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Abstract— As a new type of actuator, pneumatic artificial
muscle (PAM) possesses lots of superior characteristics, which
make it extensively used in the robotics field, especially in
rehabilitation engineering. But the complex dynamics such as
time-varying parameters and hysteresis make it difficult to
achieve high precision trajectory tracking control. In order
to achieve accurate tracking performance and enhance the
robustness of the controller, this paper proposes a nonlinear
disturbance observer based T-S fuzzy logic controller (NDOTS).
Based on the three-element model of PAM, T-S fuzzy modeling
is utilized to decompose the nonlinear model into a series of
linear models, which make it possible to use the linear system
control theory in the controller design. The MATLAB LMI
Toolbox is applied to get the feedback gains. A Lyapunov
candidate is designed to analyze the stability of the system. The
experimental results of attaching loads on the PAM validate the
proposed NDOTS controller.

Index Terms— Pneumatic Artificial Muscle(PAM), T-S Fuzzy
Logic Control, Nonlinear Disturbance Observer(NDO), Trajec-
tory Tracking Control.

I. INTRODUCTION

Pneumatic artificial muscle (PAM) is a new type of actu-
ator which is inspired by the natural tissue. Compared with
traditional hydraulic actuators and electronic motors, PAM
possesses lots of great virtues. Making use of the compressed
air, PAM is an ecological actuator which is better for the
environment. Besides, PAM is compliant for human use and
has a really high power to weight ratio. No mechanical
parts, low cost, and safety are also the advantages of PAM
[1]. Therefore, PAMs are increasingly used in many robotic
systems especially in rehabilitation engineering [2] where
safety and compliance are usually attached great importance.
However, in addition to many good advantages of being
used as robotic actuators mentioned above, the hysteresis
and the model coefficients varying with time make the
traditional control strategies cannot achieve high precision
accuracy. The extensive applications of PAMs are still facing
challenges.
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Till now, various classical controllers have been adopted
to achieve a high precision performance of PAMs [3], such
as PID controller [4], SMC controller [5], neural network-
based control [6] and fuzzy logic control [7]. The system
stability of using the PID controller cannot be theoretically
guaranteed, and the process of adjusting PID parameters is
time-consuming. During the control process, the control law
discontinuously crosses the sliding surface, so the SMC con-
troller suffers from the chattering problem. Neural network-
based controller can improve control performance by training
the weights in neural networks, but the process of getting the
optimal weights is also time-consuming.

As for fuzzy control, two main kinds of strategies are
usually used. One is the Mamdani-type fuzzy control. The
model-free Mamdani-type fuzzy controller is similar to the
PID which can not guarantee the stability theoretically.
Recently, interval type-2 (IT2) fuzzy sets are proposed. IT2
fuzzy sets which enhance the ability of the fuzzy system to
deal with uncertainties effectively improve the performance
of Mamdani-type controllers [8]. Besides, the selection of
membership functions and the design of the fuzzy rules of
the Mamdani-type fuzzy controller depends on the expert
experiences, which makes the subjectivity of controller so
strong that it’s not reliable and rigorous theoretically, and
lots of adjustments may be needed to modify the fuzzy
rules. Compared with the Mamdani-type fuzzy controller,
as a model-based control strategy, T-S fuzzy logic control
proposed by Takagi in 1985 has sufficient theoretical basis
[9] and its stability can be guaranteed through the direct
method of Lyapunov. Hitherto, T-S fuzzy logic control has
been extensively adopted in the robot control [10]. So T-S
fuzzy logic control is a favorable choice in the high precision
tracking control of PAMs.

However, the structure and parameters are completely
fixed once the membership functions and fuzzy rules are
chosen in T-S fuzzy logic control, which makes the control
performance hard to be further improved, especially when
there exited external disturbances and uncertainties of the
dynamic model. Here we put forward a nonlinear disturbance
observer [11] based T-S fuzzy logic controller (NDOTS) to
overcome the perturbations including the modeling errors
and the uncertainties of the model parameters to achieve
high precision control. Utilizing the proposed NDOTS, the
tracking performance of the single PAM system was effec-
tively improved compared to the T-S fuzzy logic control
(TS) without disturbance observer. Besides, the direct Lya-
punov method guarantees the stability of the system. The
LMI Toolbox of MATLAB 2013b is applied to simplify
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the process of getting the feedback gains of the control
law. Finally, the experimental results validated the proposed
NDOTS controller.

