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Abstract— Linguistic summarization (LS) is a data mining
or knowledge discovery approach to extract patterns from
databases. It has been studied by many researchers; however,
none of them has used it to generate IF-THEN rules, which
can be added to a knowledge base for better understanding
of the data, or be used in Perceptual Reasoning to infer the
outputs for new scenarios. In this paper LS using IF-THEN
rules is proposed. Five quality measures for such summaries
are defined. Among them, the degree of usefulness is especially
valuable for finding the most reliable and representative rules,
and the degree of outlier can be used to identify outlier rules
and data. An example verifies the effectiveness of our approach.
The relationship between LS and the Wang-Mendel method is
also discussed.

I. INTRODUCTION

The rapid progress of information technology has made
huge amounts of data accessible to people. Unfortunately,
the raw data alone are often hardly understandable and do
not provide knowledge, i.e., frequently people face the “data
rich, information poor” dilemma. Data mining approaches to
automatically summarize the data and output human-friendly
information are highly desirable. According to Mani and
Maybury [19], “summarization is the process of distilling
the most important information from a source (or sources)
to produce an abridged version for a particular user (or
users) and task (or tasks).” Particularly, data summarization
in this paper means to [27] “grasp and briefly describe trends
and characteristics appearing in a dataset, without doing
(explicit) manual ‘record-by-record’ analysis.”

There can be two approaches to summarize a dataset:
numerical summarization and linguistic summarization (LS).
Statistical characteristics, such as mean, median, variance,
etc, are examples of numerical summarization; however,
as pointed out by Yager [43], “summarization would be
especially practicable if it could provide us with summaries
that are not as terse as the mean, as well as treating the
summarization of nonnumeric data.” This suggests that LS
of databases, which outputs summaries like “About 1/2 of
sales in autumn is of accessories” [13]–[15] or “IF X is
large and Y is medium, THEN Z is small,” is more favorable,
because it can provide richer and more easily understandable
information, and it also copes well with nonnumeric data.

There are many approaches for LS of databases [4], [5],
[32], [33] and time series [3], [12]. The fuzzy set (FS) based
approach, introduced by Yager [43]–[46] and advanced by
many others [6], [12], [15], [27], [34], is the most popular
one. It can output summaries like “About 1/2 of sales in
autumn is of accessories” and “Most senior workers have
high salary.” Most of the works focus on type-1 (T1) FSs.
Niewiadomski et al. [26]–[31] are to date the only ones
working on LS using interval and general type-2 FSs [21],
[47].

Dongrui Wu is with the Institute for Creative Technologies and the Signal
Analysis and Interpretation Laboratory, University of Southern California,
Los Angeles, CA 90089 (phone: 213-595-3269; email: dongruiw@usc.edu).

Jerry M. Mendel is with the Ming Hsieh Department of Electrical
Engineering, University of Southern California, Los Angeles, CA 90089
(phone: 213-740-4445; email: mendel@sipi.usc.edu).

Jhiin Joo is with the Ming Hsieh Department of Electrical Engineering,
University of Southern California, Los Angeles, CA 90089 (phone: 213-
740-4456; email: jhijoo@usc.edu).

In this paper, we focus on LS using IF-THEN rules, e.g.,
“IF X is large and Y is medium, THEN Z is small,” because
our primary goal is to use LS to generate a rulebase for
perceptual reasoning and decision-making [24], [25], [40],
[41].

The rest of this paper is organized as follows: Section II
introduces our LS approach to generate IF-THEN rules using
T1 FSs and its associated quality measures. Section III
extends the results in Section II to IT2 FSs. Section IV illus-
trates our LS approach by an example. Section V discusses
the relationship between LS and the Wang-Mendel method.
Section VI draws conclusions.

II. LINGUISTIC SUMMARIZATION USING T1 FSS

The main purpose of this paper is to propose a LS
approach using IT2 FSs. For ease in understanding, we start
with LS using T1 FSs; however, this does not mean we
advocate that T1 FSs should be used in LS. In fact, we always
argue that IT2 FSs should be used in LS, because they can
model both intra-personal and inter-personal uncertainties
[23], [25], as argued in Section III-A.

