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ABSTRACT Time-lapse is a technology used to record the development of embryos during in-vitro
fertilization (IVF). Accurate classification of embryo early development stages can provide embryologists
valuable information for assessing the embryo quality, and hence is critical to the success of IVF. This paper
proposes a multi-task deep learning with dynamic programming (MTDL-DP) approach for this purpose.
It first uses MTDL to pre-classify each frame in the time-lapse video to an embryo development stage, and
then DP to optimize the stage sequence so that the stage number is monotonically non-decreasing, which
usually holds in practice. Different MTDL frameworks, e.g., one-to-many, many-to-one, and many-to-many,
are investigated. It is shown that the one-to-many MTDL framework achieved the best compromise between
performance and computational cost. To our knowledge, this is the first study that applies MTDL to embryo
early development stage classification from time-lapse videos.

INDEX TERMS Multi-task learning, in-vitro fertilization, convolutional neural networks, dynamic
programming, image classification.

I. INTRODUCTION
In-vitro fertilization (IVF) [1]–[3] is a frequently used tech-
nology for treating infertility. The process involves the collec-
tion of multiple follicles for fertilization and in-vitro culture.
Cultivation, selection and transplantation of embryo are the
key steps in determining a successful implantation during
IVF [4], [5]. During the development of embryos, the mor-
phological characteristics [6] and kinetic characteristics [7]
are highly correlated with the outcome of transplantation.

Time-lapse videos have been widely used in various
reproductive medicine centers during the cultivation of
embryos [8] to monitor them. A time-lapse video records
the embryonic development process in real time by taking
photos of the embryos at short time intervals [9]. Thus, a large
amount of time series image data for each embryo are pro-
duced in this process. At the final stage of embryo selection,
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an embryologist reviews the entire embryo development
process to score and sort them. Studies with different time-
lapse equipment reported improved prediction accuracy of
embryo implantation potential by analyzing the morphoki-
netics of human embryos at early cleavage stages [8]–[12].
These features have been shown to be statistically significant
to the final outcome of the transplantation [7].

There have been only a few approaches to analyze time-
lapse image data [9], [13]–[18]. Due to the limitations of the
time-lapse technology, stereoscopic cells of different heights
overlap in the images when photographed. It is difficult for
even an experienced embryologist to accurately count the
number of cells in a single time-lapse image when there are
more than eight cells. Therefore, most research focused on
the early development stages of embryos. Wong et al. [9]
identified several key parameters that can predict blasto-
cyst formation at the 4-cell stage from time-lapse images,
and employed sequential Monte Carlo based probabilistic
model estimation to monitor these parameters and track
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the cells. Wang et al. [13] presented a multi-level embryo
stage classification approach, by using both hand-crafted
and automatically learned embryo features to identify the
number of cells in a time-lapse video. Conaghan et al. [14]
used an automated and proprietary image analysis soft-
ware EEVATM (Early Embryo Viability Assessment), which
exhibited high image contrast through the use of darkfield
illumination, to track cell divisions from one-cell stage to
four-cell stage. Their experiments verified that the EEVA
Test can significantly improve embryologists’ ability to iden-
tify embryos that would develop into usable blastocysts.
There are also several other studies on embryo selection
by using EEVATM [19]–[22], but they did not provide the
details of the used EEVA Test. Jonaitis et al. [15] com-
pared the performance of neural network, support vector
machine and nearest neighbor classifier in detecting cell
division time. Khan et al. [18] used a deep convolutional
neural network (CNN) to classify the number of cells, and
also semantic segmentation to extract the cell regions in a
time-lapse image [16]. Ng et al. [17] combined late fusion
networks with dynamic programming (DP) to predict differ-
ent cell development stages and obtained better results than a
single-frame model.

