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Linguistic Summarization Using IF–THEN Rules
and Interval Type-2 Fuzzy Sets

Dongrui Wu, Member, IEEE, and Jerry M. Mendel, Life Fellow, IEEE

Abstract—Linguistic summarization (LS) is a data mining or
knowledge discovery approach to extract patterns from databases.
Many authors have used this technique to generate summaries
like “Most senior workers have high salary,” which can be used
to better understand and communicate about data; however, few
of them have used it to generate IF–THEN rules like “IF X is
large and Y is medium, THEN Z is small,” which not only facil-
itate understanding and communication of data but can also be
used in decision-making. In this paper, an LS approach to generate
IF–THEN rules for causal databases is proposed. Both type-1 and
interval type-2 fuzzy sets are considered. Five quality measures—
the degrees of truth, sufficient coverage, reliability, outlier, and
simplicity—are defined. Among them, the degree of reliability is
especially valuable for finding the most reliable and representa-
tive rules, and the degree of outlier can be used to identify outlier
rules and data for close-up investigation. An improved parallel
coordinates approach for visualizing the IF–THEN rules is also
proposed. Experiments on two datasets demonstrate our LS and
rule visualization approaches. Finally, the relationships between
our LS approach and the Wang–Mendel (WM) method, percep-
tual reasoning, and granular computing are pointed out.

Index Terms—Data mining, fuzzy set (FS), granular computing,
IF–THEN rules, interval type-2 (IT2) FS, knowledge discovery, lin-
guistic summarization (LS), parallel coordinates, perceptual rea-
soning, rule visualization, Wang–Mendel (WM) method.

I. INTRODUCTION

THE RAPID progress of information technology has made
huge amounts of data accessible to people. Unfortunately,

the raw data alone are often hardly understandable and do
not provide knowledge, i.e., frequently people face the “data
rich, information poor” dilemma. Data-mining approaches to
automatically summarize the data and output human-friendly
information are highly desirable. According to Mani and
Maybury [35], “summarization is the process of distilling the
most important information from a source (or sources) to pro-
duce an abridged version for a particular user (or users) and
task (or tasks).” Particularly, data summarization in this paper
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means to [48] “grasp and briefly describe trends and character-
istics appearing in a dataset, without doing (explicit) manual
‘record-by-record’ analysis.”

There can be two approaches to summarize a dataset: numer-
ical summarization and linguistic summarization (LS). Statis-
tical characteristics, such as mean, median, variance, etc., are
examples of numerical summarization; however, as pointed out
by Yager [75], “summarization would be especially practicable
if it could provide us with summaries that are not as terse as
the mean, as well as treating the summarization of nonnumeric
data.” This suggests that LS of databases, which outputs sum-
maries like “Most senior workers are well-paid” or “IF X is
large and Y is medium, THEN Z is small,” is more favorable,
because it can provide richer and more easily understandable
information, and it also copes well with nonnumeric data.

There are many approaches for LS of databases [9], [10],
[53], [55], and time series [7], [25]. The fuzzy set (FS) based
approach, introduced by Yager [75]–[78] and advanced by many
others [13], [25], [28], [48], [53], [56], is the most popular one.
It has been used in

1) LS of sales data [26]–[28], e.g., about one half of sales in
autumn is of accessories, much sales on saturday is about
noon, etc.;

2) LS of worker information [47], [50], e.g., about half of
workers are about 30, many of workers, who are about 30
earn about 4000, etc.;

3) LS of the performance of intelligent algorithms [47], e.g.,
about half of scores given by Algorithm 2 are equal to
scores by Expert 3, many scores given by Algorithm 1 are
equal or almost equal to the median, etc.;

4) LS of time series [25], e.g., among all trends of a low
variability most are short, among all medium trends, at
least around a half is of medium variability, etc.

Most of the previous works focus on type-1 (T1) FSs [38],
[80]. Niewiadomski et al. [47]–[52] are to date the only ones
working on LS using interval and general type-2 FSs (see [38],
[40]–[42], [46], [64], [81]; see also Section III-A).

In this paper, we focus on generating IF–THEN rules from
causal1 databases, e.g., “IF X is large and Y is medium, THEN
Z is small,” because our primary goal is to use LS to generate a
rulebase for decision-making [43], [44], [46], [64], [66], and IF–
THEN rules are used in almost all fuzzy logic systems rather
than Yager et al.’s summaries. There have been only a few
publications [20]–[22] in this direction, e.g., Ishibuchi et al. [21]

1According to Wikipedia [2], “causality is the relationship between an event
(the cause) and a second event (the effect), where the second event is a conse-
quence of the first.” In this paper, we consider more general cases, where there
can be multiple causes.

1063-6706/$26.00 © 2010 IEEE
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TABLE I
EXPLANATIONS OF THE SYMBOLS USED IN THIS PAPER

and Ishibuchi and Yamamoto [22] generated weighted rules like
“IF x1 is small and x2 is large, THEN Class1 with w” for pattern
classification. Our work can be viewed as an extension of theirs.
Our contributions are as follows.

1) We use interval type-2 (IT2) FSs instead of T1 FSs in
the IF–THEN rules. As argued in Section III-B, IT2 FSs
enables us to model both intrapersonal and interpersonal
uncertainties about linguistic terms, whereas T1 FSs can
only model intrapersonal uncertainties.

2) We introduce five quality measures (QMs) (the degrees
of truth, sufficient coverage, reliability, outlier, and sim-
plicity) to quantify different properties of the IF–THEN
rules. Degrees of reliability and outliers, which are the
most important QMs in this paper, have not been used by
others.

3) We propose a parallel coordinates approach for rule vi-
sualization. It is the first time that such a visualization
approach is introduced to the fuzzy logic community.

The rest of this paper is organized as follows: Section II in-
troduces our LS approach to generate IF–THEN rules using T1
FSs and its associated QMs. Section III extends the results in
Section II to IT2 FSs. Section IV illustrates our LS approach
for two datasets. Section V discusses the relationships between
our LS approach and the Wang–Mendel (WM) method, per-
ceptual reasoning, and granular computing. Section VI draws
conclusions.

II. LINGUISTIC SUMMARIZATION USING T1 FUZZY SETS

The main purpose of this paper is to propose an LS approach
using IT2 FSs. For ease in understanding, we start with LS using
T1 FSs; however, this does not mean we advocate that T1 FSs
should be used in LS. In fact, we always argue that IT2 FSs
should be used in LS, because they can model both intraper-
sonal and interpersonal uncertainties, as explained in the next
section.