A. Data Description

For easy reference, our most frequently used symbols are
summarized in Table I.

TABLE I

EXPLANATIONS OF THE SYMBOLS USED IN THIS PAPER. n = 1, 2, . . . , N

AND m = 1, 2, . . . ,M .

Meaning Example
D The complete database Haberman’s Survival Dataset [1]
Y The set of all objects All patients in the dataset
M Number of objects in Y The total number of patients (306)

ym The mth object The mth patient in the dataset

vn Name of the nth attribute Age (1st attribute)
Xn The domain of vn [30, 83] for Age
V A set of all attribute names <Age, Year, #Nodes, Survival>

vm
n Value of the nth attribute for ym 30 (Age of the 1st patient)

dm A complete record related to ym <30, 64, 1, Yes> for the 1st patient
Sn Summarizer Around 35, very small #nodes
Q Quantifier Most, more than 100
wg Qualifier Around 35, very small #nodes
T Degree of truth Any value in [0, 1]
C Degree of sufficient coverage Any value in [0, 1]
U Degree of usefulness Any value in [0, 1]
O Degree of outlier Any value in [0, 1]
S Degree of simplicity Any value in [0, 1]

Define a set of M objects Y = {y1, y2, . . . , yM} and a
set of N attributes V = {v1, v2, . . . , vN}. Let Xn (n =
1, 2, . . . , N) be the domain of vn. Then, vn(ym) ≡ vmn ∈
Xn is the value of the nth attribute for the mth object
(m = 1, 2, . . . ,M ). Hence, the database D, which collects
information about elements from Y, is in the form of

D = {< v11 , v
1
2 , . . . , v

1
N >, · · · , < vM1 , vM2 , . . . , vMN >}

≡ {d1,d2, . . . ,dM} (1)

where dm =< vm1 , vm2 , . . . , vmN > is a complete record about
object ym.

For example, for the Haberman’s Survival Dataset [1] used
in Section IV, there are 306 breast cancer patients (M =
306), and hence Y={Patient1, Patient2, ..., Patient306}. Each
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patient has four attributes (N = 4), and V=<Age, Year,
#Nodes, Survival>. For Age, its value ranges from 30 to
83; so, its domain X1 = [30, 83]. Patient1 was 30 years old,
operated on in 1964, with one positive axillary node detected,
and survived five years or longer. So, the complete record for
Patient1 is d1=<30, 1964, 1, Yes>.

B. LS Using IF-THEN Rules and T1 FSs

Only single-antecedent single-consequent (SASC) rules
are considered in this subsection. Multi-antecedent multi-
consequent (MAMC) rules are considered in Section II-I.

Because we are interested in generating IF-THEN rules
from a dataset, our canonical form for LS using T1 FSs is:

IF X1 is/has S1, THEN X2 is/has S2 [Q] (2)

where S1 and S2 are words modeled by T1 FSs, and Q ∈
[0, 1] is a quality measure, which indicates how good the rule
is. One example of such a rule is:

IF Age
︸︷︷︸

is around 35
︸ ︷︷ ︸

, THEN survival
︸ ︷︷ ︸

is yes
︸︷︷︸

[Q]

X1 S1 X2 S2

(3)

Once a dataset is given, the antecedents and consequents
of the rules are determined. A user needs to specify the words
used for each antecedent and consequent, and also their
corresponding FS models. Then, all possible combinations
of the rules can be constructed. The challenge is to compute
Q, which can have different definitions.

C. Quality Measures of LS Using T1 FSs

According to Hirota and Pedrycz [8], the following five
features are essential to measure the quality of a summary:

1) Validity: The summaries must be derived from data
with high confidence.

2) Generality: This describes how many data support a
summary.

3) Usefulness: This relates the summaries to the goals of
the user, especially in terms of the impact that these
summaries may have on decision-making.

4) Novelty: This describes the degree to which the sum-
maries deviate from our expectations, i.e., how unex-
pected the summaries are.

5) Simplicity: This measure concerns the syntactic com-
plexity of the summaries.

Next we propose five quality measures for T1 FS LS,
corresponding to validity, generality, usefulness, novelty and
simplicity, respectively.