Multi-task learning has been successfully used in many
applications, such as natural language processing [23],
speech recognition [24], and computer vision [25]. Its basic
idea is to share representations among related tasks, so that
each trained model may have better generalization abil-
ity [26]. This paper proposes a multi-task deep learning
with dynamic programming (MTDL-DP) approach, which
first uses MTDL to pre-classify each frame in the time-
lapse video to an embryo development stage, and then DP
to optimize the stage sequence so that the stage number is
monotonically non-decreasing, which usually holds in prac-
tice. To our knowledge, this is the first study that applies
MTDL to embryo early development stage classification
from time-lapse videos.

The remainder of this paper is organized as follows:
Section II introduces four classification frameworks for time-
lapse video analysis. Section III proposes our MTDL-DP
approach. Section IV presents the experimental results.
Finally, Section V draws conclusion.

II. CLASSIFICATION FRAMEWORKS
This section introduces four frameworks for embryo early
development stage classification from time-lapse videos.
We first describe our dataset and the baseline network archi-
tecture, and then extend it to many-to-one, one-to-many and
many-to-manyMTDL frameworks.

A. DATASET
The time-lapse video dataset used in our experiments came
from the Reproductive Medicine Center of Tongji Hospital,
Huazhong University of Science and Technology, Wuhan,
China. It consisted of 170 time-lapse videos extracted from
incubators, using an EmbryoScope+ time-lapse microscope

system1 at 10-minute sampling interval. Each frame in the
video is a grayscale 800 × 800 image with a well number
in the lower left corner and a time marker after fertilization
in the lower right corner, as shown in Fig. 1. The embryo
is surrounded by some granulosa cells in the microscope
field. The scale bar in the upper right corner indicates the
size of the cells. Each video began about 0-2 hours after
fertilization, and ended about 140 hours after fertilization.
We only used the first N = 350 frames in each video, which
were manually labeled for the embryo development stages.
Therefore, we had a total of 170 × 350 = 59, 500 labeled
frames in the experiment.

As in [17], we focused on the first six embryo development
stages, which included initialization (tStart), the appearance
and breakdown of the male and female pronucleus (tPNf),
and the appearance of 2 through 4+ cells (t2, t3, t4, t4+).
We counted the number of images in different embryo devel-
opment stages in the dataset, and show the summary in Fig. 2.
Note that t3 was rarely observed in our dataset.

B. THE BASELINE ONE-TO-ONE CLASSIFICATION
FRAMEWORK
Let xn be the nth frame in a time-lapse video. For image
classification, a standard one-to-one classification framework
learns a mapping:

f0 : xn 7→ yn ∈ L (1)

where yn is the stage label of xn, and L the label set of the
embryo development stages.

When information of the previous and future frames is
used, the standard one-to-one classification framework can
be extended to many-to-one, one-to-many and many-to-many
MTDL frameworks, as illustrated in Fig. 3.

We used ResNet [27], which won the 2015 ImageNet clas-
sification competition, to process individual video frames.
Table 1 shows our baseline ResNet50model. The input image
had three channels (RGB), each with 224×224 pixels (the
800×800 images were resized). The model was initialized
from the ResNet weights pre-trained on ImageNet [28],
which can help reduce overfitting on small datasets.

C. THE MANY-TO-ONE MTDL FRAMEWORK
The many-to-one MTDL framework, shown in Fig. 3(b),
is frequently used in video understanding [29]–[31] because
multiple frames in the same video usually have the same
label, and hence they can be considered together to predict the
final label.Many-to-one can better make use of input context
information than one-to-one.
Many-to-one performs the following mapping:

f1 : (xn−τ , . . . , xn, . . . , xn+τ ) 7→ yn ∈ L, (2)

where τ is the number of neighboring frames before and after
the current frame (the input context window size is hence
2τ + 1).

1https://www.vitrolife.com/products/time-lapse-systems/
embryoscopeplus-time-lapse-system/
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FIGURE 1. Sample frames from a time-lapse video. (a) 1-cell stage; (b) 2-cell stage; (c) 4-cell stage; (d) 4+-cell stage.