II. MODEL FORMULATION

The operating principle of a PAM is shown in Fig. 1.
When the volume of the PAM increases because of the
input of compressed air, the length of the PAM shortens,
and thus generating pull to lift the target load. In practical
applications, we can change the input pressure in the PAM
to make it move as a reference trajectory or produce a force
we need.

Fig. 1. The PAM operating diagram

Fig. 2. The three-element model diagram

Due to the extensive applications of PAMs, since the PAM
was invented, extensive research of the mathematical models
of PAMs has been done so far. As shown in Fig. 2, the three-
element model introduced by D.Reynolds [12] is adopted to
describe the variety and complex dynamics of the PAM. The
equations describing the dynamic characteristics of PAMs
are as follow

mÿ+Bẏ+Ky = F −Mg (1)

K = K0 +K1 p (2)

B = B10 +B11 p (in f lation) (3)

B = B20 +B21 p (de f lation) (4)

F = F0 +F1 p (5)

with M is the mass of loads. y is the displacement of the
PMA. g is the acceleration of gravity. p is the inside air
pressure of PAM. B denotes the damping coefficient and K
indicates the spring coefficient. F is the pull exerted by the
PAM. It’s worth noting that damping coefficient B is related
to the state of PAM, deflation or inflation, and there is a
critical point p0 where the equation of spring coefficient K
will change.

K = K10 +K11 p (p > p0) (6)

K = K20 +K21 p (p < p0) (7)

III. CONTROL STRATEGIES

A. A SWITCH MODEL OF PAM WITH DISTURBANCES

In practical applications, the modeling errors and the
parameter uncertainties inevitably deteriorate the control
performance of PAMs. Here we introduce a disturbance term
d to the dynamic model of the PAM. The equation describing
the dynamics of PAMs with disturbances is⎧⎪⎪⎪⎨

⎪⎪⎪⎩

.
x1(t) = x2(t)
.
x2(t) =−K0

M
x1 − B0

M
x2 +(

F1

M
− B1x2

M

− K1x1

M
)u+(

F0

M
−g+d)

(8)

where x1 = y and x2 = ẏ and u = p is the control input.
The state space representation of the dynamic model above

is [
ẋ1
ẋ2

]
=

[
0 1

−K0
M −B0

M

][
x1
x2

]
+

[
0

f (x1,x2)

]
u+

[
0
η

]
(9)

η =
F0

M
−g+d

f (x1,x2) =
F1

M
− B1x2

M
− K1x1

M

(10)

The corresponding matrix form of (8)-(10) is

Ẋ = AX +Bu+C (11)

where

A =

[
0 1

−K0
M −B0

M

]
,B =

[
0

f (x1,x2)

]
,C =

[
0
η

]

Because of the time-varying characteristics of PAM de-
scribed in (3)-(4) and (6)-(7), here we propose a switch
model of PAMs

Ẋ = AiX +Biu+C i = 1,2,3,4. (12)

A1 =

[
0 1

−K10
M −B10

M

]
,B1 =

[
0

−F1
M − B11x2

M − K11x1
M

]
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A2 =

[
0 1

−K20
M −B10

M

]
,B2 =

[
0

−F1
M − B11x2

M − K21x1
M

]

A3 =

[
0 1

−K10
M −B20

M

]
,B3 =

[
0

−F1
M − B21x2

M − K11x1
M

]

A4 =

[
0 1

−K20
M −B20

M

]
,B4 =

[
0

−F1
M − B21x2

M − K21x1
M

]

where Ai and C are constant matrices. f (x1,x2) in input
matrix Bi is a nonlinear function of state variables x1 and
x2. The PAM system switch between the four subsystems
above according to the state of PAM (inflation or deflation,
inner air pressure is big or small).

