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Abstract—Many experiments have shown that interval type-
2 (IT2) fuzzy PI controllers are generally more robust than
their type-1 (T1) counterparts, as they are better able to cope
with disturbances and uncertainties and eliminate oscillations.
This paper aims at providing theoretical explanations to these
experimental observations. Analysis has shown that the additional
degrees of freedom provided by the footprint of uncertainty
enable an IT2 fuzzy PI controller to emulate a variable gain PI
controller around the origin, and these PI gains are smaller than
those of the baseline type-1 fuzzy PI controller; consequently, the
same amount of disturbance will cause a smaller control signal
change for an IT2 fuzzy PI controller, and hence reduces the
risk of oscillation. The results in this paper enable us to connect
traditional PI controllers with IT2 fuzzy PI controllers. Based
on the closed-form equivalent PI gains, controller design rules
in one domain may be transferred to the other domain, and it
is possible to develop new control laws by combining the merits
of both traditional PI controllers and IT2 fuzzy PI controllers.

Index Terms—Interval type-2 fuzzy logic control, PI control,
robust control

I. INTRODUCTION

Interval type-2 fuzzy logic controllers (IT2 FLCs) have been

used in many applications [1], [2], [4], [6], [11], [15], [16].

Experiments showed that they have the potential to outperform

their type-1 (T1) counterparts [1], [10], [15], [16], especially,

they are better able to cope with disturbances and uncertainties

and eliminate oscillations. One reason may be that each IT2

fuzzy set (FS) has an extra mathematical dimension due to

its footprint of uncertainty (FOU), and hence with the same

number of membership functions (MFs), an IT2 FLC offers

more design freedom. However, experiments also showed that

an IT2 FLC may achieve better performance with fewer design

parameters than a T1 FLC [15], which cannot be explained

using the number of design parameters. Our observation is that

generally an IT2 FLC has a smoother control surface around

the origin than a T1 FLC [15], consequently, the same amount

of disturbance will cause a smaller control signal change, and

hence reduces the risk of oscillation.

This paper aims at understanding the behavior of an IT2

FLC around the origin from a mathematical point of view.

The most popular IT2 PI (Proportional-Integral) controllers are

studied in this paper; however, the analysis can also be applied

to IT2 PD (Proportional-Differential) and PID (Proportional-

Integral-Differential) controllers. The analysis is performed

by determining the equivalent PI gains around the origin as

a function of the FOU size. By examining the equivalent

PI gains, insights into why IT2 FLCs are better at handling

modeling uncertainties are obtained.

The rest of the paper is organized as follows: Section II

introduces the architecture of the IT2 fuzzy PI controller

studied in this paper. Section III deduces the equivalent PI

gains of the IT2 PI controller. Section IV verifies the equivalent

PI gains by simulations. Finally, Section V draws conclusions.

II. IT2 PI CONTROLLERS

A linear PI control law is usually implemented as

u̇ = KP ė+KIe (1)

where u̇ is the change of the control signal, e is the feedback

error, ė is the change of error, and KP and KI are the

Proportional and Integral gains, respectively. A T1 FLC with

rulebase1

Rij : If ė is Ėi and e is Ej , then u̇ is u̇ij

i = −N, . . . , N, j = −M, . . . ,M

implements the linear PI controller in (1) if [8]:

1) Triangular T1 FSs are used for input MFs Ėi and Ej ,

and they are constructed in such a way that for any input

the firing levels of all MFs add to 1; and,

2) The consequents of the rules are crisp numbers defined

as

u̇ij = KP ėi +KIej (2)

where ėi and ej are apexes of the antecedent T1 MFs.

An example of such a T1 FLC is shown as the bold lines in

Fig. 1.

An IT2 fuzzy PI controller can be constructed by blurring

the T1 FSs to IT2 FSs, as shown in Fig. 1. The rulebase for

the resulting IT2 FLC is

R̃ij : If ė is
˜̇Ei and e is Ẽj , then u̇ is u̇ij

i = −N, . . . , N, j = −M, . . . ,M

1For control applications the input domains of e and ė are usually
symmetrical about 0. The MFs are indexed symmetrically around 0 so that
their positions with respect to 0 are obvious. Also, it is assumed that the
number of “negative” MFs equals the number of “positive” MFs, which is a
common practice for FLCs.
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where
˜̇Ei and Ẽj are IT2 FSs obtained by blurring Ėi and

Ej , respectively, and u̇ij is the same as that defined in (2).

This paper aims at understanding the behavior of an IT2

FLC around the origin, and hence only the fuzzy partitions

around the origin are of interest. These fuzzy partitions are

shown in Fig. 1. For simplicity, the following assumptions are

used:

1) The upper and lower MFs of
˜̇E−1 and

˜̇E1 are symmetri-

cal about the baseline T1 MF Ė−1 and Ė1, respectively,

as shown in Fig. 1(a).

2) The upper and lower MFs of Ẽ−1 and Ẽ1 are also

symmetrical about the baseline T1 MF E−1 and E1,

respectively, as shown in Fig. 1(b).

3) Ė−1 and Ė1 intersect at 0, and E−1 and E1 also intersect

at 0.
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Fig. 1. The fuzzy partitions around the origin. (a) ė domain, and, (b) e
domain.