D. Degree of Truth, T

Validity is represented by the degree of truth, T , which is
computed as:

T =

∑M

m=1 min(µS1
(vm1 ), µS2

(vm2 ))
∑M

m=1 µS1
(vm1 )

(4)

Essentially, T is Kosko’s subsethood measure [17] for T1 FSs
and is also called conditional and unqualified proposition
by Klir and Yuan [16]. This kind of formula has also
been used in van den Berg et al.’s conditional probability
for fuzzy events [35], and in computing the confidence
of fuzzy association rules [9]–[11]. Roughly speaking, T
increases as more data satisfying the antecedent also satisfy
the consequent.

A different representation of the degree of truth T defined
in (4) is introduced next. It will lead easily to the computation

of T for LS using IT2 FSs, as will be shown in Section III-B.
But first, two related definitions are introduced.

Definition 1: The cardinality of a T1 FS S1 on database
D is defined as

c
D
(S1) =

M∑

m=1

µS1
(vm1 ). � (5)

Definition 2: The joint cardinality of T1 FSs {S1, ..., SN}
on database D is defined as

c
D
(S1, ..., SN) =

M∑

m=1

min{µS1
(vm1 ), ..., µSN

(vmN )}. �

(6)
Using the cardinality c

D
(S1) and joint cardinality

c
D
(S1, S2), (4) can be re-expressed as:

T =
c
D
(S1, S2)

c
D
(S1)

. (7)

E. Degree of Sufficient Coverage, C

Generality is represented by the degree of sufficient cov-
erage, C, which describes whether a rule is supported by
enough data. To compute C, we first compute the coverage
ratio, which is

rc =

∑M

m=1 tm
M

(8)

where

tm =

{

1, µS1
(vm1 ) > 0 and µS2

(vm2 ) > 0
0, otherwise

(9)

i.e., rc is the percentage of data which fit both the antecedent
and the consequent of the rule. Because each rule only covers
a small region of the high-dimensional input-output space,
rc is usually very small (e.g., mostly smaller than 0.1). So,
rc = 0.15 may be considered sufficient coverage with degree
1. The following mapping converts the coverage ratio into the
appropriate degree of sufficient coverage, and agrees with our
feeling about sufficient coverage:

C = f(rc) (10)

where f is a function that maps rc into C. The S-shape
function f(rc) used in this paper is shown in Fig. 1. It is
determined by two parameters r1 and r2 (0 ≤ r1 < r2), i.e.,

f(rc) =







0, rc ≤ r1

2
(

rc−r1
r2−r1

)2

, r1 < rc <
r1+r2

2

1− 2
(

r2−rc
r2−r1

)2

, r1+r2
2 ≤ rc < r2

1, rc ≥ r2

(11)

and r1 = 0.02 and r2 = 0.15 are used in this paper. f(rc)
can be modified according to the user’s requirement about
sufficient coverage.

F. Degree of Usefulness, U

The degree of usefulness, U , as its name suggests, de-
scribes how useful a summary is. A rule is useful if and
only if:

1) It has high degree of truth, i.e., most of the data
satisfying the rule’s antecedents also have the behavior
described by its consequent.

2) It has sufficient coverage, i.e., enough data are de-
scribed by it.

Hence, U is computed as

U = min(T,C) (12)
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Fig. 1. The S-shape function f(rc) used in this paper.

G. Degree of Outlier, O

Novelty means unexpectedness. In this paper unexpect-
edness is represented by the degree of outlier, O, which
indicates the possibility that a rule describes only outliers
instead of a useful pattern. Clearly, the degree of sufficient
coverage for an outlier rule must be very small, i.e., it only
describes very few data; however, small C alone is not
enough to identify outliers rules, and the degree of truth
should also be considered. When C is small, T can be small
(close to 0), medium (around 0.5) or large (close to 1), as
shown in Fig. 2, where the rule “IF v1 is Low, THEN v2 is
High” is illustrated for three different cases:

1) For the rule illustrated by the shaded region in
Fig. 2(a), T is large because all data satisfying the
antecedent (v1 is Low) also satisfy the consequent (v2
is High), i.e.,

∑M

m=1 min(µLow(v
m
1 ), µHigh(v

m
2 )) is

close to
∑M

m=1 µLow(v
m
1 ). Visual inspection suggests

that this rule should be considered as an outlier because
the data described by it are isolated from the rest.