A. Data Description

Let us define2 a set of M objects Y = {y1 , y2 , . . . , yM }
and a set of N attributes V = {v1 , v2 , . . . , vN }. Let Xn (n =
1, 2, . . . , N) be the domain of vn . Then, vn (ym ) ≡ vm

n ∈ Xn

is the value of the nth attribute for the mth object (m =
1, 2, . . . ,M ). Hence, the database D, which collects information
about elements from Y, is in the form of

D = {〈v1
1 , v1

2 , . . . , v1
N 〉, 〈v2

1 , v2
2 , . . . , v2

N 〉, . . .
〈vM

1 , vM
2 , . . . , vM

N 〉}
≡ {d1 ,d2 , . . . ,dM } (1)

where dm = 〈vm
1 , vm

2 , . . . , vm
N 〉 is a complete record about ob-

ject ym .
For example, for the auto miles per gallon (MPG) dataset [1]

used in Section IV-A, there are 392 auto models (M = 392), and
hence, Y = {Model1, Model2, . . . , Model392}. Each model
has eight attributes (N = 8), and V = 〈#cylinder, displace-
ment, horsepower, weight, acceleration, year, origin, MPG〉.
For #cylinder, its value ranges from 3 to 8; therefore, its domain
X1 = [3, 8]. Model1, which was a U.S. car made in 1970, has
eight cylinders, 307 displacement, 130 hp, weighs 3504 lb, 12 s
acceleration, and 18 mi/gal. Therefore, the complete record for
Model1 is d1 = 〈 8, 307, 130, 3504, 12, 1970, U.S., 18〉.

B. Linguistic Summarization Using IF–THEN Rules
and Type-1 Fuzzy Sets

Only single-antecedent single-consequent rules are consid-
ered in this section. Multiantecedent multiconsequent rules are
considered in Sections II-J and III-E.

Because we are interested in generating IF–THEN rules from
a causal dataset, our canonical form for LS using T1 FSs is as

2For easy reference, our most frequently used symbols are summarized in
Table I.
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follows:

IF v1 is/has S1 , THEN v2 is/has S2 [QM ] (2)

where S1 and S2 are words modeled by T1 FSs,3 and QM ∈
[0, 1] is a QM, which indicates how good the rule is. One example
of such a rule is as follows:

IF horsepower︸ ︷︷ ︸
v1

is large︸︷︷︸
S1

, THEN MPG︸ ︷︷ ︸
v2

is very low︸ ︷︷ ︸
S2

[QM ].

(3)
Once a dataset is given, the antecedents and consequents of the
rules are determined. A user needs to specify the words used for
each antecedent and consequent, as well as their corresponding
FS models. Then, all possible combinations of the rules can be
constructed. The challenge is to compute QM , which can have
different definitions.

C. Quality Measures of LS Using Type-1 Fuzzy Sets

According to Hirota and Pedrycz [19], the following five
features4 are essential to measure the quality of a summary.

1) Validity: The summaries must be derived from data with
high confidence.

2) Generality: This describes how many data support a
summary.

3) Usefulness: This relates the summaries to the goals of the
user, especially in terms of the impact that these summaries
may have on decision-making. Usefulness is strongly re-
lated to the concept of interestingness, which is [57]
“one of the central problems in the field of knowledge
discovery.”

4) Novelty: This describes the degree to which the summaries
deviate from our expectations, i.e., how unexpected the
summaries are.

5) Simplicity: This measure concerns the syntactic complex-
ity of the summaries. Generally, simpler summaries are
easier to understand and, hence, are preferred.

Next, we propose five QMs for T1 FS LS, correspond-
ing to validity, generality, usefulness, novelty, and simplicity,
respectively.

D. Degree of Truth T

Validity is represented by the degree of truth T , which is
computed as follows:

T =
∑M

m=1 min(μS1 (v
m
1 ), μS2 (v

m
2 ))∑M

m=1 μS1 (vm
1 )

. (4)

T is the same as Kosko’s subsethood measure [30] for T1 FSs.
This kind of formula has also been used in Zadeh’s calculus of
linguistically quantified proposition to assess the truth value of

3These T1 FS word models are predefined before LS is carried out. They can
be easily constructed by users who are familiar with FSs.

4There are many other QMs for association rules in the literature, e.g., con-
firmation measure [14], interestingness measure [11], [12], etc. We use Hirota
and Pedrycz’s five measures, since they adequately quantify the properties of
a summary from different aspects. Other QMs will be considered in our future
research.

a linguistic proposition [83], computing the conditional prob-
ability for fuzzy events [58], the confidence of (fuzzy) associ-
ation rules [11], [20]–[22], the fuzzy matching degree of the
SaintEtiQ approach [54], and the certainty factor of a decision
rule [14]. Roughly speaking, T increases as more data satisfying
the antecedent also satisfy the consequent.

A different representation of the degree of truth T defined in
(4) is introduced next, because it will lead easily to the computa-
tion of T for LS using IT2 FSs, as will be shown in Section III-C;
first, two related definitions are introduced.

Definition 1: The cardinality of a T1 FS S1 on database D is
defined as follows:

c
D
(S1) =

M∑
m=1

μS1 (v
m
1 ) (5)

where vm
1 is the value of the mth datum in the universe of

discourse of S1 .
Definition 2: The joint cardinality of T1 FSs {S1 , . . . , SN }

on database D is defined as follows:

c
D
(S1 , . . . , SN ) =

M∑
m=1

min{μS1 (v
m
1 ), . . . . . . , μSN

(vm
N )}.

(6)
Using the cardinality c

D
(S1) and joint cardinality c

D
(S1 , S2),

(4) can be reexpressed as follows:

T =
c

D
(S1 , S2)
c

D
(S1)

. (7)

It is worthwhile to mention the analogy between (7) and
conditional probability in probability theory. Consider S1 and
S2 in (2) as two events. Then, the conditional probability of S2
given S1 , P (S2 |S1) is computed as follows:

P (S2 |S1) =
P (S1 , S2)

P (S1)
(8)

where P (S1 , S2) is the joint probability of S1 and S2 , and P (S1)
is the probability of S1 . In (7), the numerator can be viewed as
the total degree that S1 and S2 are satisfied simultaneously
[which is analogous to P (S1 , S2)], and the denominator can
be viewed as the total degree that only the prerequisite S1 is
satisfied [which is analogous to P (S1)].

E. Degree of Sufficient Coverage C

Generality is represented by the degree of sufficient coverage
C, which describes whether a rule is supported by enough data.
It is independent of the degree of truth because a rule with high
C may have low T , i.e., there are many data supporting this rule,
but also many data not supporting this rule. To compute C, we
first compute the coverage ratio, which is as follows:

rc =
∑M

m=1 tm
M

(9)

where

tm =
{

1, μS1 (v
m
1 ) > 0 and μS2 (v

m
2 ) > 0

0, otherwise
(10)
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Fig. 1. S-shape function f (rc ) used in this paper.

i.e., rc is the percentage of data, which fit both the antecedent
and the consequent of the rule at nonzero degrees. Because
each rule only covers a small region of the high-dimensional
input–output space, rc is usually very small (e.g., mostly smaller
than 0.1). Therefore, rc = 0.15 may be considered sufficient
coverage with degree 1. The following mapping converts the
coverage ratio into the appropriate degree of sufficient coverage
and agrees with our feeling about sufficient coverage:

C = f(rc) (11)

where f is a function that maps rc into C. The S-shape function
f(rc) used in this paper is shown in Fig. 1. It is determined by
two parameters r1 and r2 (0 ≤ r1 < r2), i.e.,

f(rc) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, rc ≤ r1

2
(

rc − r1

r2 − r1

)2

, r1 < rc <
r1 + r2

2

1 − 2
(

r2 − rc

r2 − r1

)2

,
r1 + r2

2
≤ rc < r2

1, rc ≥ r2

(12)

and r1 = 0.02 and r2 = 0.15 are used in this paper. f(rc) can
be modified according to the user’s requirement about sufficient
coverage.