FIGURE 2. Percentage of frames in different embryo development stages.

There are two common approaches to fuse time domain
information from the 2τ + 1 frames: Conv Pooling [32] and
Late Fusion [30].

1) CONV POOLING
This is a convolutional temporal feature pooling architecture,
which has been extensively used for video classification,
especially for bag-of-words representations [33]. Image fea-
tures are computed for each frame and then max pooled. The
pooling features can then be sent to fully connected layers for
final classification. Amajor advantage of this approach is that
spatial information in multiple frames, output by the convolu-
tional layers, is preserved through a max pooling operation in
the time domain. Experiments [32] verified that Conv Pooling
outperformed all other feature pooling approaches on the
Sports-1M dataset, using a 120-frame AlexNet model [34].

2) LATE FUSION
In Late Fusion, all frames in the input context window are
encoded via identical ConvNets. The final representations
after all convolutional layers are concatenated and passed
through a fully-connected layer to generate classifications.
The concatenation can happen to a subset of frames in
the input context window [30], or to all frames in that
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FIGURE 3. Different classification frameworks. (a) One-to-one. (b) Many-to-one. (c) One-to-many. (d) Many-to-many. The
convolutional layers are denoted by ‘C’. Blue and red rectangles denote the flatten layer and the max-pooling layer,
respectively. Orange rectangles denote the fully connected and softmax layers.

TABLE 1. The baseline ResNet50 model.

window [17]. Previous research [17] demonstrated that Late
Fusion ConvNets using 15 frames and a DP-based decoder
outperformed Early Fusion for predicting embryo morphoki-
netics in time-lapse videos.

FIGURE 4. Hard parameter sharing for MTDL.

D. THE ONE-TO-MANY MTDL FRAMEWORK
One-to-many, shown in Fig. 3(c), means each input is mapped
to multiple outputs, which is also called multi-task nets [35]
in deep learning. This paper uses hard parameter sharing of
hidden layers [26], as illustrated in Fig. 4. The parameters of
the convolution layers are shared among different tasks, but
those of the fully connected layers are trained separately.

In one-to-many, each xn is used in classifying 2τ + 1
stages centered at n, i.e., it learns the following one-to-many
mapping:

f2 : xn 7→ (yn−τ , . . . , yn+τ ) ∈ L2τ+1. (3)
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FIGURE 5. Ensemble of the multi-task net’s predictions at frame index n, made by neighboring frames xt , t ∈ [n− τ,n+ τ ].

xn’s classification for the stage at time index t ∈ [n−τ, n+τ ]
is a probability vector p̂t (xn) ∈ R|L|×1.
At each Frame Index n, the corresponding label is esti-

mated by 2τ + 1 neighboring xt , t ∈ [n− τ, n+ τ ]. We need
to aggregate them to obtain the final classification. This can
be done by an ensemble approach.

Because each frame xn is involved in 2τ + 1 outputs,
the total loss on a training frame xn is computed as the sum
of the loss on all involved outputs:

`(xn) =
n+τ∑
t=n−τ

wt · `(yt , p̂t (xn)), (4)

where wt is the weight for the t-th output, and yt is the true
label for Frame t . wt = 1 and the cross-entropy loss were
used in this paper. The cross-entropy loss on the t-th output
can be written as follows:

`(yt , p̂t (xn)) = − log (p̂t,yt (xn)), (5)

where p̂t,yt (xn) is the yt -th element of p̂t (xn).

E. THE MANY-TO-MANY MTDL FRAMEWORK
Many-to-many can be viewed as a combination of one-to-
many and many-to-one. Each input frame is processed by
a separate CNN. Late Fusion was used, and the parameters
of the fully connected layers were also trained separately,
as shown in Fig. 3(d).