2) For the rule illustrated by the shaded region in
Fig. 2(b), T is small because most data satisfying the
antecedent (v1 is Low) do not satisfy the consequent

(v2 is High), i.e.,
∑M

m=1min(µLow(v
m
1 ), µHigh(v

m
2 ))

much smaller than
∑M

m=1 µLow(v
m
1 ). Visual inspec-

tion suggests that this rule should also be considered as
an outlier because the data described by it are isolated
from the rest.

3) For the rule illustrated by the shaded region
in Fig. 2(c), T is medium because the data
satisfying the antecedent (v1 is Low) are dis-
tributed somewhat uniformly in the v2 domain, i.e.,
∑M

m=1 min(µLow(v
m
1 ), µHigh(v

m
2 )) is about half of

∑M

m=1 µLow(v
m
1 ). By visual inspection, this rule

should not be considered as an outlier (although it is
not a good rule as U would be small) because its data
are not so isolated from the rest.

In summary, an outlier rule must satisfy:

1) The degree of truth, T , must be very small or very
large.

2) The degree of sufficient coverage, C, must be very
small.

Finally, note that the purpose of finding an outlier rule is to
help people identify possible outlier data and then to further
investigate them. So, we need to exclude a rule with T = 0
from being identified as an outlier because in this case the
rule does not describe any data. The following formula is
used in this paper to compute the degree of outlier:

O =

{

min(max(T, 1− T ), 1− C), T > 0
0, T = 0 (13)

The term max(T, 1 − T ) converts a small T (close to 0)
or a large T (close to 1) to a large number in [0, 1],
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Fig. 2. Three cases for the rule “IF v1 is Low, THEN v2 is High,” whose
C is small. (a) T is large, (b) T is small, and (c) T is medium.

which is required by the first criterion of an outlier rule, and
min(max(T, 1 − T ), 1 − C) further imposes the constraint
that C must be small, which is the second criterion for an
outlier rule. Note that the closer O is to 1, the more a rule
is judged to be an outlier.

A graph illustrating the dependence of U in (12) and O
in (13) on T and C is shown in Fig. 3. U or O increases as
(T,C) moves in the directions indicated by the arrows, e.g.,
U moves toward 1 as both T and C increase.

0 1

1

T

C

U

O O

Fig. 3. Illustration of useful rules and outlier rules determined by T and
C.

H. Degree of Simplicity, S

The simplicity of a summary can be measured by its length,
i.e., how many antecedents and consequents the rule has. We



define the degree of simplicity, S, of a rule by:

S = 22−l (14)

where l is the total number of antecedents and consequents of
the rule. Clearly, S ∈ (0, 1], and the simplest rule (S = 1) has
only one antecedent and one consequent. As the number of
antecedents and/or consequents increases, S decreases, and
a rule becomes more difficult to understand.

I. Multi-Antecedent Multi-Consequent (MAMC) Rules

The generalization of the results for SASC rules to MAMC
rules is straightforward. Consider an MAMC rule:

IF X1 is/has S1 and ... and XK is/has SK , THEN

XK+1 is/has SK+1 and ... and XN is/has SN [Q] (15)

The degree of truth, T , is computed as

T =
c
D
(S1, ..., SN )

c
D
(S1, ..., SK)

(16)

and C is computed by redefining tm as

tm =

{

1, µSn
(vmn ) > 0, ∀n = 1, ..., N

0, otherwise
(17)

Once rc is obtained, C is computed by (10). Because both
T and C are crisp numbers, (12) and (13) can again be used
to compute U and O. S is still computed by (14).

III. LINGUISTIC SUMMARIZATION USING IT2 FSS

In this section we extend the results in the previous section
to IT2 FSs.

