm
μX m n

(cm ) > 0 for ∀cm .

APPENDIX G
PROOF OF THEOREM 8

Consider sufficiency first. When there exists cm such that
maxn=1,2,...,Nm

μX m n
(cm ) = 0, all f

k
= 0, and hence, y(0)(x)

is undefined, i.e., there is a gap discontinuity at c.
The necessity of Theorem 8 can be easily seen from Theorem

7, i.e., when maxn=1,2,...,Nm
μX m n

(cm ) > 0 for ∀cm , y(x) is
continuous at c; therefore, to have a discontinuity, there must
exist cm such that maxn=1,2,...,Nm

μX m n
(cm ) = 0.

APPENDIX H
PROOF OF THEOREM 9

fk are always continuous at c because all μXm n
(xm )

in (28) are continuous. Therefore, y(x) is continuous at c
if and only if

∑K
k=1 fk > 0, which is true if and only if

maxn=1,2,...,Nm
μX m n

(cm ) > 0 for ∀cm .

APPENDIX I
PROOF OF THEOREM 10

y(x) in (29) has a gap discontinuity at c if and
only if it is undefined at c, which happens if and only
if

∑K
k=1 fk = 0.

∑K
k=1 fk = 0 happens if and only if

maxn=1,2,...,Nm
μX m n

(cm ) = 0 for certain cm . Theorem 10 is
hence proved.

APPENDIX J
PROOF OF THEOREM 13

f
k

and fk are continuous at c because all MFs are contin-
uous. Therefore, all yi(x) are continuous at c if and only if∑K

k=1 f
k

> 0 and
∑K

k=1 fk > 0, which are true if and only if
maxn=1,2,...,Nm

μX m n
(cm ) > 0 for ∀cm .

APPENDIX K
PROOF OF THEOREM 14

y(x) in (32) is undefined at c if and only if at least one yi(x)
is undefined, which can happen if and only if 3 ∑K

k=1 f
k

= 0,
which can happen if and only if f

k
= 0 for ∀k = 1, 2, . . . ,K.

The latter can happen only for c that contains cm such that
maxn=1,2,...,Nm

μX m n
(cm ) = 0.

3When
∑K

k=1 fk = 0, all yi (x) are undefined; however,
∑K

k=1 fk = 0

also implies
∑K

k=1 f
k

= 0 because f
k
≤ fk for ∀k = 1, 2, . . . , K .
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