III. MULTI-TASK DEEP LEARNING WITH DYNAMIC
PROGRAMMING (MTDL-DP)
This section introduces our proposed MTDL-DP approach.

A. ENSEMBLE LEARNING FOR MTDL
As mentioned in Section II-D, a multi-task net has multiple
outputs. The easiest approach to get the final classification
corresponding to a specific frame is to choose the middle

output of the network. A more sophisticated approach is
ensemble learning [36].We consider two common probabilis-
tic aggregation approaches in this paper: additive mean and
multiplicative mean.

Let p̂n(xt ) be the predicted probability vector at Frame
Index n, given Frame xt , t ∈ [n − τ, n + τ ], as illustrated
in Fig. 5. The ensemble probability p̂n at Frame Index n,
aggregated by the additive mean, is:

p̂n =
1

2τ + 1

n+τ∑
t=n−τ

p̂n(xt ), (6)

If the multiplicative mean is used,

p̂n =
1

2τ + 1

n+τ∏
t=n−τ

p̂n(xt ). (7)

Since each p̂n(xt ) is a vector, the summation in (6) and
multiplication in (7) are element-wise operations.

The final classification label ŷn for Frame xn is obtained by
probability maximization:

ŷn = argmax
1≤l≤|L|

p̂n,l, (8)

where p̂n,l is the l-th element of p̂n.

B. POST-PROCESSING WITH DP
The number of cells in the development of an embryo is
almost always non-decreasing [37]. However, this is not guar-
anteed in the classification outputs of MTDL. We use DP to
adjust the classifications so that this constraint is satisfied.

For each video, the groundtruth stages {yn}Nn=1 form
a sequence. MTDL outputs a probability vector p̂n =
[pn,1, ..., pn,|L|]T before likelihood maximization at Frame n,
where p̂n,l is the estimated probability that Frame n is at
Stage l. We define E(ŷ, P̂) as the total loss for an estimated
prediction ŷ = {ŷn}Nn=1, given the model output probability
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matrix P̂ = [p̂1, ..., p̂N ]. The total loss is the sum of the
per-frame losses

∑N
n=1 e(ŷn, p̂n), which must be optimized

subject to the monotonicity constraint: ŷn+1 ≥ ŷn, ∀n.
Two common per-frame losses [17] were used. The first is

negative label likelihood (LL), defined as:

eLL(ŷn, p̂n) = − log (p̂n,yn ). (9)

The second is earth mover (EM) distance, defined as:

eEM (ŷn, p̂n) = −
|L|∑
l=1

p̂n,l |ŷn − l|, (10)

The final classification stage sequence ŷ∗ = {ŷn}Nn=1 can
be obtained as:

ŷ∗ = argmin
ŷ={ŷn}Nn=1

N∑
n=1

e(ŷn, p̂n)

s.t. ŷn+1 ≥ ŷn, ∀n. (11)

which can be easily solved by DP, as shown in Algorithm 1.

Algorithm 1 Pseudocode of dynamic programming (DP).

Input: N , the number of frames in a time-lapse video;
L, label set of embryo development stages;
P̂ = [p̂1, ..., p̂N ] ∈ R|L|×N , the MTDL model output
probability matrix for the N frames.
Output: ŷ∗, the optimized stage sequence.
Set e(l, p̂n) = 0 and E(l, p̂n) = 0, ∀l ∈ [1, |L|],
∀n ∈ [1,N ];
for n = 1, ...,N do

for ŷ = 1, ..., |L| do
Compute e(ŷ, p̂n) in (10);

end
end
for n = 2, ...,N do

for ŷ = 1, ..., |L| do
E(ŷ, p̂n) = e(ŷ, p̂n)+ min

1≤l≤ŷ
E(l, p̂n−1);

end
end
k = |L|;
for n = N , ..., 1 do

ŷn = argmin
16l6k

E(l, p̂n);

if ŷn < k then
k = ŷn;

end
end
ŷ∗ = {ŷn}Nn=1;
Return The optimized stage sequence ŷ∗.