F. Degree of Reliability R

The degree of reliability R, as its name suggests, describes
how reliable a summary is. A rule is reliable if and only if we
have the following.

1) It has high degree of truth, i.e., most of the data satisfying
the rule’s antecedents also have the behavior described by
its consequent.

2) It has sufficient coverage, i.e., enough data are described
by it.

Hence, R is computed as follows:

R = min(T,C). (13)

G. Degree of Outlier O

Novelty means unexpectedness. There are different under-
standings of unexpectedness, e.g., the degree of appropriate-
ness defined by Kacprzyk and Strykowski [24] considers the
independency of the summarizers. In this paper, unexpected-
ness is related to the degree of outlier O, which indicates the

Fig. 2. Three cases for the rule “IF v1 is Low, THEN v2 is High,” whose C
is small. (a) T is large. (b) T is small. (c) T is medium.

possibility that a rule describes only outliers instead of a useful
pattern. Clearly, the degree of sufficient coverage for an outlier
rule must be very small, i.e., it only describes very few data;
however, small C alone is not enough to identify outliers rules,
and the degree of truth should also be considered. When C is
small, T can be small (close to 0), medium (around 0.5), or large
(close to 1), as shown in Fig. 2, where the rule “IF v1 is Low,
THEN v2 is High” is illustrated for three different cases.

1) For the rule illustrated by the shaded region in
Fig. 2(a), T is large because all data satisfying the an-
tecedent (v1 is Low) also satisfy the consequent (v2 is
High), i.e.,

∑M
m=1 min(μLow (vm

1 ), μHigh(vm
2 )) is close

to
∑M

m=1 μLow (vm
1 ). Visual inspection suggests that this
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Fig. 3. Useful rules and outlier rules determined by T and C .

rule should be considered as an outlier because the data
described by it are isolated from the rest.

2) For the rule illustrated by the shaded region in Fig. 2(b),
T is small because most data satisfying the antecedent (v1
is Low) do not satisfy the consequent (v2 is High), i.e.,∑M

m=1 min(μLow (vm
1 ), μHigh(vm

2 )) much smaller than∑M
m=1 μLow (vm

1 ). Visual inspection suggests that this rule
should also be considered as an outlier because the data
described by it are isolated from the rest.

3) For the rule illustrated by the shaded region in Fig. 2(c),
T is medium because the data satisfying the antecedent
(v1 is Low) are distributed somewhat uniformly in the v2
domain, i.e.,

∑M
m=1 min(μLow (vm

1 ), μHigh(vm
2 )) is about

half of
∑M

m=1 μLow (vm
1 ). By visual inspection, this rule

should not be considered as an outlier (although it is not
a good rule as R would be small) because its data are not
so isolated from the rest.

In summary, an outlier rule must satisfy the following.
1) The degree of truth T must be very small or very large.
2) The degree of sufficient coverage C must be very small.
Finally, note that the purpose of finding an outlier rule is to

help people identify possible outlier data, and then, to further
investigate them. Therefore, we need to exclude a rule with
T = 0 from being identified as an outlier because in this case
the rule does not describe any data. The following formula is
used in this paper to compute the degree of outlier is as follows:

O =
{

min(max(T, 1 − T ), 1 − C), T > 0

0, T = 0.
(14)

The term max(T, 1 − T ) converts a small T (close to 0) or a
large T (close to 1) to a large number in [0, 1], which is required
by the first criterion of an outlier rule, and min(max(T, 1 −
T ), 1 − C) further imposes the constraint that C must be small,
which is the second criterion for an outlier rule. Note that the
closer O is to 1, the more a rule is judged to be an outlier.

A graph illustrating the dependence of R in (13) and O in
(14) on T and C is shown in Fig. 3. R or O increases as (T,C)
moves in the directions indicated by the arrows, e.g., R moves
toward 1 as both T and C increase.

H. Degree of Simplicity S

The simplicity of a summary can be measured by its length,
i.e., how many antecedents and consequents the rule has. We

TABLE II
CORRESPONDENCES BETWEEN THE CONCEPTS PROPOSED BY HIROTA AND

PEDRYCZ [19] AND OUR QMS

define the degree of simplicity S of a rule by

S = 22−l (15)

where l is the total number of antecedents and consequents of
the rule. Clearly, S ∈ (0, 1], and the simplest rule (S = 1) has
only one antecedent and one consequent. As the number of
antecedents and/or consequents increases, S decreases, and a
rule becomes more difficult to understand and communicate.

I. Summary of the Quality Measures

A summary of the correspondences between the concepts
proposed by Hirota and Pedrycz [19] and our QMs is given
in Table II. Note that Hirota and Pedrycz only proposed the
concepts but did not define these measures.

J. Multiantecedent Multiconsequent Rules

The generalization of the results for single-antecedent single-
consequent rules to multiantecedent multiconsequent rules is
straightforward. Consider the following multiantecedent multi-
consequent rule:

IF v1 is/has S1 and . . . and vK is/has SK

THEN vK +1 is/has SK +1 and . . . and vN is/has SN [QM ].

(16)

The degree of truth T is computed as follows:

T =
c

D
(S1 , . . . , SN )

c
D
(S1 , . . . , SK )

. (17)

The coverage ratio rc is computed by redefining tm as follows:

tm =
{

1, μSn
(vm

n ) > 0 ∀n = 1, . . . , N

0, otherwise
(18)

Once rc is obtained, C is computed by (11). Because both T
and C are crisp numbers, (13) and (14) can again be used to
compute R and O. The degree of simplicity S is still computed
by (15).

Comment: Lee [31] considers multiantecedent multiconse-
quent rules in fuzzy logic control. By assuming, the consequents
are independent control actions, he proposes to decompose such
a rule into q multiantecedent single-consequent rules (see [31,
p. 426]), where q is the number of consequents in the original
multiantecedent multiconsequent rule. Although his approach
is appropriate for fuzzy logic control, it may not be applied
to knowledge extraction because by using “and” to connect a
group of consequents and computing a single degree of truth,
we consider explicitly the correlations among the consequents
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(i.e., Lee’s assumption that the consequents are independent
does not hold here), whereas the correlations are lost when a
multiantecedent multiconsequent rule is decomposed into multi-
antecedent single-consequent rules. For example, the rule in (16)
is not equivalent to the combination of the following N − K
multiantecedent single-consequent rules:

IF v1 is/has S1 and . . . and vK is/has SK

THEN vK +1 is/has SK +1 [T1 ]

IF v1 is/has S1 and . . . and vK is/has SK

THEN vK +2 is/has SK +2 [T2 ]

...