B. T-S FUZZY LOGIC CONTROLLER DESIGN

A typical T-S fuzzy system can be expressed as

Rule r :
IF q1(t) is I1r, q2(t) is I2r · · ·and qh(t) is Ihr

T HEN Ẋ = ArX +Bru r = 1,2 · · ·α
(13)

where qh(t) is the premise variables. Ihr denotes fuzzy sets.
α denotes the number of rules.

Three Gaussian membership functions are selected here.
The T-S fuzzy model with three rules of the ith subsystem
of the PAM is

Ẋ =
3

∑
γ=1

wiγ(Aiγ X +Biγ u+C) (14)

where wiγ is the membership degree of the i th subsystem,
and ∑3

γ=1 wiγ = 1.

Ai1 = Ai2 = Ai3

Bi1 =

[
0

fmin

]
,Bi2 =

[
0

( fmax− fmin)
2

]
,Bi3 =

[
0

fmax

]

where fmin is the minimum value of f (x1,x2) and fmax
denotes the maximum value. Because the reference signal has
been set in advance and the coefficients of the PAM model
are known beforehand through the system identification,
the normal range of f (x1,x2) during the process of PAM
operating can be estimated.

The reference signal Xr =

[
xr
ẋr

]
, and the error can be

expressed as
E = Xr −X (15)

The error system for each subsystem is constructed as

Ė =
3

∑
γ=1

wiγ(Aiγ E +Biγ λi) (16)

where λi is the corresponding control input of the i th error
system. And we rewrite the system (14) here

Ẋ =
3

∑
γ=1

wiγ(Aiγ X +Biγ u+C) (17)

Substituting (15) and (17) into (16), we can get the
following relationship between u and λi

3

∑
γ=1

wiγ Biγ u = Ẋr −
3

∑
γ=1

wiγ Aiγ Xr −
3

∑
γ=1

wiγ Biγ λi −C (18)

The control input λi is

λi =−
3

∑
k=1

wikHikE (19)

where the feedback gains Hk are calculated through Parallel
distributed compensation (PDC) method proposed in [9].
Finally, substituting (19) into (18) and letting d = 0 in (18),
we can get the T-S fuzzy logic control signal u of PAM.

C. NONLINEAR DISTURBANCE OBSERVER BASED T-S
FUZZY LOGIC CONTROL

To estimate the disturbances d, a nonlinear disturbance
observer (NDO) d̂ is introduced here. Rewrite the PAM
system[

ẋ1
ẋ2

]
=

[
0 1

−K0
M −B0

M

][
x1
x2

]
+

[
0

f (x1,x2)

]
u+

[
0
η

]
(20)

η =
F0

M
−g+d

f (x1,x2) =
F1

M
− B1x2

M
− K1x1

M

(21)

In the form of vector, the PAM system can be represented
as

Ẋ = F(X)+Φ1(X)u+Φ2(X)d (22)

with

F(X) =

[
ẋ2

a(x1,x2)

]
,Φ1(X) =

[
0

b(x1,x2)

]
,Φ2(X) =

[
0
1

]

⎧⎪⎨
⎪⎩

a(x1,x2) =−K0x1

M
− B0x2

M
+

F0

M
−g (23)

b(x1,x2) =
F1
M

− B1x2

M
− K1x1

M
(24)

Based on the idea of adjusting the estimate of disturbance
according to the difference between the estimate disturbance
and actual disturbance, the disturbance observer was con-
structed as⎧⎪⎪⎨

⎪⎪⎩

d̂ = z+ p(X) (25)
ż = L(−F(X)−Φ1(X)u−Φ2(X)d̂) (26)

L =
∂ p(X)

∂X
(27)

where d̂ is the estimate of the actual disturbance term d, L
is the constant disturbance observer matrix and L = [c1 c2].
And d̃ = d− d̂ is the error between the estimate disturbance
d̂ and the actual disturbance d, which would be used in the
later proof.