A. Why IT2 FSs Should Be Used to Model Words

People communicate using words. There are at least two
types of uncertainties associated with a word [22], [37]:
intra-personal uncertainty and inter-personal uncertainty.
Intra-personal uncertainty describes [22] “the uncertainty a
person has about the word.” It is also explicitly pointed out
by Wallsten and Budescu [37] as “except in very special
cases, all representations are vague to some degree in the
minds of the originators and in the minds of the receivers,”
and they suggest to model it by a T1 FS. Inter-personal
uncertainty describes [22] “the uncertainty that a group of
people have about the word.” It is pointed out by Mendel
[21] as “words mean different things to different people”
and Wallsten and Budescu [37] as “different individuals
use diverse expressions to describe identical situations and
understand the same phrases differently when hearing or
reading them.” Because an IT2 FS has an FOU which can
be viewed as a group of T1 FSs (see Fig. 4), it can model
both types of uncertainty [22]; hence, we suggest IT2 FSs be
used in modeling words [20]–[22], [25], [40]. Additionally,
Mendel [23] has explained why it is scientifically incorrect
to model a word using a T1 FS, i.e., (1) A T1 FS for a
word is well-defined by its membership function (MF) that
is totally certain once all of its parameters are specified; (2)
words mean different things to different people, and so are
uncertain; and, therefore, (3) it is a contradiction to say that
something certain can model something that is uncertain.

0 10
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0 10
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0 10

Moderate

0 10

Large

0 10

Very large

Fig. 4. Five examples of word FOUs obtained from the Interval Approach
[18]. The areas between the thick curves are FOUs, and the curves within
the FOUs are embedded T1 FSs mapped from individuals’ endpoint data.

B. LS Using IF-THEN Rules and IT2 FSs

When IT2 FSs are used in a LS to generate IF-THEN
rules, our canonical form in (2) becomes:

IF X1 is/has S̃1, THEN X2 is/has S̃2 [Q] (18)

where S̃1 and S̃2 are words modeled by IT2 FSs, and Q ∈
[0, 1] is a quality measure.

Next we explain how to compute the five different quality
measures.

C. Quality Measures for LS Using IT2 FSs

Recall from (7) that the degree of truth for LS using T1
FSs is computed based on the cardinalities of T1 FSs on a
database D. To extend that result to IT2 FSs, the following
definitions are needed.

Definition 3: The cardinality of an IT2 FS S̃1 on dataset
D is defined as

CD(S̃1) ≡ [c
D
(S1), cD(S1)] =

[
M∑

m=1

µS
1
(vm1 ),

M∑

m=1

µS1
(vm1 )

]

(19)

and the average cardinality is

c
D
(S̃1) =

c
D
(S1) + c

D
(S1)

2
. � (20)

Definition 4: The joint cardinality of IT2 FSs
{S̃1, ..., S̃N} on database D is defined as

CD(S̃1, ..., S̃N) ≡
[
c
D
(S1, ..., SN ), c

D
(S1, ..., SN )

]

=

[
M∑

m=1

min{µS
1
(vm1 ), ..., µS

N
(vmN )},

M∑

m=1

min{µS1
(vm1 ), ..., µSN

(vmN )}

]

(21)

and the average joint cardinality is

c
D
(S̃1, ..., S̃N) =

c
D
(S1, ..., SN ) + c

D
(S1, ..., SN )

2
. � (22)

By substituting the cardinalities in (7) by their respective
average cardinalities, T in (18) is computed as

T =
c
D
(S̃1, S̃2)

c
D
(S̃1)

. (23)

which is essentially Vlachos and Sergiadis’s subsethood
measure [36], [40], [42] for interval-valued fuzzy sets.

For LS using IT2 FSs, rc is still computed by (8), but tm
is defined differently:

tm =

{
1, µS1

(vm1 ) > 0 and µS2
(vm2 ) > 0

0, otherwise
(24)

i.e., we count all objects with non-zero membership on
both antecedent and consequent. Once rc is obtained, C is
computed by (10).



Because both T and C are crisp numbers, (12) and (13)
can again be used to compute U and O. S is still computed
by (14).