IF v1 is/has S1 and . . . and vK is/has SK

THEN vN is/has SN [TN −K ].

III. LINGUISTIC SUMMARIZATION USING INTERVAL

TYPE-2 FUZZY SETS

The canonical form of LS using IT2 FSs and its associated
QMs are proposed in this section. All are extensions of the
previous section’s results on LS using T1 FSs.

A. Interval Type-2 Fuzzy Sets

A T1 FS has membership grades that are crisp, whereas an
IT2 FS [38], [40]–[42], [46], [64], [81] has membership grades
that are intervals. Such a set is particularly useful in circum-
stances, where it is difficult to determine the exact membership
function (MF) for an FS, e.g., approximate reasoning [15], [66],
[69], recognition and classification [36], [74], [86], system
modeling and control [5], [6], [16], [17], [23], [32], [33], [38],
[61], [70]–[73], word modeling [34], [45], [46], [67], etc.

Definition 3 [38], [41]: An IT2 FS Ã is characterized by the
MF μÃ (x, u), where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã = {((x, u), μÃ (x, u) = 1)|∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]}
(19)

where x, which is called the primary variable, has domain
X; u ∈ [0, 1], which is called the secondary variable, has do-
main Jx ⊆ [0, 1] at each x ∈ X; Jx is also called the primary
membership of x, and is defined in (21), and μÃ (x, u), which
is called a secondary grade of x, equals 1 for ∀x ∈ X and
∀u ∈ Jx ⊆ [0, 1].

An example of an IT2 FS is shown in Fig. 4. It can be viewed
as a blurred T1 FS, and all elements in the blurred area have the
same secondary membership grade, which is 1.

Definition 4: Uncertainty about Ã is conveyed by the union
of all its primary memberships, which is called the footprint of
uncertainty (FOU) of Ã (see Fig. 4), i.e.,

FOU(Ã) =
⋃

∀x∈X

Jx. (20)

The size of an FOU is directly related to the uncertainty that
is conveyed by an IT2 FS. Therefore, an FOU with more area is
more uncertain than one with less area.

Fig. 4. IT2 FS and its associated quantities.

Definition 5: The upper MF and lower MF of Ã are two T1
FSs A and A that bound the FOU (see Fig. 4).

Note that the primary membership Jx is an interval, i.e.,

Jx =
[
μA (x), μA (x)

]
. (21)

Using (21), FOU(Ã) can also be expressed as follows:

FOU(Ã) =
⋃

∀x∈X

[
μA (x), μA (x)

]
. (22)

A very compact way to describe an IT2 FS is as follows:

Ã = 1/FOU(Ã) (23)

where this notation means that the secondary grade equals 1 for
all elements of FOU(Ã). Because all of the secondary grades
of an IT2 FS equal 1, these secondary grades convey no useful
information; hence, an IT2 FS is completely described by its
FOU.

Definition 6: An embedded T1 FS Ae of Ã is as follows:

Ae =
∫

x∈X

u/x, u ∈ Jx (24)

where
∫

means union instead of integral.
The upper and lower MFs represent two embedded T1 FSs.
Finally, note that there are more general T2 FSs [38] for which

the secondary grades are different over the FOU and that an IT2
FS is a special case of those T2 FSs.

B. Which Type of Fuzzy Sets Should Be Used to Model Words
in Linguistic Summarization

Both T1 and IT2 FSs have been used in modeling words [38],
[84]. In this paper, we suggest that IT2 FSs should be used in
LS for the following reasons.

1) There are at least two types of uncertainties associated
with a word [39], [60]: intrapersonal uncertainty and
interpersonal uncertainty. Intrapersonal uncertainty de-
scribes [39] “the uncertainty a person has about the
word.” It is also explicitly pointed out by Wallsten and
Budescu [60] as “except in very special cases, all repre-
sentations are vague to some degree in the minds of the
originators and in the minds of the receivers,” and they
suggest to model it by a T1 FS. Interpersonal uncertainty
describes [39] “the uncertainty that a group of people
have about the word.” It is pointed out by Mendel [38]
as “words mean different things to different people” and
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Fig. 5. Five examples of word FOUs obtained from the interval approach [34].
The areas between the thick curves are FOUs, and the curves within the FOUs
are embedded T1 FSs mapped from individuals’ endpoint data.

Wallsten and Budescu [60] as “different individuals use
diverse expressions to describe identical situations and
understand the same phrases differently when hearing or
reading them.” Because an IT2 FS has an FOU, which can
be viewed as a group of T1 FSs (see Fig. 5), it can model
both types of uncertainty [39]; hence, we suggest IT2 FSs
be used in modeling words [37]–[39], [46], [64].

2) IT2 FS word models in LS can be constructed from the
interval approach [34] or the enhanced interval approach
[8] (see also Section III-C).By default, both approaches
output an IT2 FS model for each word; however, if there
is only one user, or all users give the same boundary for
a word, then that word is modeled as a T1 FS. Therefore,
starting from IT2 FS word models does not eliminate the
possibility of T1 FS word models but not vice versa.

C. Linguistic Summarization Using IF–THEN Rules and Inter-
val Type-2 Fuzzy Sets

When IT2 FSs are used in LS to generate IF–THEN rules,
our canonical form in (2) becomes

IF v1 is/has S̃1 , THEN v2 is/has S̃2 [QM ] (25)

where S̃1 and S̃2 are words modeled by IT2 FSs, and QM ∈
[0, 1] is a QM.

The IT2 FS word models should be constructed before LS is
carried out. This can be done with the interval approach [34]
or enhanced interval approach [8]. First, for each word in an
application-dependent encoding vocabulary, a group of subjects
are asked the following question:

On a scale of xmin to xmax , what are the end-points of an
interval that you associate with the word ?

After some preprocessing, during which some intervals (e.g.,
outliers) are eliminated, each of the remaining intervals is classi-
fied as either an interior, left-shoulder, or right-shoulder IT2 FS.
Then, each of the word’s data intervals is individually mapped
into its respective T1 interior, left-shoulder, or right-shoulder
MF, after which, the union of all of these T1 MFs is taken. The
result is an FOU for an IT2 FS model of the word. The words and
their FOUs constitute a codebook. A simple codebook is shown
in Fig. 5. Software for the interval approach and enhanced inter-
val approach can be downloaded from J. M. Mendel’s website
at http://sipi.usc.edu/∼mendel.

Next, we explain how to compute the five different QMs.