Finally, substituting this estimate disturbance d̂ above into
(19), we can obtain the disturbance observer based T-S fuzzy
logic control signal.
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Theorem 1: The stability of the system can be guaranteed
if we choose appropriate positive definite symmetry P, state
feedback gains matrix Hik and coefficients of nonlinear
disturbance observer constant matrix L = [c1 c2] which
satisfy the following inequalities:⎧⎨

⎩
Q > 0 (28)
QAT

iγ +Aiγ Q+GT
ikBT

iγ +Biγ Gik < 0 (29)
c2 > 0 (30)

where P = Q−1 and Hik =−GikQ−1.
Proof: To guarantee the stability of (16), here we

choose the following Lyapunov candidate:

V = ET PE +
1
2

d̃2 > 0 (31)

The derivative of V can be expressed as

V̇ = ĖT PE +ET PĖ + d̃ ˙̃d

=
7

∑
γ=1

7

∑
k=1

wiγ wγk(ET ((Aiγ −Biγ Hik)
T P

+P(Aiγ −Biγ Hik))E)+ d̃ ˙̃d

(32)

For the error term d̃ of disturbance observer, take the
derivative of the d̂ in (25) with the respect of time and
substitute (26) and (27) into it, we can get

˙̂d = L(−F(X)−Φ1(X)u−Φ2(X)d̂)+LẊ (33)

Then, substituting Eq.(22) into Eq.(33), we have

˙̂d = LΦ2(X)(d − d̂) (34)

Here we assume that the disturbance d change slowly with
time, and thus, ḋ = 0. So we can obtain

˙̂d =− ˙̃d (35)

Substitute (35) into (34), a differential equation of error d̃
can be obtained

˙̃d +LΦ2(X)d̃ = 0 (36)

And substituting L and Φ2, we have

˙̃d + c2d̃ = 0 (37)

Substituting (37) into (32), we get

V̇ = ĖT PE +ET PĖ + d̃ ˙̃d

=
7

∑
γ=1

7

∑
k=1

wiγ wγk(ET ((Aiγ −Biγ Hik)
T P

+P(Aiγ −Biγ Hik))E)− c2d̃2

(38)

The system is asymptotically stable if we can find a
positive definite matrix P, an appropriate matrix Hik, and
a constant c2 such that⎧⎨

⎩
P > 0 (39)
(Aiγ −Biγ Hik)

T P+P(Aiγ −Biγ Hik)< 0 (40)
c2 > 0 (41)

However, the inequalities (40) are not the standard LMI
forms which are able to be directly solved by the LMI
Toolbox. Here we define

Q = P−1 (42)

Substituting (42) into (40), we get

QAT
iγ −QHT

ik BT
iγ +Aiγ Q−Biγ HikQ < 0 (43)

Let:
−HikQ = Gik (44)

Then (29) can be transformed into a standard LMI form

QAT
iγ +Aiγ Q+GT

ikBT
iγ +Biγ Gik < 0 (45)

In summary, we can obtain the following inequalities for
the system stability⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Q > 0 (46)
QAT

iγ +Aiγ Q+GT
ikBT

iγ +Biγ Gik < 0 (47)

P = Q−1 (48)
Hik =−GikQ−1 (49)
c2 > 0 (50)

Adopting the LMI Toolbox of Matlab, the inequalities
above can be easily solved.

IV. EXPERIMENTAL RESULTS

Fig. 3. The Experiment Platform

An experiment is implemented in the real-world PAM
platform shown in Fig. 3. The sampling time is 0.0001s.
Based on the previous work of [9], the coefficients of PAM
used in this experiment are identified in the same way. Table I
lists the model coefficients of PAM and the critical point
P0 = 325420Pa. Here we choose the following reference
trajectory

Xr = 0.0125−0.0125cos(0.5πt) (51)
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TABLE I
THE COEFFICIENTS OF THE PAM

Parameter Value(Unit) Parameter Value(Unit)

F0 -202.32(N) F1 0.007(N/Pa)

K10 17845(N/m) K11 0.011(N/m Pa)

K20 77548(N/m) K21 -0.206(N/m Pa)

B10 1546(N s/m) B11 0.067(N s/m Pa)

B20 15424(N s/m) B21 0.0040(N s/m Pa)

Substituting the model coefficients into (10)-(11), using L-
MI Toolbox of MATLAB, we can get the feedback gains Hik
of four subsystems shown in Table II and III. The constant
nonlinear disturbance observer matrix is: L = [−5000 0.003].
And the positive symmetric matrix of each subsystem are

