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Manifold Embedded Knowledge Transfer for
Brain-Computer Interfaces

Wen Zhang and Dongrui Wu , Senior Member, IEEE

Abstract— Transfer learning makes use of data or knowl-
edge in one problem to help solve a different, yet related,
problem. It is particularly useful in brain-computer inter-
faces (BCIs), for coping with variations among different
subjects and/or tasks. This paper considers offline unsuper-
vised cross-subjectelectroencephalogram(EEG) classifica-
tion, i.e., we have labeled EEG trials from one or more source
subjects, but only unlabeled EEG trials from the target
subject. We propose a novel manifold embedded knowledge
transfer (MEKT) approach, which first aligns the covariance
matrices of the EEG trials in the Riemannian manifold,
extracts features in the tangent space, and then performs
domain adaptation by minimizing the joint probability dis-
tribution shift between the source and the target domains,
while preserving their geometric structures. MEKT can cope
with one or multiple source domains, and can be com-
puted efficiently. We also propose a domain transferability
estimation (DTE) approach to identify the most beneficial
source domains, in case there are a large number of source
domains. Experiments on four EEG datasets from two differ-
ent BCI paradigms demonstrated that MEKT outperformed
several state-of-the-art transfer learning approaches, and
DTE can reduce more than half of the computational cost
when the number of source subjects is large, with little
sacrifice of classification accuracy.

Index Terms— Brain-computer interfaces, electroen-
cephalogram, Riemannian manifold, transfer learning.

I. INTRODUCTION

A BRAIN-COMPUTER interface (BCI) provides a direct
communication pathway between a user’s brain and

a computer [1], [2]. Electroencephalogram (EEG), a multi-
channel time-series, is the most frequently used BCI input sig-
nal. There are three common paradigms in EEG-based BCIs:
motor imagery (MI) [3], event-related potentials (ERPs) [4],
and steady-state visual evoked potentials [2]. The first two are
the focus of this paper.

In MI tasks, the user needs to imagine the movements
of his/her body parts, which causes modulations of brain
rhythms in the involved cortical areas. In ERP tasks, the user is
stimulated by a majority of non-target stimuli and a few target
stimuli; a special ERP pattern appears in the EEG response
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after the user perceives a target stimulus. EEG-based BCI
systems have been widely used to help people with disabilities,
and also the able-bodied [1].

A standard EEG signal analysis pipeline consists of
temporal (band-pass) filtering, spatial filtering, and classifi-
cation [5]. Spatial filters such as common spatial patterns
(CSP) [6] are widely used to enhance the signal-to-noise ratio.
Recently, there is a trend to utilize the covariance matrices of
EEG trials, which are symmetric positive definite (SPD) and
can be viewed as points on a Riemannian manifold, in EEG
signal analysis [7]–[10]. For MI tasks, the discriminative infor-
mation is mainly spatial, and can be directly encoded in the
covariance matrices. On the contrary, the main discriminative
information of ERP trials is temporal. A novel approach was
proposed in [11] to augment each EEG trial by the mean of
all target trials that contain the ERP, and then their covariance
matrices are computed. However, Riemannian space based
approaches are computationally expensive, and not compatible
with Euclidean space machine learning approaches.

A major challenge in BCIs is that different users have
different neural responses to the same stimulus, and even
the same user can have different neural responses to the
same stimulus at different time/locations. Besides, when
calibrating the BCI system, acquiring a large number of
subject-specific labeled training examples for each new subject
is time-consuming and expensive. Transfer learning [12]–[16],
which uses data/information from one or more source domains
to help the learning in a target domain, can be used to address
these problems. Some representative applications of transfer
learning in BCIs can be found in [17]–[22]. Many researchers
[20]–[22] attempted to seek a set of subject-invariant CSP
filters to increase the signal-to-noise ratio. Another pipeline
is Riemannian geometry based. Zanini et al. [23] proposed
a Riemannian alignment (RA) framework to align the EEG
covariance matrices from different subjects. He and Wu [24]
extended RA to Euclidean alignment (EA) in the Euclidean
space, so that any Euclidean space classifier can be used
after it.

To utilize the excellent properties of the Riemannian
geometry and avoid its high computational cost, as well
as to leverage knowledge learned from the source subjects,
this paper proposes a manifold embedded knowledge trans-
fer (MEKT) framework, which first aligns the covariance
matrices of the EEG trials in the Riemannian manifold, then
performs domain adaptation in the tangent space by minimiz-
ing the joint probability distribution shift between the source
and the target domains, while preserving their geometric
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Fig. 1. Illustration of our proposed MEKT. Squares and circles represent examples from different classes. Different colors represent different
domains. All domains are first aligned on the Riemannian manifold, and then mapped onto a tangent space. A and B are projection matrices of the
source and the target domains, respectively.

structures, as illustrated in Fig. 1. Additionally, we propose
a domain transferability estimation (DTE) approach to select
the most beneficial subjects in multi-source transfer learning.
Experiments on four datasets from two different BCI para-
digms (MI and ERP) verified the effectiveness of MEKT and
DTE.

The remainder of this paper is organized as follows:
Section II introduces related work on spatial filters, Rie-
mannian geometry, tangent space mapping, RA, EA, and
subspace adaptation. Section III describes the details of the
proposed MEKT and DTE. Section IV presents experiments to
compare the performance of MEKT with several state-of-the-
art data alignment and transfer learning approaches. Finally,
Section V draws conclusions.