D. Quality Measures for Linguistic Summarization Using In-
terval Type-2 Fuzzy Sets

Recall from (7) that the degree of truth for LS using T1 FSs
is computed based on the cardinalities of T1 FSs on a database

D. To extend that result to IT2 FSs, the following definitions are
needed.

Definition 7: The cardinality of an IT2 FS S̃1 on dataset D is
defined as follows:

CD(S̃1) ≡ [c
D
(S1), cD

(S1)] =

[
M∑

m=1

μS 1
(vm

1 ),
M∑

m=1

μS 1
(vm

1 )

]
(26)

and the average cardinality is as follows:

c
D
(S̃1) =

c
D
(S1) + c

D
(S1)

2
. (27)

Definition 8: The joint cardinality of IT2 FSs {S̃1 , . . . , S̃N }
on database D is defined as follows:

CD(S̃1 , . . . , S̃N ) ≡
[
c

D
(S1 , . . . , SN ), c

D
(S1 , . . . , SN )

]
=

[
M∑

m=1

min{μS 1
(vm

1 ), . . . , μS N
(vm

N )},

M∑
m=1

min{μS 1
(vm

1 ), . . . , μS N
(vm

N )}
]

(28)

and the average joint cardinality is as follows:

c
D
(S̃1 , . . . , S̃N ) =

c
D
(S1 , . . . , SN ) + c

D
(S1 , . . . , SN )

2
. (29)

A straightforward extension of (7) to LS using IT2 FSs is to
define a truth quantity

T̃ =
CD(S̃1 , S̃2)

CD(S̃1)
. (30)

Because both CD(S̃1 , S̃2) and CD(S̃1) are intervals, T̃ is also an
interval. However, as it is difficult and unnecessary5 to compute
an interval truth quantity, a crisp degree of truth is defined in this
paper based on average cardinalities instead of cardinalities.

By substituting the cardinalities in (7) by their respective
average cardinalities, T in (25) is computed as follows:

T =
c

D
(S̃1 , S̃2)
c

D
(S̃1)

(31)

5T̃ cannot be computed using simple interval arithmetic, i.e.,

T̃ �=

[∑M

m =1 min{μS 1
(vm

1 ), μS 2
(vm

2 )}∑M

m =1 μ
S 1

(vm
1 )

,

∑M

m =1 min{μ
S 1

(vm
1 ), μ

S 2
(vm

2 )}∑M

m =1 μS 1
(vm

1 )

]

because S̃1 appears in both the numerator and the denominator of (30), which
means the same embedded T1 FS of S̃1 must be used in both places in com-
putation, whereas in each of the two endpoints in the aforementioned equation,
different embedded T1 FSs of S̃1 are used in the numerator and the denomi-
nator (e.g., S1 is used in the numerator of the first term in the aforementioned
equation, whereas S1 is used in the denominator). Although it is possible to
derive an interval T̃ based on the representation theorem for IT2 FSs [42], the
computation is complicated, and as explained at the end of this section, it is also
unnecessary.
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which is essentially Vlachos and Sergiadis’s subsethood mea-
sure [59], [64], [68] for interval-valued FSs.

Like its T1 counterpart (see Section II-B), (31) is also anal-
ogous to the conditional probability P (S̃2 |S̃1), which is com-
puted as follows:

P (S̃2 |S̃1) =
P (S̃1 , S̃2)

P (S̃1)
(32)

i.e., c
D
(S̃1 , S̃2) is the total degree that both S̃1 and S̃2 are satisfied

[analogous to P (S̃1 , S̃2)], and c
D
(S̃1) is the total degree that only

the prerequisite S̃1 is satisfied [analogous to P (S̃1)].
For LS using IT2 FSs, the coverage ratio is still computed by

(9), but tm is defined differently

tm =
{

1, μS 1
(vm

1 ) > 0 and μS 2
(vm

2 ) > 0

0, otherwise
(33)

i.e., we count all objects with nonzero membership (i.e., Jx in
(21) does not equal [0, 0]) on both antecedent and consequent.
Once the coverage ratio r is obtained, the degree of sufficient
coverage is computed by (11). Because both T and C are crisp
numbers, (13) and (14) can again be used to compute the degree
of reliability and the degree of outlier. The degree of simplicity
S is still computed by (15).

Comment: A reader may argue that information is lost when
the QM of an IT2 FS linguistic summary is described using a
number instead of an interval. Note that two categories of un-
certainties need to be distinguished here: 1) uncertainties about
the content of an IF–THEN rule, which are represented by IT2
FSs S̃1 and S̃2 ; and 2) uncertainties about the quality of the rule,
which may be described by an interval instead of a number. We
think the first category of uncertainty is more important because
it is the content of a rule that provides knowledge, and hence, it
is necessary to model the terms used in the content of a rule by
IT2 FSs. The QM is used to rank the rules and, hence, to find the
best rules; however, how it should be used in decision-making is
still an open problem. A single-number QM is easier to compute
and more convenient in ranking rules than an interval measure;
therefore, the former is used in this paper.

E. Multiantecedent Multiconsequent Rules

The generalization of the results for single-antecedent single-
consequent rules to multiantecedent multiconsequent rules is
straightforward. Consider the following multiantecedent multi-
consequent rule:

IF v1 is/has S̃1 and . . . and vK is/has S̃K

THEN vK +1 is/has S̃K +1 and . . . and vN is/has S̃N [T ]. (34)

The degree of truth T is computed as follows:

T =
c

D
(S̃1 , . . . , S̃N )

c
D
(S̃1 , . . . , S̃K )

(35)

and the coverage ratio rc is computed by redefining tm as
follows:

tm =
{

1, μS n
(vm

n ) > 0 ∀n = 1, . . . , N

0, otherwise.
(36)

Once rc is obtained, C is computed by (11). Because both T
and C are crisp numbers, (13) and (14) can again be used to
compute R and O. The degree of simplicity S is still computed
by (15).

IV. APPLICATIONS

A MATLAB-based GUI was created to demonstrate the IT2
FS LS approach. Two functions were implemented.

1) Global top rules: Given the number of antecedents, the
program finds top rules that give the maximum T , C, R,
or O.

2) Local top rules: Given the number of antecedents and a
desired attribute, the program finds top rules that contain
that attribute.

Two datasets were used, and their results are presented in this
section.

A. Auto Miles Per Gallon Dataset

The auto MPG dataset was obtained from the University of
California at Irvine (UCI) machine-learning repository [1]. It
contains 392 entries (after removing incomplete entries) about
the configurations of auto models and their MPGs. LS was used
to find the relationship between the following inputs and MPG,
which is a continuous value in [9, 46.6]:

1) #cylinder: Discrete values in {3, 4, 5, 6, 8};
2) Displacement: Continuous values in [68, 455];
3) Horsepower: Continuous values in [46, 230];
4) Weight: Continuous values in [1613, 5140];
5) Acceleration: Continuous values in [8, 24.8];
6) Model year: Integer values in [1970, 1982];
7) Origin: Categorical values in {U.S., Germany, Japan}.
This dataset was chosen because the attributes consist of both

continuous and discrete, and both numerical and categorical,
values. Therefore, the ability of LS to handle diverse attributes
can be demonstrated.

The “global top rules” function is used to automatically find
global top rules according to the ranking criterion a user chooses.
Figs. 6–9 show global top rules when6 T , C, R, and O are used
as the ranking criterion, respectively. A user first specifies the
number of antecedents. The program then computes T , C, R,
and O for all possible combinations of words with such number
of antecedents. By default, top rules are selected according to R
and displayed at the top-left corner of the GUI; however, a user
can change the ranking criterion by clicking on the four push
buttons on the top-right corner of the GUI. The rules are then
updated accordingly.