D. Multi-Antecedent Multi-Consequent Rules

The generalization of the results for SASC rules to MAMC
rules is straightforward. Consider an MAMC rule:

IF X1 is/has S̃1 and ... and XK is/has S̃K , THEN

XK+1 is/has S̃K+1 and ... and XN is/has S̃N [Q] (25)

The degree of truth, T , is computed as

T =
c
D
(S̃1, ..., S̃N )

c
D
(S̃1, ..., S̃K)

(26)

and rc is computed by redefining tm as

tm =

{
1, µSn

(vmn ) > 0, ∀n = 1, ..., N
0, otherwise

(27)

Once rc is obtained, C is computed by (10). Because both
T and C are crisp numbers, (12) and (13) can again be used
to compute U and O. S is still computed by (14).

IV. EXAMPLE

The Haberman’s survival dataset [1] is used as an example
to illustrate our LS approach. It contains 306 cases on the
survival of patients who had undergone surgery for breast
cancer. LS was used to find the relationship between the
following inputs and whether or not a patient survived 5
years or longer:

1) Age: The age of the patient at the time of operation.
2) Year: The patient’s year of operation.
3) #Nodes: The number of positive axillary nodes de-

tected.

Figs. 5-8 show the top 10 rules when T , C, U and O
are used as the ranking criterion, respectively. The cases
are displayed by a Parallel Coordinates approach [2] in the
middle of the GUI, where each coordinate represents an
attribute, and the two numbers labeled at the two ends of
each coordinate represent the range of that attribute, e.g.,
observe from Fig. 5 that Age has range [30, 83]. Each case
is represented in the middle of Fig. 5 as a piece-wise linear
curve. The blue curves represent those cases supporting the
current rule under consideration (i.e., those cases satisfying
both the antecedents and the consequent of the rule), and
the strength of supporting is proportional to the depth of the
blue color. The red curves represent those cases violating the
current rule (i.e., those cases satisfying only the antecedents
of the rule), and the strength of violating is proportional
to the depth of the red color. The black curves are cases
irrelevant to the current rule (i.e., those cases not satisfying
the antecedents of the rule). The light green region indicates
the area covered by the current rule.

The bottom axes in Fig. 5 shows the IT2 FSs used for
each attribute. The IT2 FSs that are used in the current rule
are highlighted in green and their names are also displayed.

Observe:

1) From Fig. 5, when T is used as the ranking criterion, a
rule with high T may describe only very few cases, so
it is very possible that this rule only describes outliers
and hence cannot be trusted. This suggests that T alone
is not a reliable quality measure for LS.

2) From Fig. 6, when C is used as the ranking criterion,
a rule with high C may have a low degree of truth.
So, C alone is not a good quality measure, either.

3) From Fig. 7, when U is used as the ranking criterion,
a rule with high U has both high degree of truth and
sufficient coverage, and hence it describes a useful rule.
So, U is a comprehensive and reliable quality measure
for LS.

4) From Fig. 8, when O is used as the ranking criterion, a
rule with high O usually describes a very small number
of cases, which should be considered as outliers. So,
O is useful in finding unexpected data and rules.

In summary, it appears that U and O are better quality
measures for LS than T which is dominant in previous LS
literature: a high U identifies a useful rule with both high
degree of truth and sufficient coverage, whereas a high O
identifies outliers in the dataset that are worthy of further
investigation.

Fig. 5. Haberman’s Survival Dataset: Top 10 rules according to T , the
degree of truth. The middle and bottom parts illustrate the 6th rule.

Finally, note that Figs. 5-8 are only used to illustrate
the difference among the four quality measures. In prac-
tice, linguistic summarization can be made more useful by
specifying an (or several) antecedent and study what rules
it leads to, e.g., what are the top rules if Age is Around35,
or by specifying a consequent and study what combinations
of antecedents lead to it, e.g., what antecedents lead to the
consequent Survival is No. Due to space limit, the details
will be reported in a forthcoming journal article.

V. DISCUSSIONS

In this section the relationship between LS and the Wang-
Mendel (WM) method [21], [39], a simple yet effective
method to generate fuzzy rules from training examples, is
discussed. Because currently the WM method mainly focuses
on T1 FSs, only T1 FSs are used in the discussion; however,
our results can be extended to IT2 FSs without problems.