II. RELATED WORK

This section introduces background knowledge on spatial
filters, Riemannian geometry, tangent space mapping, RA,
EA, and subspace adaptation, which will be used in the next
section.

A. Spatial Filters

Spatial filtering can be viewed as a data-driven dimension-
ality reduction approach that promotes the variance difference
between two conditions [25]. It is common in MI-based BCIs
to use CSP filters [26] to simultaneously diagonalize the two
intra-class covariance matrices.

Consider a binary classification problem. Let (Xi , yi ) be
the i th labeled training example, where Xi ∈ R

c×t , in which
c is the number of EEG channels, and t the number of time
domain samples. For Class k (k = 0, 1), CSP finds a spatial
filter matrix W∗

k ∈ R
c× f , where f is the number of spatial

filters, to maximize the variance difference between Class k
and Class 1 − k:

W∗
k = arg max

W∈Rc× f

tr(W��̄k W )

tr[W��̄1−k W ] , (1)

where �̄k is the mean covariance matrix of all EEG trials in
Class k, and tr is the trace of a matrix. The solution W∗

k is
the concatenation of the f leading eigenvectors of the matrix
(�̄1−k)

−1�̄k .

Finally, we concatenate the 2 f spatial filters from both
classes to obtain the complete CSP filters:

W ∗ = [W∗
0 , W∗

1 ] ∈ R
c×2 f (2)

and compute the spatially filtered Xi by:
X ′

i = (W∗)�Xi ∈ R
2 f ×t (3)

The log-variances of the filtered trial X ′ can be extracted:

x = log

(
diag(X ′ X ′�)

tr(X ′X ′�)

)
(4)

and used as input features in classification.

B. Riemannian Geometry

All SPD matrices P ∈ R
c×c form a differentiable

Riemannian manifold. Riemannian geometry is used to manip-
ulate them. Some basic definitions are provided below.

The Riemannian distance between two SPD matrices P1 and
P2 is:

δ (P1, P2) =
∥∥∥log

(
P−1

1 P2

)∥∥∥
F

, (5)

where ‖ · ‖F is the Frobenius norm, and log donates the
logarithm of the eigenvalues of P−1

1 P2.
The Riemannian mean of {Pi }n

i=1 is:

MR = arg min
P

n∑
i=1

δ2(P, Pi ), (6)

The Euclidean mean is:

ME = 1

n

n∑
i=1

Pi , (7)

The Log-Euclidean mean [7] is:

ML = exp

(
n∑

i=1

wi log Pi

)
, (8)

where wi is usually set to 1 n.
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C. Tangent Space Mapping

Tangent space mapping is also known as the logarithmic
mapping, which maps a Riemannian space SPD matrix Pi to
a Euclidean tangent space vector xi around an SPD matrix M ,
which is usually the Riemannian or Euclidean mean:

xi = upper
(
logM (Mref Pi Mref)

)
, (9)

where upper takes the upper triangular part of a c × c SPD
matrix and forms a vector xi ∈ R

1×c(c+1)/2, and Mref is a ref-
erence matrix. To obtain a tangent space locally homomorphic
to the manifold, Mref = M−1/2 is needed [25].

Congruent transform and congruence invariance [27] are
two important properties in the Riemannian space:

M (F P1 F, F P2 F) = F · M(P1, P2) · F, (10)

δ
(

G� P1G, G� P2G
)

= δ (P1, P2) , (11)

where M is the Euclidean or Riemannian mean operation, F is
a nonsingular square matrix, and G ∈ R

c×c is an invertible
symmetric matrix. (11) suggests that the Riemannian distance
between two SPD matrices does not change, if both are left
and right multiplied by an invertible symmetric matrix.

D. Riemannian Alignment (RA)

RA [23] first computes the covariance matrices of some
resting (or non-target) trials, {Pi }n

i=1, in which the subject is
not performing any task (or not performing the target task),
and then the Riemannian mean MR of these matrices, which
is used as the reference matrix to reduce the inter-session or
inter-subject variations, by the following transformation:

P ′
i = M−1/2

R Pi M−1/2
R , (12)

where Pi is the covariance matrix of the i -th trial, and P ′
i

the corresponding aligned covariance matrix. Then, all P ′
i

can be classified by a minimum distance to mean (MDM)
classifier [8].

E. Euclidean Alignment (EA)

Although RA-MDM has demonstrated promising perfor-
mance, it still has some limitations [24]: 1) it processes the
covariance matrices in the Riemannian space, whereas there
are very few Riemannian space classifiers; 2) it computes the
reference matrix from the non-target stimuli in ERP-based
BCIs, which requires some labeled trials from the new subject.

EA [24] extends RA and solves the above problems by
transforming an EEG trial Xi in the Euclidean space:

X ′
i = M−1/2

E Xi , (13)

where ME is the Euclidean mean of the covariance matrices
of all EEG trials, computed by (7).

However, EA only considers the marginal probability dis-
tribution shift, and works best when the number of EEG
channels is small. When there are a large number of channels,
computing M−1/2

E may be numerically unstable.