A user can also click on a certain radio button to select a
specific rule. All cases that support and violate that rule are
displayed by an improved parallel coordinates approach [4] in
the middle of the GUI, where each coordinate represents an
attribute, and the two numbers labeled at the two ends of each
coordinate represent the range of that attribute, e.g., observe

6The degree of simplicity O was not considered because in the GUI, all rules
have the same number of antecedents and consequents, i.e., O for all rules are
equal.
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Fig. 6. Auto MPG dataset. Global top 11–20 rules according to T : the degree
of truth. The middle and bottom parts illustrate the 14th rule.

Fig. 7. Auto MPG dataset. Global top 141–150 rules according to C : the
degree of sufficient coverage. The middle and bottom parts illustrate the 141st
rule.

Fig. 8. Auto MPG dataset. Global top 1–10 rules according to R: the degree
of reliability. The middle and bottom parts illustrate the first rule.

Fig. 9. Auto MPG dataset. Global top 1–10 rules according to O: the degree
of outlier. The middle and bottom parts illustrate the first rule.

from Fig. 6 that #cylinder has range [3, 8]. Each case is rep-
resented in the middle of Fig. 6 as a piecewise linear curve.
The blue curves represent those cases, which support the cur-
rent rule under consideration at degrees larger than 0 (i.e., those
cases satisfying both the antecedents and the consequent of the
rule at degrees larger than 0), and the strength of supporting
is proportional to the depth of the blue color. The red curves
represent those cases violating the current rule (i.e., those cases
satisfying only the antecedents of the rule), and the strength of
violating is proportional to the depth of the red color. The black
curves are cases irrelevant to the current rule (i.e., those cases
not satisfying the antecedents of the rule). The light green region
indicates the area covered by the current rule.

The bottom axes in Fig. 6 show the IT2 FSs used for each
attribute. They were constructed by the authors for illustration
purpose. The IT2 FSs that are used in the current rule are high-
lighted in green, and their names are also displayed.

Observe the following.
1) From Fig. 6, when T is used as the ranking criterion, a

rule with high T may describe very few cases; therefore, it
is very possible that this rule describes only outliers and,
hence, cannot be trusted, e.g., the 14th rule “IF #cylinder
is Three and Displacement is Small, THEN MPG is Small”
has T = 1, but from the middle part of Fig. 6, we see that
only one case falls into the region described by it. Indeed,
this rule seems counterintuitive. This suggests that T alone
is not a reliable QM for LS.

2) From Fig. 7, when C is used as the ranking criterion, a
rule with high C may have a low degree of truth, e.g.,
the 141st rule “IF #cylinder is Four and Weight is Small,
THEN MPG is Small” has C = 1, which means many
cases support this rule, but from the bottom part of Fig. 7,
we see that many cases violate it too (that is why its
T = 0.16, which is a very small number). Indeed, this
rule seems counterintuitive. Therefore, C alone is not a
good QM either.
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Fig. 10. Auto MPG dataset. Local top 1–10 rules according to R: the degree
of reliability. The middle and bottom parts illustrate the first rule.

3) From Fig. 8, when R is used as the ranking criterion,
a rule with high R has both high degree of truth and
sufficient coverage (e.g., the first rule “IF Displacement is
Moderate and Year is Around1977, THEN MPG is Small”
has R = 0.99, and from the middle part of Fig. 8, we
see most cases that fit its antecedents support the rule at
different degrees), and hence, it describes a useful rule.
Therefore, R is a comprehensive and reliable QM for LS.

4) From Fig. 9, when O is used as the ranking criterion, a
rule with high O usually describes a very small number
of cases (e.g., the first rule “IF #cylinder is Three and
Displacement is Small, THEN MPG is Small” has O = 1,
and from the middle part of Fig. 9, we see that only one
case fits this rule), which should be considered as outliers.
Therefore, O is useful in finding unexpected data and
rules.

In summary, it appears that R and O proposed in this paper
are better QMs for LS than T , which is dominant in previous LS
literature: A high R identifies a useful rule with both high degree
of truth and sufficient coverage, whereas a high O identifies
outliers in the dataset that are worthy of further investigation.

The “local top rules” function is very similar to the ‘global top
rules” function, except that an attribute of the rules is specified by
the user, e.g., a user may only want to know what combinations
of attributes would lead to very large MPG. Fig. 10 shows the
local top rules when R is used as the ranking criterion. Observe
that the maximum R for two-antecedent rules, which lead to
very large MPG, is 0.11 (a very small number), which means
that it may be impossible to predict very large MPG using only
two antecedents. Although no reliable rules can be found in this
situation, LS also provides us with valuable information about
the dataset.

B. Pima Indians Diabetes Dataset

The Pima Indians diabetes dataset was also obtained from
the UCI machine-learning repository [3]. It contains 768 cases
from females at least 21 years old of Pima Indian heritage. LS

Fig. 11. Pima Indians diabetes dataset. Global top 1–10 rules according to T :
the degree of truth. The middle and bottom parts illustrate the 10th rule.

Fig. 12. Pima Indians diabetes dataset. Global top 271–280 rules according
to C : the degree of sufficient coverage. The middle and bottom parts illustrate
the 271st rule.

was used to find the relationship between the following inputs
and whether or not a person has diabetes.

1) #Pregnant, which is the number of times pregnant;
2) Glucose, which is the plasma glucose concentration in an

oral glucose tolerance test;
3) BloodPression, which is the diastolic blood pressure (in

mm Hg);
4) TricepsThickness, which is the triceps skin fold thickness

(in mm);
5) SerumInsulin, which is the 2-h serum insulin (in mu U/ml);
6) BMI, which is the body mass index;
7) Pedigree, which is the diabetes pedigree function;
8) Age, which is the age of the person.
Figs. 11–14 show global top rules when T , C, R, and O are

used as the ranking criterion, respectively. The same conclusions
about the roles of T , C, R, and O can be drawn here.

V. DISCUSSIONS

In this section, the relationships between LS and the WM
method [38], [63], perceptual reasoning [46], [64], [66], and
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Fig. 13. Pima Indians diabetes dataset. Global top 1–10 rules according to R:
the degree of reliability. The middle and bottom parts illustrate the first rule.

Fig. 14. Pima Indians diabetes dataset. Global top 1–10 rules according to O:
the degree of outlier. The middle and bottom parts illustrate the first rule.

granular computing [19], [29], [79], [82], [85] are discussed.
Because currently the WM method and granular computing
mainly focus on T1 FSs, only T1 FSs are used in the discus-
sion; however, our results can be extended to IT2 FSs without
problems.

A. Linguistic Summarization and the Wang–Mendel Method

The WM method [38], [63] is a simple yet effective method
to generate fuzzy rules from training examples. We use Fig. 15,
where the 18 training data points are represented by squares,7

to introduce its idea.
1) Each input (x) and output (y) domain is partitioned into

2L + 1 (an odd number) overlapping intervals, where L
can be different for each variable. Then, MFs and labels are
assigned to these intervals. In Fig. 15, each of the x and y
domains is partitioned into three overlapping intervals by
the FSs low, medium, and high. An interval in the x domain
and an interval in the y domain together determine a region

7Three points are represented by different shapes only for easy reference
purpose.