C. MTDL-DP
Our proposed MTDL-DP consists of three steps: 1) con-
struct a multi-task net with the one-to-many ormany-to-many
MTDL framework; 2) use multiplicative mean to aggregate

the prediction of the multi-task net; and, 3) post-process with
DP using the EM distance per-frame loss. Its pseudocode is
given in Algorithm 2.

Algorithm 2 MTDL-DP

Input: N , the number of frames in a time-lapse video;
D, set of labeled time-lapse videos;
{xn}Nn=1, frames to be labeled;
τ , the number of left and right neighboring frames in the
context window.
Output: ŷ∗, the labeled stage sequence.
Use the one-to-one framework to train a baseline model
f0 from D;
Initialize an MTDL model, whose convolution layer
parameters are identical to f0;
Fine-tune the fully connected layer parameters of the
MTDL model on D;
for n = 1, ...,N do

Use the MTDL model to compute p̂t (xn),
t = n− τ, ..., n+ τ ;

end
for n = 1, ...,N do

Compute p̂n by (7);
Compute the per-frame loss eEM (ŷn, p̂n) in (10);

end
Solve for ŷ∗ in (11) by Algorithm 1;
Return The optimized stage sequence ŷ∗.

The one-to-many MTDL framework can also be replaced
by the many-to-manyMTDL framework.

IV. EXPERIMENTAL RESULTS
This section investigates the performance of our proposed
MTDL-DP.

A. EXPERIMENTAL SETUP
We created training/validation/test data partitions by ran-
domly selecting 70%/10%/20% videos from the dataset,
i.e., 41,650/5,950/11,900 frames, respectively. We resized
each frame to 224×224 so that it can be used by ResNet50,
our baseline model. Random rotation and flip data augmenta-
tion was used. All MTDL frameworks were initialized by the
weights trained by one-to-one (ResNet50). Then, the convo-
lution layer parameters were frozen, and the fully connected
layers were further tuned.

We used the cross-entropy loss function and Adam opti-
mizer [38], and early stopping to reduce overfitting, in all
experiments. Multiplicative mean and EM distance per-frame
loss were used in the MTDL-DP. All experiments were
repeated five times, and the mean results were reported.

B. CLASSIFICATION ACCURACY
First, we considered MTDL only, without using DP. The
classification accuracies are shown in the left panel of Table 2,
with τ = {1, 4, 7} (the output context window size was
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TABLE 2. Classification accuracies for different classification frameworks and τ , before and after DP post-processing.

TABLE 3. RMSEs for different classification frameworks and τ , before and after DP post-processing.

TABLE 4. Training time for different classification frameworks and τ .

FIGURE 6. Classification accuracies with and without ensemble learning.
(a) One-to-many. (b) Many-to-many.

2τ+1). All MTDL frameworks outperformed the one-to-one
framework, suggesting using neighboring input or label infor-
mation in multi-task learning was indeed beneficial.

FIGURE 7. RMSEs with and without ensemble learning. (a) One-to-many.
(b) Many-to-many.

For themany-to-oneMTDL framework, when τ increased,
the performance of Late Fusion also increased, whereas the
performance of Conv Pooling decreased. This is intuitive,
because more input information was ignored in Conv Pooling
when τ increased.

The classification accuracies with DP post-processing
are shown in the right panel of Table 2. Post-processing
increased the classification accuracies for all classifiers and
different τ , e.g., the five classifiers achieved 2.3%, 1.2%,
2.1%, 1.5%, and 2.0% performance improvement when
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FIGURE 8. RMSEs of different per-frame losses in DP. (a) τ = 1; (b) τ = 4;
(c) τ = 7. The numbers on the horizontal axis denote different MTDL
frameworks: 1–One-to-one, 2–Many-to-one (conv pooling),
3–Many-to-one (late fusion), 4–One-to-many, 5–Many-to-many.