F. Subspace Adaptation

Tangent space vectors usually have very high dimension-
ality, so they cannot be used easily in transfer learning.
An intuitive approach is to align them in a lower dimensional
subspace. Pan et al. [12] proposed transfer component analy-
sis (TCA) to learn the transferable components across domains
in a reproducible kernel Hilbert space using maximum mean
discrepancy (MMD) [28]. Joint distribution adaptation (JDA)
[15] improves TCA by considering the conditional distribution
shift using pseudo label refinement. Joint geometrical and sta-
tistical alignment (JGSA) [16] further improves JDA by adding
two regularization terms, which minimize the within-class
scatter matrix and maximize the between-class scatter matrix.

III. MANIFOLD EMBEDDED KNOWLEDGE

TRANSFER (MEKT)

This section proposes the MEKT approach. Its goal is to
use one or multiple source subjects’ data to help the target
subject, given that they have the same feature space and label
space. For the ease of illustration, we focus on a single source
domain first.

Assume the source domain has nS labeled instances
{(X S,i, yS,i)}nS

i=1, where X S,i ∈ R
c×t is the i -th feature matrix,

and yS,i ∈ {1, . . . , l} is the corresponding label, in which c,
t and l denote the number of channels, time domain samples,
and classes, respectively. Let yS = [yS,1; · · · ; yS,nS] ∈ R

nS×1

be the label vector of the source domain. Assume also the
target domain has nT unlabeled feature matrices {XT ,i}nT

i=1,
where XT ,i ∈ R

c×t .
MEKT consists of the following three steps:
1) Covariance matrix centroid alignment (CA): Align the

centroids of the covariance matrices of {X S,i}nS
i=1 and

{XT ,i}nT
i=1, so that their marginal probability distributions

are close.
2) Tangent space feature extraction: Map the aligned

covariance matrices to a tangent space feature matrix
X S ∈ R

d×nS , and XT ∈ R
d×nT , where d = c(c + 1)/2

is the dimensionality of the tangent space features.
3) Mapping matrices identification: Find projection matri-

ces A ∈ R
d×p and B ∈ R

d×p , where p � d is the
dimensionality of a shared subspace, such that A�X S

and B�XT are close.
After MEKT, a classifier can be trained on (A�X S, yS) and
applied to B�XT to obtain the target pseudo labels ŷT .

Next, we describe the details of the above three steps.

A. Covariance Matrix Centroid Alignment (CA)

CA serves as a preprocessing step to reduce the marginal
probability distribution shift of different domains, and enables
transfer from multiple source domains.

Let PS,i = X S,i X�
S,i be the i -th covariance matrix in

the source domain, and Mref = M−1/2, where M can be the
Riemannian mean in (6), the Euclidean mean in (7), or the
Log-Euclidean mean in (8). Then, we align the covariance
matrices by

P ′
S,i = Mref PS,i Mref, i = 1, . . . , nS (14)
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Likewise, we can obtain the aligned covariance matrices
{P ′

T ,i }nT
i=1 of the target domain.

CA has two desirable properties:
1) Marginal probability distribution shift minimization.

From the properties of congruent transform and con-
gruence invariance, we have

M(M�
ref P1 Mref, . . . , M�

ref PnS Mref)

= M�
refM(P1, . . . , PnS )Mref = M�

ref M Mref = I, (15)

i.e., if we choose M as the Riemannian (or Euclidean)
mean, then different domains’ geometric (or arithmetic)
centers all equal the identity matrix. Therefore, the mar-
ginal distributions of the source and the target domains
are brought closer on the manifold.

2) EEG trial whitening. In the following, we show that each
aligned covariance matrix is approximately an identity
matrix after CA.
If we decompose the reference matrix as Mref =[
w1, . . . , wc

]
, then the (m, n)-th element of P ′

S,i is:
P ′

S,i(m, n) = w�
m PS,iwn, (16)

From (15) we have

w�
mM(P1, . . . , PnS )wn =

{
1, m = n

0, m �= n.
(17)

The above equation holds no matter whether M is the
Riemannian mean, or the Euclidean mean.
For CA using the Euclidean mean, the average of the
m-th diagonal element of {P ′

S,i}nS
i=1 is

1

nS

nS∑
i=1

P ′
S,i (m, m) = w�

mM(P1, . . . , PnS )wm = 1,

(18)

Meanwhile, for each diagonal element, we have
P ′

S,i(m, m) = ‖X�
S,i wm‖2

2 > 0, therefore the diagonal
elements of P ′

S,i are around 1. Similarly, the off-diagonal
elements of P ′

S,i are around 0. Thus, P ′
S,i is approxima-

tively an identify matrix, i.e., the aligned EEG trials are
approximated whitened.
CA with the Riemannian mean is an iterative process
initialized by the Euclidean mean. CA with the
Log-Euclidean mean is an approximation of CA with the
Riemannian mean, with reduced computational cost [7].
So, (18) also holds approximately for these two means.
This whitening effect will also be experimentally
demonstrated in Section IV-E.

B. Tangent Space Feature Extraction

After covariance matrix CA, we map each covariance matrix
to a tangent space feature vector in R

d×1:

xS,i = upper
(
log

(
P ′

S,i

))
, i = 1, . . . , nS (19)

xT ,i = upper
(
log

(
P ′

T ,i

))
, i = 1, . . . , nT (20)

Note that this is different from the original tangent space
mapping in (9), in that (9) uses the same reference matrix Mref

for all subjects, whereas our approach uses a subject-specific
Mref for each different subject.