Fig. 15. Example to illustrate the difference between the WM method and
LS. When x is Low, the WM method generates a rule “IF x is Low, THEN y is
High,” whereas LS generates a rule “IF x is Low, THEN y is Low.”

in the input–output space, e.g., the region determined by
high x and low y is shown as the shaded region in the
lower right corner of Fig. 15.

2) Because of overlapping MFs, it frequently happens that
a datum is in more than one region, e.g., the diamond
in Fig. 15 belongs to the region determined by high x
and low y, as well as to the region determined by High
x and Medium y. For each (x, y), one evaluates its de-
grees of belonging in regions, where it occurs, assigns
it to the region with maximum degree, and generates a
rule from it. For example, the degree of belonging of the
diamond in Fig. 15 to the region determined by High x
and Low y (the shaded region in the lower right corner) is
μHigh(x)μLow (y) = 1 × 0.1 = 0.1, and its degree of be-
longing to the region determined by High x and Medium
y is μHigh(x)μMedium(y) = 1 × 0.8 = 0.8; therefore, the
diamond should be assigned to the region determined by
High x and Medium y. Consequently, the corresponding
rule generated from this diamond is as follows:

IF x is High, THEN y is Medium (37)

and it is also assigned a degree of 0.8. Similarly, a rule
generated from the cross in Fig. 15 is as follows:

IF x is High, THEN y is Low (38)

and it has a degree of μHigh(x)μLow (y) = 1 × 1 = 1.
3) To resolve conflicting rules, i.e., rules with the same an-

tecedent MFs and different consequent MFs, one chooses
the rule with the highest degree and discards all other
rules, e.g., Rules (37) and (38) are conflicting, and Rule
(38) is chosen because it has a higher degree.

Finally, the three rules generated by the WM method
for the Fig. 15 data are as follows:

IF x is Low, THEN y is High

IF x is Medium, THEN y is Medium

IF x is High, THEN y is Low.

The first rule seems counter-intuitive, but it is a true
output of the WM method. It is generated by the
circle in Fig. 15 with a degree μLow (x)μHigh(y) =
1 × 1 = 1, i.e., its degree is higher than two
other possible rules, IF x is Low, THEN y is Low and
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IF x is Low, THEN y is Medium, although these two
rules have more data to support them and, hence, look
more reasonable. Note, however, that this example consid-
ers an extreme case. In practice, the WM method usually
generates very reasonable rules, which is why it is popular.

Once the rules are generated, the degrees associated
with them are discarded as they are no longer useful.

Example 1: Fig. 15 can also be used to illustrate the difference
between the WM method and LS. Consider the shaded region,
where x is Low. There are three candidates for a rule in this
region:

IF x is Low, THEN y is High (39)

IF x is Low, THEN y is Medium (40)

IF x is Low, THEN y is Low. (41)

For Rule (39)

c
D
(Lowx , Highy ) =

18∑
m=1

min(μLowx
(xm ), μHighy

(ym )) = 1

(42)

c
D
(Lowx) =

18∑
m=1

μLowx
(xm ) = 12.8 (43)

T =
c

D
(Lowx , Highy )

c
D
(Lowx)

= 0.08. (44)

Because the dataset consists of 18 points and there is only one
datum that falls in the region determined by Low x and High
y, the coverage ratio [see (9)] and degree of sufficient coverage
[see (11)] are as follows:

rc =
1
18

(45)

C = f(rc) = 0.15 (46)

and hence, R = min(T,C) = 0.08 and O = min(max(T, 1 −
T ), 1 − C) = min(max(0.08, 0.92), 1 − 0.15) = 0.85.

Similarly, for Rule (40), LS gives the following:

T = 0.31, C = 1, R = 0.31, O = 0 (47)

and for Rule (41), LS gives the following:

T = 0.71, C = 1, R = 0.71, O = 0. (48)

By ranking R and O, LS would select Rule (41) as the most
useful rule with R = 0.71 and Rule (39) as an outlier with O =
0.85. These results are more reasonable than the rules generated
by the WM method.

Repeating the aforementioned procedure for the other two
regions, the following three rules are generated when R is used
as the ranking criterion:

IF x is Low, THEN y is Low

T = 0.71, C = 1, R = 0.71, O = 0.

IF x is Medium, THEN y is Medium

T = 0.82, C = 1, R = 0.82, O = 0.

IF x is High, THEN y is Low

T = 0.57, C = 0.82, R = 0.57, O = 0.18.

In summary, the differences between the WM method and LS
are as follows.

1) The WM method tries to construct a predictive model,8

whereas LS primarily constructs a descriptive model,9 al-
though the rules in this descriptive model may also be used
for classification and prediction. According to [18], “a de-
scriptive model presents, in convenient form, the main
features of the data. It is essentially a summary of the
data, permitting us to study the most important aspects of
the data without their being obscured by the sheer size of
the dataset. In contrast, a predictive model has the specific
objective of allowing us to predict the value of some target
characteristic of an object on the basis of observed val-
ues of other characteristics of the object.” As pointed out
by Duch et al. [10], “formulation of understandable rules
derived from analysis of data is not the same as creating
predictive models of data.”

2) Both methods partition the problem domain into several
smaller regions and try to generate a rule for each region;
however, the WM method generates a rule for a region as
long as there are data in it, no matter how many data there
are, whereas LS does not, e.g., if a region has very few
data in it, then these data may be considered as outliers
and no reliable rule is generated for this region.

3) The rules obtained from LS have several QMs associated
with them; therefore, the rules can be sorted according to
different criteria, whereas the rules obtained from the WM
method are considered equally important.10

B. Linguistic Summarization and Perceptual Reasoning

Perceptual reasoning has been introduced by Mendel and Wu
in [44], [46], [64], and [66]. It is different from most other
approximate reasoning methods in that it requires the inference
result to resemble the FS word models in the codebook, i.e.,
the inference result should be a normal FS11 so that it can be
mapped into a word in that codebook.

Perceptual reasoning considers the following problem:
Given a rulebase with K rules, each of the form:

Rk : IF x1 is F̃ k
1 and . . . and xp is F̃ k

p , THEN y is G̃k

k = 1, . . . , K (49)

8Predictive models include classification (grouping items into classes and
predicting which class an item belongs to), regression (function approximation
and forecast), attribute importance determination (identifying the attributes that
are most important in predicting results), etc.

9Descriptive models include clustering (finding natural groupings in the data),
association models (discovering cooccurrence relationships among the data),
feature extraction (creating new attributes as a combination of the original
attributes), etc.

10There is an improved version of the WM method [62] that assigns a degree
of truth to each rule; however, the degree of truth is computed differently from
T in this paper, and the rule consequents are numbers instead of words modeled
by FSs; therefore, it is not considered in this paper.