τ = 1, respectively. However, as τ increased, the classifica-
tion performance improvements became less obvious. After
post-processing, the many-to-many and one-to-many frame-
works had higher accuracies than the many-to-one frame-
work, and only many-to-many consistently outperformed
one-to-one for all τ , suggesting post-processing may be
more beneficial when more input and output information was
utilized.

C. ROOT MEAN SQUARED ERROR (RMSE)
We also computed the root mean squared error (RMSE)
between the true video label sequences and the classifica-
tions. The RMSEs without DP post-processing are shown in
the left panel of Table 3. All MTDL frameworks had lower

FIGURE 9. True stage labels, and classifications before and after DP,
in two time-lapse videos. One-to-many and τ = 1 were used.

RMSEs than the one-to-one framework, suggesting again that
using neighboring input or label information in multi-task
learning was beneficial.

The results after DP post-processing are shown in the right
panel of Table 3. DP post-processing reduced the RMSE for
all MTDL frameworks and different τ , suggesting that DP
was indeed beneficial. Though allMTDL frameworks outper-
formed the one-to-one framework only at τ = 1, the many-
to-many framework consistently outperformed one-to-one for
all different τ .

D. TRAINING TIME
The training time of differentmodels, averaged over five runs,
is shown in Table 4. The training time of themany-to-one and
many-to-many MTDL frameworks increased about linearly
with the input context size; however, the training time of the
one-to-many MTDL framework was insensitive to τ , which
is an advantage.

E. COMPARISON OF DIFFERENT
ENSEMBLE APPROACHES
We also compared the performances of different ensemble
approaches introduced in Section III-A, without considering
DP post-processing. The CNN models were constructed
using the one-to-many and many-to-many MTDL frame-
works. The results are shown in Figs. 6 and 7. Both addi-
tive mean and multiplicative mean achieved performance
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FIGURE 10. Confusion matrices (a) before and (b) after DP
post-processing.

improvements. Multiplicative mean also slightly outper-
formed additive mean. As τ increased, the performance of the
many-to-many MTDL framework was improved. The one-
to-many MTDL framework had the best performance when
τ = 4.

F. COMPARISON OF DIFFERENT LOSSES
IN DP POST-PROCESSING
Next, we studied the effect of different per-frame losses in
DP post-processing. The RMSEs for different τ and different
MTDL frameworks are shown in Fig. 8. The EM loss always
gave smaller RMSEs than the LL loss.

The true stage labels, and the classified labels before and
after DP in two time-lapse videos, are shown in Fig. 9.
Clearly, DP smoothed the classifications, and its outputs were
closer to the groundtruth labels.

The confusion matrix for the one-to-many MTDL frame-
work, using the multiplicative mean and τ = 1, is shown
in Fig. 10(a) before DP post-processing, and in Fig. 10(b)

after DP post-processing. The diagonal shows the classifica-
tion accuracy of each individual cell stage. Post-processing
improved the accuracy of all embryonic stages except t3,
whose classification accuracy before DP (16%) was much
lower than others. There may be two reasons for this:
1) Stage t3 had much fewer training examples in our dataset
(see Fig. 2), and hence it was not trained adequately; and,
2) the low accuracy of t3 may also be due to multipolar
cleavages from the zygote stage, which occurs in 12.2% of
human embryos [39].

V. CONCLUSION
Accurate classification of embryo early development stages
can provide embryologists valuable information for assess-
ing the embryo quality, and hence is critical to the success
of IVF. This paper has proposed an MTDL-DP approach
for automatic embryo development stage classification from
time-lapse videos. Particularly, the one-to-many and many-
to-manyMTDL frameworks performed the best. Considering
the trade-off between training time and classification accu-
racy, we recommend the one-to-many MTDL framework in
MTDL-DP, because it can achieve comparable performance
with the many-to-manyMTDL framework, with much lower
computational cost.

To our knowledge, this is the first study that applies
MTDL to embryo early development stage classification
from time-lapse videos.
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