Next, we form new feature matrices X S = [xS,i, . . . , xS,nS]
and XT = [xT ,i , . . . , xT ,nT ].

C. Mapping Matrices Identification

CA does not reduce the conditional probability distribution
discrepancies. We next find projection matrices A, B ∈ R

d×d ′
,

which map X S and XT to lower dimensional matrices A�X S

and B�XT , with the following desirable properties:

1) Joint probability distribution shift minimization. In tradi-
tional domain adaptation [12], [15], MMD is frequently
used to reduce the marginal and conditional probability
distribution discrepancies between the source and the
target domains, i.e.,

DS,T ≈ D (Q (X S) , Q (XT ))

+D (
Q (yS|X S) , Q

(
ŷT |XT

))
=

∥∥∥∥∥∥
1

nS

nS∑
i=1

A�xS,i − 1

nT

nT∑
j=1

B�xT , j

∥∥∥∥∥∥
2

F

+
l∑

k=1

∥∥∥∥∥∥
1

nk
S

nk
S∑

i=1

A�xk
S,i − 1

nk
T

nk
T∑

j=1

B�xk
T , j

∥∥∥∥∥∥
2

F

,

(21)

where xk
S,i and xk

T , j are the tangent space vectors in
the k-th (k = 1, . . . , l) class of the source domain and
the target domain, respectively, and nk

S and nk
T are the

number of examples in the k-th class of the source
domain and the target domain, respectively.
Next, we propose a new measure, joint probability
MMD, to quantify the probability distribution shift
between the source and the target domains, by consider-
ing the joint probability directly, instead of the marginal
and the conditional probabilities separately.
Then, the joint probability MMD between the source
and the target domains is:
D′

S,T =D (
Q (X S, yS) , Q

(
XT , ŷT

))
= D (

Q (X S |yS) Q(yS), Q
(
XT |ŷT

)
Q(ŷT )

)

≈
l∑

k=1

∥∥∥∥∥∥
P(yk

S)

nk
S

nk
S∑

i=1

A�xk
S,i −

P(ŷk
T )

nk
T

nk
T∑

j=1

B�xk
T , j

∥∥∥∥∥∥
2

F

=
l∑

k=1

∥∥∥∥∥∥
1

nS

nk
S∑

i=1

A�xk
S,i − 1

nT

nk
T∑

j=1

B�xk
T , j

∥∥∥∥∥∥
2

F

, (22)

Let the one-hot encoding matrix of the source domain
label vector1 yS be YS , and the one-hot encoding matrix
of the predicted target label vector ŷT be ŶT . (22) can

1For example, for binary classification with two classes 1 and 2, if yS =⎡
⎣ 2

1
2

⎤
⎦, then YS =

⎡
⎣ 0 1

1 0
0 1

⎤
⎦.
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be simplified as

D′
S,T =

∥∥∥N�
S X�

S A − N�
T X�

T B
∥∥∥2

F
, (23)

where

NS = YS

nS
, NT = ŶT

nT
. (24)

The joint probability MMD is based on the joint prob-
ability rather than the conditional probability, which in
theory can handle more probability distribution shifts.

2) Source domain discriminability. During subspace map-
ping, the discriminating ability of the source domain can
be preserved by:

min
A

tr(A�Sw A) s.t . A�Sb A = I, (25)

where Sw = ∑l
k=1

∑nk
S

i=1(x
k
S,i)

�xk
S,ihk is the

within-class scatter matrix, in which hk = 1 − 1
nk

S
,

and Sb = ∑l
k=1 nk (m̄k − m̄) (m̄k − m̄)� is the

between-class scatter matrix, in which m̄k is the mean
of samples from Class k, and m̄ is the mean of all
samples.

3) Target domain locality preservation. We also introduce
a graph-based regularization term to preserve the local
structure in the target domain. Under the manifold
assumption [29], if two samples xT ,i and xT , j are close
in the original target domain, then they should also be
close in the projected subspace.
Let S ∈ R

nT ×nT be a similarity matrix:

Si j =

⎧⎪⎪⎨
⎪⎪⎩

e
−‖xT ,i −xT , j‖2

2
2σ2 , if xT ,i ∈ Np(xT , j )

or xT , j ∈ Np(xT ,i )

0, otherwise,

(26)

where Np(xT ,i ) is the set of the p-nearest neighbors
of xT ,i , and σ is a scaling parameter, which usually
equals 1 [30].
Using the normalized graph Laplacian matrix
L = I − D−1/2 SD−1/2, where D is a diagonal
matrix with Dii = ∑nT

j=1 Si j , graph regularization is
expressed as:

nT∑
i, j=1

‖B�xT ,i − B�xT , j‖2
2 Si j = tr(B�XT L X�

T B),

(27)

To remove the scaling effect, we add a constraint on the
target embedding [31]:

min
B

tr(B�XT L X�
T B) s.t . B�XT H X�

T B = I, (28)

where H = I − 1
nT

1nT is the centering matrix, in which
1nT ∈ R

nT ×nT is an all-one matrix.
4) Parameter transfer and regularization. Since the source

and the target domains have the same feature space, and
CA has brought their probability distributions closer,
we want the projection matrix B to be similar to the

projection matrix A learned in the source domain. Addi-
tionally, for better generalization performance, we want
to ensure that A and B do not include extreme values.
Thus, we have the following constraints on the projec-
tion matrices:

min
A,B

(
‖B − A‖2

F + ‖B‖2
F

)
. (29)

D. The Overall Loss Function of MEKT

Integrating all regularization and constraints above, the for-
mulation of MEKT is:

min
A,B

α tr(A�Sw A) + β tr(B�XT L X�
T B) + D′

S,T

+ ρ(‖B − A‖2
F + ‖B‖2

F )

s.t . B�XT H X�
T B = I, A�Sb A = I (30)

where α, β and ρ are trade-off parameters to balance the
importance of the source domain discriminability, the target
domain locality, and the parameter regularization, respectively.