P1 =

⎡
⎣4981.94 431.57

431.57 37.67

⎤
⎦ ,P2 =

⎡
⎣638.73 12.73

12.73 0.26

⎤
⎦

P3 =

⎡
⎣1672.39 1445.42

1445.42 1249.42

⎤
⎦ ,P4 =

⎡
⎣10672.18 2122.62

2122.62 422.32

⎤
⎦

TABLE II
STATE FEEDBACK GAINS Hik , i = 1,2

Hik i=1 2

k=1 [-7894.08 -683.86] [-5823.10 -116.08]

2 [-7894.08 -683.86] [-5823.10 -116.08]

3 [-7894.08 -683.86] [-5823.10 -116.08]

TABLE III
STATE FEEDBACK GAINS Hik , i = 3,4

Hik i=3 4

k=1 [-79712.66 -68896.80] [-94369.74 -18769.63]

2 [-79712.66 -68896.80] [-94369.74 -18769.63]

3 [-79712.66 -68896.800] [-94369.74 -18769.63]

To evaluate the control performance of the proposed
nonlinear disturbance observer based T-S fuzzy logic control
(NDOTS), in the experiment, we compared the trajectory
tracking results of the traditional PID controller, T-S fuzzy
logic controller (TS) without disturbance observer and N-
DOTS. Besides, to further test the robustness of control
strategies, 2.5kg loads were attached to the PAM.

Fig. 4 shows the trajectory tracking performances of PAM
without load and the corresponding errors are presented in
fig. 5. From fig. 5, we can easily find that in the case of PAM
without load, the control performances of PID and nonlinear
disturbance observer based T-S fuzzy logic control (NDOTS)
are similar. The maximum absolute error of PID is 0.83mm,
and that of NDOTS is 0.74mm. The maximum absolute error
of T-S fuzzy logic control (TS) is 1.18mm, which is larger
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Fig. 4. Trajectory tracking results of PAM without load.
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Fig. 5. Tracking errors of PAM without load.

than that of NDOTS and PID. Experimental results turn out
that the proposed NDOTS strategy can achieve the highest
tracking precision.

As a model-free controller, no model coefficients of PAM
need to be concerned in the PID controller, so using trial-
and-error, the tracking performance of PID can be adjusted
to a high precision level. The parameters used in the PID
controller are P = 1.0e + 7, I = 2.1e + 8 and D = 1.0e +
3. For TS and NDOTS, in the practical experiments, the
three elements model of PAM and its coefficients are not
completely accurate, so T-S fuzzy logic can not characterize
the dynamics of PAM accurately. Therefore, the control
performance of TS would be influenced inevitably. In this
paper, NDOTS introduces the nonlinear disturbance observer
(NDO) into T-S fuzzy logic control. The model inaccuracy
and uncertainty are largely compensated by the NDO, and
thus, the performance of NDOTS is the best.
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Fig. 6. Trajectory tracking results of PAM with a 2.5kg load.

Fig. 6 shows the control performance of the three control
strategies with 2.5kg loads. Fig. 7 is the corresponding
tracking errors. We can find that the control performance
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Fig. 7. Tracking errors of PAM with a 2.5kg load.

of PID deteriorates a lot when attaching loads on the PAM.
The external disturbance can largely influence the PID con-
troller. The maximum absolute error of PID is up to 7.4mm.
However, the control performance of TS and NDOTS can
still keep at a high level of precision, and the NDOTS has
the smallest maximum absolute errors, 1.88mm with 2.5kg
loads.

V. CONCLUSIONS

This paper proposes a novel nonlinear disturbance ob-
server based T-S fuzzy logic control strategy (NDOTS) for
the single PAM system. To eliminate the effect of the time
variant dynamics of PAM, we introduce a switch model first.
The nonlinear PAM model is linearized by means of T-S
fuzzy modeling so that we can use the parallel distributed
compensation (PDC) method, a linear control theory based
approach get the control input. LMI Toolbox is used to
quickly solve the control gains. To compensate for the
modeling errors and its coefficients uncertainties, a nonlinear
disturbance observer is introduced to the T-S fuzzy logic
controller. Besides, a Lyapunov candidate is designed and we
analyze the system stability. Finally, the experimental results
validate the high control precision and better robustness of
the proposed NDOTS.
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