We use Fig. 9, where the 18 training data points are
represented by squares1, to introduce its idea:

1) Each input (x) and output (y) domain is partitioned
into 2L + 1 (an odd number) overlapping intervals,
where L can be different for each variable. Then, MFs

1Three points are represented by different shapes only for easy reference
purpose.



Fig. 6. Haberman’s Survival Dataset: Top 10 rules according to C, the
degree of sufficient coverage. The middle and bottom parts illustrate the
10th rule.

Fig. 7. Haberman’s Survival Dataset: Top 10 rules according to U , the
degree of usefulness. The middle and bottom parts illustrate the first rule.

and labels are assigned to these intervals. In Fig. 9,
each of the x and y domains is partitioned into three
overlapping intervals by the FSs Low, Medium and
High. An interval in the x domain and an interval in
the y domain together determine a region in the input-
output space, e.g., the region determined by High x
and Low y is shown as the shaded region in the lower
right corner of Fig. 9.

2) Because of overlapping MFs, it frequently happens that
a datum is in more than one region, e.g., the diamond
in Fig. 9 belongs to the region determined by High x
and Low y, and also to the region determined by High
x and Medium y. For each (x, y), one evaluates its
degrees of belonging in regions where it occurs, assigns
it to the region with maximum degree, and generates

Fig. 8. Haberman’s Survival Dataset: Top 10 rules according to O, the
degree of outlier. The middle and bottom parts illustrate the first rule.

a rule from it. For example, the degree of belonging
of the diamond in Fig. 9 to the region determined by
High x and Low y (the shaded region in the lower right
corner) is µHigh(x)µLow(y) = 1 × 0.1 = 0.1, and its
degree of belonging to the region determined by High
x and Medium y is µHigh(x)µMedium(y) = 1×0.8 =
0.8; so, the diamond should be assigned to the region
determined by High x and Medium y. Consequently,
the corresponding rule generated from this diamond is

IF x is High, THEN y is Medium (28)

and it is also assigned a degree of 0.8. Similarly, a rule
generated from the cross in Fig. 9 is

IF x is High, THEN y is Low (29)

and it has a degree of µHigh(x)µLow(y) = 1× 1 = 1.
3) To resolve conflicting rules, i.e., rules with the same

antecedent MFs and different consequent MFs, one
chooses the rule with the highest degree and discards
all other rules, e.g., Rules (28) and (29) are conflicting,
and Rule (29) is chosen because it has a higher degree.

Finally, the three rules generated by the WM method
for the Fig. 9 data are:

IF x is Low, THEN y is High

IF x is Medium, THEN y is Medium

IF x is High, THEN y is Low

The first rule seems counter-intuitive, but it is a true
output of the WM method. It is generated by the
circle in Fig. 9 with a degree µLow(x)µHigh(y) =
1 × 1 = 1, i.e., its degree is higher than two
other possible rules, IF x is Low, THEN y is Low and
IF x is Low, THEN y is Medium, through these two
rules have more data to support them and hence look
more reasonable. Note, however, that this example
considers an extreme case. In practice the WM method
usually generates very reasonable rules, which is why
it is popular.



Once the rules are generated, the degrees associated
with them are discarded as they are no longer useful.
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Fig. 9. An example to illustrate the difference between the WM method
and LS. When x is Low, the WM method generates a rule “IF x is Low,
THEN y is High” whereas LS generates a rule “IF x is Low, THEN y is
Low.”

Example 1: Fig. 9 can also be used to illustrate the
difference between the WM method and LS. Consider the
shaded region where x is Low. There are three candidates
for a rule in this region:

IF x is Low, THEN y is High (30)

IF x is Low, THEN y is Medium (31)

IF x is Low, THEN y is Low (32)

For Rule (30),

c
D
(Lowx,Highy) =

18∑

m=1

min(µLowx
(xm), µHighy

(ym)) = 1

(33)

c
D
(Lowx) =

18∑

m=1

µLowx
(xm) = 12.8 (34)

T =
c
D
(Lowx, Highy)

c
D
(Lowx)

= 0.08 (35)

Because the dataset consists of 18 points and there is only
one datum that falls in the region determined by Low x and
High y, the coverage ratio [see (8)] and degree of sufficient
coverage [see (10)] are

rc = 1/18 (36)

C = f(rc) = 0.15 (37)

and hence U = min(T,C) = 0.08 and O = min(max(T, 1−
T ), 1− C) = min(max(0.08, 0.92), 1− 0.15) = 0.85.