Let W = [A; B]. Then, the Lagrange function is

J = tr
(

W�(αP + βL + ρU + R)W + η(I − W�V W )
)
(31)

where

P =
[

Sw 0
0 0

]
, L =

[
0 0
0 XT L X�

T

]
, (32)

U =
[

I −I
−I 2I

]
, V =

[
Sb 0
0 XT H X�

T

]
, (33)

R =
[

X S NS N�
S X�

S −X S NS N�
T X�

T

−XT NT N�
S X�

S XT NT N�
T X�

T

]
, (34)

Setting the derivative ∇WJ = 0, we have

(αP + βL + ρU + R)W = ηV W (35)

(35) can be solved by generalized eigen-decomposition, and
W consists of the p trailing eigenvectors. Since ŶT is
needed in NT [see (24)], and hence R, we use a general
expectation-maximization like pseudo label refinement proce-
dure [15] to refine the estimation, as shown in Algorithm 1.

Note that for the clarity of explanation, Algorithm 1 only
considers one source domain. When there are multiple source
domains, we perform CA and compute the tangent space fea-

ture vectors X (i)
S ∈ R

d×n(i)
S for each source domain separately,

and then assemble their feature vectors into a single source
domain feature matrix X S = [X (1

S ), . . . , X (z)
S ] ∈ R

d×n∗
, where

n(i)
S is the number of trails in the i -th source domain, z is the

number of source domains, and n∗ = ∑z
i=1 n(i)

S .

E. Kernelization Analysis

Nonlinear MEKT can be achieved through kernelization in
a Reproducing Kernel Hilbert Space [16].

Let the kernel function be φ : x �→ φ(x). Define 
(X) =
[φ(x1), .., φ(xn)] ∈ R

d×n , where n = nS + nT . We use the
Representer Theorem [32] A = 
(X)A and B = 
(X)B to
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Algorithm 1: Manifold Embedded Knowledge Transfer
(MEKT)

Input: nS source domain samples {(X S,i , yS,i)}nS
i=1,

where X S,i ∈ R
c×t and yS,i ∈ {1, . . . , l};

nT target domain feature matrices {XT ,i }nT
i=1,

where XT ,i ∈ R
c×t ;

Number of iterations N ;
Weights α, β, ρ;
Dimensionality of the shared subspace, p.

Output: ŷT ∈ R
nT ×1, the labels for {XT ,i }nT

i=1.
Calculate the covariance matrices {PS,i}nS

i=1 and their
mean matrix M in the source domain, using (6), (7),
or (8);
Calculate {P ′

S,i}nS
i=1 using (14);

Map each P ′
S,i to a tangent space feature vector

xS,i ∈ R
d×1 using (19) (d = c(c + 1)/2);

Repeat the above procedure to get xT ,i ∈ R
d×1

using (20);
Form X S = [xS,1, . . . , xS,nS ] and XT = [xT ,1, . . . , xT ,nT ];
Construct P , L, U , V and R in (32)-(34);
for n = 1, . . . , N do

Solve (35), and construct W ∈ R
2d×p as the p trailing

eigenvectors;
Construct A as the first d rows in W , and B as the
last d rows;
Train a classifier f on (A�X S, yS) and apply it to
B�XT to update ŷT ;
Update R in (34).

end
return ŷT .

kernelize MEKT, where X = [X S, XT ], and A ∈ R
n×p and

B ∈ R
n×p are two projection matrices to be optimized.

Let KS = 
(X)�
(X S) and KT = 
(X)�
(XT ). Then,
all x are replaced by φ(x), X S by 
(X S), and XT by 
(XT ),
in the above derivations. The optimization problem becomes

min
A,B

α tr(A�SwA) + β tr(B�KT L K �
T B)

+
∥∥∥N�

S K �
S A − N�

T K �
T B

∥∥∥2

F
+ ρ(W�UW )

s.t . B�KT H K �
T B = I, A�SbA = I (36)

where Sw = ∑l
k=1 K k

S H k
S (K k

S)�, in which K k
S is the part of

KS from Class k only, and H k
S = I − 1

nk
S
1 the centering matrix.

The Laplacian matrix L is constructed in the original data
space. In Sb , m̄k is the mean of K k

S , and m̄ the mean of K =
[KS, KT ]. U is obtained by replacing I in (33) with K .

(36) can be optimized in a similar way as (30).

F. Domain Transferability Estimation (DTE)

When there are a large number of source domains, estimat-
ing domain transferability can advise which domains are more
important, and also reduce the computational cost. In BCIs,
DTE can be used to find subjects which have low correlations
to the tasks and hence may cause negative transfer. Although

TABLE I
STATISTICS OF THE TWO MI AND TWO ERP DATASETS

source domain selection is important, it is very challenging,
and hence very few publications can be found in the literature
[4], [14], [33], [34].