11A normal FS must have at least one point in its universe of discourse, whose
membership grade is 1.
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where F̃ k
j and G̃k are words modeled by IT2 FSs, and a new

input X̃′ = (X̃1 , . . . , X̃p), where X̃j (j = 1, . . . , p) are also
words modeled by IT2 FSs, then what is the output IT2 FS
ỸP R ?

Usually the scenario described by X̃′ does not exist in the
rulebase, which is why inference is needed. In similarity-based
perceptual reasoning [46], [64], [66] one computes

ỸPR =
∑K

k=1 fk (X̃′)G̃k∑K
k=1 fk (X̃′)

(50)

where fk (X̃′) is the firing level of Rk , i.e.,

fk (X̃′) =
p∏

j=1

s
J
(X̃j , F̃

k
j ) (51)

in which s
J
(X̃j , F̃

k
j ) is the Jaccard similarity for IT2 FSs [65]

defined in

s
J
(X̃j , F̃

k
j )

=

∫
X min(Xj (x), F

k
j (x))dx +

∫
X min(Xj (x), F k

j (x))dx∫
X max(Xj (x), F

k
j (x))dx +

∫
X max(Xj (x), F k

j (x))dx
.

(52)

It has been mathematically proven [46], [64], [66] that ỸPR
resembles the FOUs of the words in a codebook when the words
are modeled using the interval approach. Another approach that
uses firing intervals instead of firing levels is described in [44].

A rulebase is needed before perceptual reasoning can be car-
ried out. There are two approaches to construct the rules: 1) from
experience, e.g., survey the experts, and 2) from data, e.g., sum-
marize a database linguistically. The latter has become very
convenient because, as mentioned in Section I, data are usually
readily available in this information explosion age. However,
note that rules extracted from LS construct a descriptive model
instead of a predictive model; therefore, optimizations may be
needed before these rules are used for classification and pre-
diction. In addition, the rules have QMs associated with them,
which have not been considered in perceptual reasoning. How
to make use of the QMs is an open problem. One idea is to use
them as weights of the rules, as in Ishibuchi and Yamamoto’s
approach [21], [22].

Additionally, the LS approach can serve as a preliminary step
for the survey approach, i.e., potential rules can first be extracted
from data, and then presented to the experts for validation. This
would save the time of the experts, and may also help us to dis-
cover inconsistencies between the data and experience, e.g., if
from the input–output data of a process we extract a rule which
says “IF x is large, THEN y is medium,” whereas the operator
thinks y should be small when x is large, then it is worthwhile to
study why the data are not consistent with the operator’s expe-
rience. It is possible that the dynamics of the process has been
changing as time elapses; therefore, this inconsistency would
suggest that it is necessary to update the operator’s understand-
ing about the process.

Fig. 16. Example to illustrate the idea of granular computing.

C. Linguistic Summarization and Granular Computing

Granular computing [19], [29], [79], [82], [85] is a gen-
eral computation theory for effectively using granules, such as
classes, clusters, subsets, groups, and intervals to build an effi-
cient computational model for complex applications with huge
amounts of data, information, and knowledge. Although the
name was first invented by Zadeh [85], according to Hirota and
Pedrycz [19], “the idea of information granulation has existed
for a long time. . . For instance, an effect of temporal granulation
occurs in A/D conversion equipped with an averaging window:
One uniformly granulates an incoming signal over uniform time
series. An effect of spatial granulation occurs quite evidently in
image processing, especially when we are concerned with image
compression.”

LS can be viewed as a granular computing approach, as
demonstrated by the following example.

Example 2: Consider the example shown in Fig. 16, where
the training data (x is the input and y is the output) are shown
as squares. There is no simple correlation between x and y;
however, observe that generally as x increases, y first increases
and then decreases. Assume each input and output domain is
partitioned by three overlapping T1 FSs Low, Medium, and High.
LS considers these three intervals in the x domain independently
and outputs the following three rules for them:

IF x is Low, THEN y is Low

IF x is Medium, THEN y is High

IF x is High, THEN y is Low

which describe the trend correctly. The resolution of the sum-
marization can be improved by using more MFs in each in-
put/output domain.

VI. CONCLUSIONS

LS is a data mining or knowledge discovery approach to ex-
tract patterns from databases. Many authors have used this tech-
nique to generate summaries like “Most senior workers have
high salary,” which can be used to better understand and com-
municate about data; however, few of them have used it to
generate IF–THEN rules like “IF X is large and Y is medium,
THEN Z is small,” which not only facilitate understanding
and communication of data but can also be used in decision-
making. In this paper, an LS approach to generate IF–THEN
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rules from causal databases has been proposed. Both T1 and IT2
FSs are considered. Five QMs for such summaries have been
proposed:

1) the degree of truth, which quantifies the validity (confi-
dence) of a rule;

2) the degree of sufficient coverage, which describes how
many data support a rule and is related to the generality of
the rule;

3) the degree of reliability, which finds rules with both high
validity and sufficient coverage;

4) the degree of outlier, which describes the novelty of rules,
i.e., the degree to which the summaries deviate from our
expectations;

5) the degree of simplicity, which quantifies the syntactic
complexity of the summaries.

Among them, the degree of reliability is especially useful to
find the most reliable and representative rules, and the degree of
outlier can be used to identify outlier rules and data for close-up
investigation. These five QMs also correspond to the concepts
of validity, generality, usefulness, novelty, and simplicity, which
are five essential measures of a summary proposed by Hirota
and Pedrycz [19].

Experiments on two datasets demonstrated our LS approach
and a parallel coordinates rule visualization approach. The rela-
tionships between LS and the WM method, perceptual reason-
ing, and granular computing were also pointed out.

1) LS is similar to the WM method; however, LS is mainly
used to discover patterns in data, whereas the WM method
is used to construct a predictive model from the data.

2) The rules generated by LS can be used to initialize the
rulebase in perceptual reasoning for decision-making.

3) LS can be viewed as a granular computing approach.
Our future work includes
1) to further study the applications of LS, e.g., how to use LS

to rank the importance of inputs and, hence, to select the
most important ones;

2) to design more efficient algorithms for LS. Currently, we
use an exhaustive search method, where all possible com-
binations of rules are evaluated and then ranked according
to a certain QM to find the top rules. This approach is
feasible for small datasets, e.g., for the Pima Indians Di-
abetes Dataset in Section IV-B, which consists of 768
cases, eight inputs, five MFs for each input, and two MFs
for the output, to compute T , C, R, and O together for
all three-antecedent rules (the total number of rules is
( 8

3 ) × 53 × 2 = 14 000) takes about 5 s on an IBM T43
notebook. However, the computational cost of this ap-
proach increases rapidly when the size of the database
increases, and/or the number of antecedents increases,
and/or the number of FSs associated with each attribute
increases. More efficient algorithms are necessary to fa-
cilitate the applications of LS. One idea is to use some
heuristics to eliminate some less promising rules from
evaluation. Additionally, the algorithm should be incre-
mental, i.e., the QMs should be updated incrementally as
new data comes in.
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