Similarly, for Rule (31) LS gives:

T = 0.31, C = 1, U = 0.31, O = 0 (38)

and for Rule (32), LS gives:

T = 0.71, C = 1, U = 0.71, O = 0 (39)

By ranking U and O, LS would select Rule (32) as the
most useful rule with U = 0.71 and Rule (30) as an outlier
with O = 0.85. These results are more reasonable than the
rules generated by the WM method.

Repeating the above procedure for the other two regions,
the following three rules are generated when U is used as
the ranking criterion:

IF x is Low, THEN y is Low
T = 0.71, C = 1, U = 0.71, O = 0

IF x is Medium, THEN y is Medium
T = 0.82, C = 1, U = 0.82, O = 0

IF x is High, THEN y is Low
T = 0.57, C = 0.82, U = 0.57, O = 0.18. �

In summary, the differences between the WM method and
LS are:

1) The WM method tries to construct a predictive model
whereas LS tries to construct a descriptive model.
According to [7], “a descriptive model presents, in
convenient form, the main features of the data. It is
essentially a summary of the data, permitting us to
study the most important aspects of the data without
their being obscured by the sheer size of the data set. In
contrast, a predictive model has the specific objective
of allowing us to predict the value of some target
characteristic of an object on the basis of observed
values of other characteristics of the object.”

2) Both methods partition the problem domain into sev-
eral smaller regions and try to generate a rule for each
region; however, the WM method generates a rule for
a region as long as there are data in it, no matter how
many data are there, whereas LS does not, e.g., if a
region has very few data in it, then these data may be
considered as outliers and no useful rule is generated
for this region.

3) The rules obtained from LS have several quality
measures associated with them, so the rules can be
sorted according to different criteria, whereas the rules
obtained from the WM method are considered equally
important2.

VI. CONCLUSIONS

LS is a data mining or knowledge discovery approach to
extract patterns from databases. Many authors have used this
technique to generate summaries like “Most senior workers
have high salary,” which can be used to better understand
and communicate about data; however, none of them has
used it to generate IF-THEN rules like “IF X is large and
Y is medium, THEN Z is small,” which not only facilitate
understanding and communication of data, but also can be
used in decision-making. In this paper a LS approach to
generate IF-THEN rules has been proposed. Both type-1
and interval type-2 fuzzy sets are considered. Five quality
measures for such summaries have been proposed:

1) The degree of truth, which quantifies the validity of a
rule.

2) The degree of sufficient coverage, which describes how
many data support a rule and is related to the generality
of the rule.

3) The degree of usefulness, which finds rules with both
high validity and sufficient coverage.

4) The degree of outlier, which describes the novelty of a
rules, i.e., the degree to which the summaries deviate
from our expectations.

5) The degree of simplicity, which quantifies the syntactic
complexity of the summaries.

2There is an improved version of the WM method [38] that assigns a
degree of truth to each rule; however, the degree of truth is computed
differently from T in this paper, and the rule consequents are numbers
instead of words modeled by FSs; so, it is not considered in this paper.



Among them, the degree of usefulness is especially useful
in finding the most reliable and representative rules, and the
degree of outlier can be used to identify outlier rules and data
for close-up investigation. These five quality measures also
correspond to the concepts of validity, generality, usefulness,
novelty and simplicity, five essential measures of a summary
proposed by Hirota and Pedrycz [8].

Our future work includes:

1) To further study the applications of LS, e.g., how to
use LS to rank the importance of inputs and hence to
select the most important ones.

2) To design more efficient algorithms for LS. Currently
we use an exhaustive search method, where all possible
combinations of rules are evaluated and then ranked
according to a certain quality measure to find the
top rules. The computational cost of this approach in-
creases rapidly when the size of the database increases,
and/or the number of antecedents increases, and/or the
number of FSs associated with each attribute increases.
More efficient algorithms are necessary to facilitate the
applications of LS. One idea is to use some heuristics
to eliminate some less promising rules from evaluation.
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