Next, we propose an unsupervised DTE strategy.
Assume there are z labeled sources domains Si =

{X (i)
S , y(i)

S }z
i=1, where X (i)

S is the feature matrix of the i -th
source domain, y(i)

S is the corresponding label vector. Assume
also there is a target domain T with unlabeled feature matrix
XT . Let Sb be the between-class scatter matrix, similar to
Sb in (25), and SSi ,T

b be the scatter matrix between the
source and the target domains. We define the discriminability
of the i -th source domain as DI S(Si ) = ‖SSi

b ‖1, and the
difference between the source domain and the target domain
as DI F(Si , T) = ‖SSi ,T

b ‖1.
Then, the transferability of Source Domain Si is computed

as:
r(Si , T) = DI S(Si )

DI F(Si , T)
(37)

We then select z∗ ∈ (1, z) source subjects with the highest
r(Si , T).

IV. EXPERIMENTS

In this section, we evaluate our method for both
single-source to single-target (STS) transfers and multi-source
to single-target (MTS) transfers. The code is available online.2

A. Datasets

We used two MI datasets and two ERP datasets in our
experiments. Their statistics are summarized in Table I.

For both MI datasets, a subject sat in front of a computer
screen. At the beginning of a trial, a fixation cross appeared on
the black screen to prompt the subject to be prepared. Shortly
after, an arrow pointing to a certain direction was presented
as a visual cue for a few seconds, during which the subject
performed a specific MI task. Then, the visual cue disappeared,
and the next trial started after a short break. EEG signal was
recorded during the experiment, and used to classify which
MI the user was performing. Usually, EEG shortly after the
visual cue onset is highly related to the MI task.

For the first MI dataset3 (MI1), 59-channel EEGs were
recorded at 100 Hz from seven healthy subjects, each with
100 left hand MIs and 100 right hand MIs. For the second MI
dataset4 (MI2), 22-channel EEGs were recorded at 250 Hz

2https://github.com/chamwen/MEKT
3http://www.bbci.de/competition/iv/desc_1.html.
4http://www.bbci.de/competition/iv/desc_2a.pdf.
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Fig. 2. Timing scheme of the motor imagery tasks in the first two
datasets.

from nine heathy subjects, each with 72 left hand MIs and
72 right hand MIs. Both datasets were used for two-class
classification.

The first ERP dataset5 contained 8-channel EEG recordings
from 11 healthy subjects in a rapid serial visual presen-
tation (RSVP) experiment. The images were presented at
different rates (5, 6, and 10 Hz) in three different experiments.
We only used the 5 Hz version. The goal was to classify from
EEG if the subject had seen a target image (with airplane) and
non-target image (without airplane). The number of images
for different subjects varying between 368 and 565, and the
target to non-target ratio was around 1:9. The sampling rate
was 2048 Hz, and the RSVP data had been band-pass filtered
to 0.15-28 Hz.

The second ERP dataset6 was recorded from a feedback
error-related negativity (ERN) experiment [35], which was
used in a Kaggle competition for two-class classification.
It was collected from 26 subjects and partitioned into training
set (16 subjects) and test set (10 subjects). We only used the
16 subjects in the training set as we do not have access to the
test set. The average target to non-target ratio was around 1:4.
The 56-channel EEG data had been downsampled to 200 Hz.

B. EEG Data Preprocessing

EEG signals from all datasets were preprocessed using the
EEGLAB toolbox [36]. We followed the same preprocessing
procedures in [24], [37].

For the two MI datasets, a causal 50-order 8-30 Hz.7 finite
impulse response (FIR) band-pass filter was used to remove
muscle artifacts and direct current drift, and hence to obtain
cleaner MI signals. Next, EEG signals between [0.5, 3.5] sec-
onds after the cue onsets were extracted as trials. The RSVP
signal was downsampled to 64 Hz to reduce the computational
cost, and epoched to 0.7s intervals immediately after the
stimulus onsets as trials. The ERN signal was bandpass filtered
to 1-40 Hz, and epoched to 1.3s intervals immediately after
the feedbacks (which contained the ERP associated with the
user’s response to the feedback event) as trials.

MI1 had 59 EEG channels, which were not easy to manipu-
late. Thus, we reduced the number of its tangent space features
to the number of source domain samples (200), according to
their F values in one-way ANOVA. For the ERN dataset,
we used xDAWN [39] to reduce the number of channels from
56 to 6.

5https://www.physionet.org/physiobank/database/ltrsvp/.
6https://www.kaggle.com/c/inria-bci-challenge.
7We bandpass filtered the EEG signal to 8-30 Hz because MI is mainly

indicated by the change of the mu rhythm (about 8–13 Hz) and the beta
(about 14–30 Hz) rhythm [38]

TABLE II
INPUT SPACE DIMENSIONALITIES IN DIFFERENT STS TASKS

The dimensionalities of different input spaces are shown in
Table II. ni is the number of samples in the i -th domain, and
c the number of selected channels for the two ERP datasets.
Specifically, for RSVP, c = 8 and ni varies from 368 to
565; for ERN, c = 6 and ni = 340. Augmented covariance
matrices [11] were used in the Riemannian space for ERP,
so they had dimensionality of 2c × 2c. The c × c upper right
block of the augmented covariance matrix contains temporal
information [11], so these c2 elements were selected as the
tangent space features.

Next, we describe how the Euclidean space features were
determined. For the two MI datasets, six log-variance features
of the CSP filtered trials [see (4)] were used as features.
For the two ERP datasets, after spatial filtering by xDAWN,
we assembled each EEG trail (which is a matrix) into a
vector, performed principal component analysis on all vectors
from the source subjects, and extracted the scores for the first
20 principal components as features.

C. Baseline Algorithms

We compared our MEKT approaches (MEKT-R: the
Riemannian mean is used as the reference matrix; MEKT-E:
the Euclidean mean is used as the reference matrix; MEKT-L:
the Log-Euclidean mean is used as the reference matrix) with
seven state-of-the-art baseline algorithms for BCI classifica-
tion. According to the feature space type, these baselines can
be divided into three categories:

1) Euclidean space approaches:
a) CSP-LDA (linear discriminant analysis) [40] for

MI, and CSP-SVM (support vector machine) [41]
for ERP.

b) EA-CSP-LDA for MI, and EA-xDAWN-SVM for
ERP, i.e., we performed EA [24] as a preprocessing
step before spatial filtering and classification.

2) Riemannian space approach: RA-MDM [23] for MI, and
xDAWN-RA-MDM for ERP.

3) Tangent space approaches, which were proposed for
computer vision applications, and have not been used in
BCIs before. CA was used before each of them. In each
learned subspace, the sLDA classifier [42] was used for
MI, and SVM for ERP.

a) CA (centroid alignment).
b) CA-CORAL (correlation alignment) [13].
c) CA-GFK (geodesic flow kernel) [14].
d) CA-JDA (joint distribution adaptation) [15].
e) CA-JGSA (joint geometrical and statistical align-

ment) [16].
Hyper-parameters of all baselines were set according to

the recommendations in their corresponding publications. For
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Fig. 3. The raw covariance matrix (Trial 1, Subject 1, MI2), and those
after CA using different reference matrices.

MEKT, T = 5, α = 0.01, β = 0.1, ρ = 20, and d = 10 were
used.

D. Experimental Settings

We evaluated unsupervised STS and MTS transfers. In STS,
one subject was selected as the target, and another as the
source. Let z be the number of subjects in a dataset. Then,
there were z(z − 1) different STS tasks. In MTS, one subject
was used as the target, and all others as the sources, so there
were z different MTS tasks. For example, MI1 included seven
subjects, so we had 7 × 6 = 42 STS tasks, e.g., S2→S1
(Subject 2 as the source, and Subject 1 as the target), S3→S1,
S4→S1, S5→S1, S6→S1, S7→S1, …S6→S7, and seven
MTS tasks, e.g., {S2, S3, S4, S5, S6, S7}→S1, . . ., {S1, S2,
S3, S4, S5, S6}→S7.

The balanced classification accuracy (BCA) was used as the
performance measure:

BC A = 1

l

l∑
k=1

t pk

nk
, (38)

where t pk and nk are the number of true positives and the
number of samples in Class k, respectively.

E. Visualization

As explained in Section III-A, CA makes the aligned
covariance matrices approximate the identity matrix, no matter
whether the Riemannian mean, or the Euclidean mean,
or the Log-Euclidean mean, is used as the reference matrix.
To demonstrate that, Fig. 3 shows the raw covariance matrix
of the first EEG trial of Subject 1 in MI2, and the aligned
covariance matrices using different references. The raw covari-
ance matrix is nowhere close to identity, but after CA,
the covariance matrices are approximately identity, and hence
the corresponding EEG trials are approximately whitened.

Fig. 4. t-SNE visualization of the data distributions before and after
CA, and with different transfer learning approaches, when transferring
Subject 2’s data (source) to Subject 1 (target) in MI2.

Next, we used t-SNE [43] to reduce the dimensionality of
the EEG trials to two, and visualize if MEKT can bring the
data distributions of the source and the target domains together.
Fig. 4 shows the results on transferring Subject 2’s data to
Subject 1 in MI2, before and after different data alignment
approaches. Before CA, the source domain and target domain
samples do not overlap at all. After CA, the two sets of
samples have identical mean, but different variances. CA-GFK
and CA-JDA make the variance of the source domain samples
and the variance of the target domain samples approximately
identical, but different classes are still not well separated.
MEKT-R not only makes the overall distributions of the source
domain samples and the target domain samples consistent, but
also samples from the same class in the two domains close,
which should benefit the classification.

F. Classification Accuracies

The means and standard deviations of the BCAs on the
four datasets with STS and MTS transfers are shown in
Tables III and IV, respectively. All MEKT-based approaches
achieved the best (in bold) or the second best (underlined)
performance in all scenarios in contrast to the baselines.

Fig. 5 shows the BCAs of all tangent space based
approaches when different reference matrices were used in
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TABLE III
MEAN (%) AND STANDARD DEVIATION (%; IN PARENTHESIS) OF THE

BCAS IN STS TRANSFERS. FOR THE CA-BASED APPROACHES,
THE SLDA CLASSIFIER WAS USED FOR MI, AND SVM FOR ERP

TABLE IV
MEAN (%) AND STANDARD DEVIATION (%; IN PARENTHESIS)

OF THE BCAS IN MTS TRANSFERS

CA. The Riemannian mean obtained the best BCA in four out
of the six approaches, and also the best overall performance.

We also performed paired t-tests on the BCAs to check
if the performance improvements of MEKT-R over others
were statistically significant. Before each t-test, we performed
a Lilliefors test [44] to verify that the null hypothesis that
the data come from a normal distribution cannot be rejected.
Then, we performed false discovery rate corrections [45] by

Fig. 5. Average BCAs (%) of the tangent space approaches on the four
datasets, when different reference matrices were used in CA.

TABLE V
FALSE DISCOVERY RATE ADJUSTED p-VALUES IN

PAIRED t-TESTS (α = 0.05)

a linear-step up procedure under a fixed significance level
(α = 0.05) on the paired p-values of each task.

The false discovery rate adjusted p-values (q-values) are
shown in Table V. MEKT-R significantly outperformed all
baselines in almost all STS transfers. The performance
improvements became less significant when there were multi-
ple source domains, which is reasonable, because generally in
machine learning the differences between different algorithms
diminish as the amount of training data increases.

We also considered linear and radial basis function (RBF;
kernel width 0.1) kernels in MEKT-R, and repeated the above
experiments. The results are shown in Table VI, where Primal
denotes the primal MEKT-R without kernelization. The primal
MEKT-R achieved the best (in bold) or the second best (under-
lined) performance in all scenarios. However, the differences
among the three approaches were very small.

G. Computational Cost

This subsection empirically checked the computational cost
of different algorithms, which were implemented in Matlab
2018a on a laptop with i7-8550U CPU@2.00GHz, 8GB mem-
ory, running 64-bit Windows 10 Education Edition.
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TABLE VI
AVERAGE BCAS(%) OF THE PROPOSED MEKT

UNDER DIFFERENT KERNELS

TABLE VII
COMPUTING TIME (SECONDS) OF DIFFERENT APPROACHES

IN STS AND MTS TRANSFERS

For simplicity, we only selected one transfer task in each
dataset. For STS transfer, the first subject in each dataset
was selected as the target domain, and the second subject
as the source domain. For MTS transfer, the first subject
as the target domain, and all other subjects as the source
domains. we repeated the experiment 20 times, and show the
average computing time in Table VII. In summary, EA was the
most efficient. RA-MDM, CA-JDA and MEKT-R had similar
computational cost. MEKT-L and MEKT-E had comparable
classification performance with MEKT-R (Tables III and IV),
but much less computational cost. MEKT-L achieved the
best compromise between the classification accuracy and the
computational cost.

H. Effectiveness of the Joint Probability MMD

To validate the superiority of the joint probability MMD
over the traditional MMD, we replaced the joint probability
MMD term D′

S,T in (30) by the traditional MMD term DS,T

in (21), and repeated the experiments. The results are shown
in Table VIII. The joint probability MMD outperformed the
traditional MMD in six out of the eight tasks. We expect that
the joint probability MMD should also be advantageous in
other applications that the traditional MMD is now used.

I. Effectiveness of DTE

This subsection validates our DTE strategy on MTS tasks
to select the most beneficial source subjects.

Table IX shows the BCAs when different source domain
selection approaches were used: RAND randomly selected
round[(z − 1)/2] source subjects [because there was random-
ness, we repeated the experiment 20 times, and report the
mean and standard deviation (in the parentheses)], ROD was

TABLE VIII
AVERAGE BCAS (%) WHEN DS,T IN (21) OR D′

S,T
IN (22) WAS USED IN (30)

TABLE IX
AVERAGE BCAS (%) WITH DIFFERENT SOURCE DOMAIN SELECTION

APPROACHES. RAND, ROD AND DTE EACH SELECTED

round[(z − 1)/2] SOURCE SUBJECTS.
ALL USED ALL SOURCE SUBJECTS

TABLE X
COMPUTING TIME (SECONDS) OF DIFFERENT SOURCE DOMAIN

SELECTION APPROACHES. RAND, ROD AND DTE EACH

SELECTED round[(z − 1)/2] SOURCE SUBJECTS.
ALL USED ALL SOURCE SUBJECTS

the approach proposed in [14], and ALL used all z source
subjects. Table X shows the computational cost of different
algorithms.

Tables IX and X shows that the proposed DTE outper-
formed RAND and ROD in terms of the classification accu-
racy. Although its BCAs were generally slightly worse than
those of ALL, its computational cost was much lower than
ALL, especially when z became large, i.e., when z 
 1, it can
save over 50% computational cost.

V. CONCLUSIONS

Transfer learning is popular in EEG-based BCIs to cope
with variations among different subjects and/or tasks. This
paper has considered offline unsupervised cross-subject EEG
classification, i.e., we have labeled EEG trials from one or
more source subjects, but only unlabeled EEG trials from the
target subject. We proposed a novel MEKT approach, which
has three steps: 1) align the covariance matrices of the EEG
trials in the Riemannian manifold; 2) extract tangent space
features; and, 3) perform domain adaptation by minimizing
the joint probability distribution shift between the source
and the target domains, while preserving their geometric
structures. An optional fourth step, DTE, was also proposed
to identify the most beneficial source domains, and hence
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to reduce the computational cost. Experiments on four EEG
datasets from two different BCI paradigms demonstrated that
MEKT outperformed several state-of-the-art transfer learning
approaches. Moreover, DTE can reduce more than half of
the computational cost when the number of source subjects
is large, with little sacrifice of classification accuracy.
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