III. EQUIVALENT PROPORTIONAL AND INTEGRAL GAINS

OF AN IT2 FUZZY PI CONTROLLER

It has been established that the T1 fuzzy partitions in

Fig. 1 realize the linear PI controller in (1). This section

will study how the controller is changed when symmetrical

FOUs are introduced to the baseline T1 FLC. To simplify the

computation, we only consider the region around the origin

bounded by the following inequalities:

ė−1 + dė ≤ ė ≤ ė1 − dė (3)

e−1 + de ≤ e ≤ e1 − de (4)

which are motivated by the observations that the robustness

improvement occurs mainly when the system output is near

the setpoint. A graphical illustration of the region is shown in

Fig. 2.
When an input (ė, e) falls into the shaded region in Fig. 2,

only four MFs,
˜̇E−1,

˜̇E1, Ẽ−1 and Ẽ1, are fired, and the firing

levels are (see Fig. 1):

F ˜̇
E−1

= [fĖ
−1

, f
Ė−1

] =

[

ė1 − dė − ė

2ė1
,
ė1 + dė − ė

2ė1

]

(5)

F ˜̇
E1

= [fĖ
1

, f
Ė1

] =

[

ė+ ė1 − dė

2ė1
,
ė+ ė1 + dė

2ė1

]

(6)

FẼ−1
= [fE

−1
, fE−1

] =

[

e1 − de − e

2e1
,
e1 + de − e

2e1

]

(7)

FẼ1
= [fE

1
, fE1

] =

[

e+ e1 − de

2e1
,
e+ e1 + de

2e1

]

(8)

Consequently, only four rules, R̃−1,−1, R̃−1,1, R̃1,−1 and

R̃1,1, can be fired. Their consequents are:

u̇−1,−1 = −ė1KP − e1KI (9)

u̇−1,1 = −ė1KP + e1KI (10)

u̇1,−1 = ė1KP − e1KI (11)

u̇1,1 = ė1KP + e1KI (12)

Note that we have used the fact that ė−1 = −ė1 and e−1 =
−e1.
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Fig. 2. The region of the input domain determined by (3) and (4).

The firing intervals of the four rules are:

F−1,−1 = F ˜̇
E−1

⋆ FẼ−1
= [f

−1,−1
, f

−1,−1
]

=

[
(ė1 − dė − ė)(e1 − de − e)

4ė1e1
,

(ė1 + dė − ė)(e1 + de − e)

4ė1e1

]
(13)

F−1,1 = F ˜̇
E−1

⋆ FẼ1
= [f

−1,1
, f

−1,1]

=

[
(ė1 − dė − ė)(e + e1 − de)

4ė1e1
,

(ė1 + dė − ė)(e + e1 + de)

4ė1e1

]
(14)

F1,−1 = F ˜̇
E1

⋆ FẼ−1
= [f

1,−1
, f

1,−1
]

=

[
(ė + ė1 − dė)(e1 − de − e)

4ė1e1
,

(ė+ ė1 + dė)(e1 + de − e)

4ė1e1

]
(15)

F1,1 = F ˜̇
E1

⋆ FẼ1
= [f

1,1
, f1,1]
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=

[
(ė+ ė1 − dė)(e + e1 − de)

4ė1e1
,

(ė+ ė1 + dė)(e+ e1 + de)

4ė1e1

]
(16)

The type-reduced output set of the IT2 fuzzy PI controller,
obtained via center-of-sets type reduction [6], is computed as

˜̇u =
F
−1,−1u̇−1,−1 + F

−1,1u̇−1,1 + F1,−1u̇1,−1 + F1,1u̇1,1

F
−1,−1 + F

−1,1 + F1,−1 + F1,1

= [u̇l, u̇r] (17)

Note that (17) is only an expressive way to describe the

type-reduction operation. u̇l and u̇r, which are the minimum

and maximum of ˜̇u, are actually computed by the Karnik-

Mendel (KM) Algorithms [3], [6] or the Enhanced Karnik-

Mendel (EKM) Algorithms [7], [12]. When KM or EKM

Algorithms are used, the consequents, u̇ij in (9)-(12), need

to be arranged in ascending order. Since there are only four

consequents and their ranking depends on ė1KP and e1KI ,

there are three possible rankings corresponding to the three

different relationship between ė1KP and e1KI .

A. Case 1: ė1KP > e1KI

When ė1KP > e1KI , observe from (9)-(12) that

u̇−1,−1 < u̇−1,1 < 0 < u̇1,−1 < u̇1,1 (18)

To derive closed-form solutions, we further impose the fol-

lowing constraint:

u̇−1,1 ≤ u̇l ≤ u̇r ≤ u̇1,−1 (19)

As will be shown in Section IV, (19) reduces the shaded region

shown in Fig. 2; however, it still ensures that the inputs under

consideration are around the origin.
According to KM or EKM Algorithms, (19) indicates that

u̇l =
f
−1,−1u̇−1,−1 + f

−1,1u̇−1,1 + f
1,−1

u̇1,−1 + f
1,1

u̇1,1

f
−1,−1 + f

−1,1 + f
1,−1

+ f
1,1

=
ė1(KP dėe1 −KP ėe1 +KP ė1de +KIe1e)

e1ė1 + dėde − ėde
(20)

u̇r =
f
−1,−1

u̇
−1,−1 + f

−1,1
u̇
−1,1 + f1,−1u̇1,−1 + f1,1u̇1,1

f
−1,−1

+ f
−1,1

+ f1,−1 + f1,1

=
ė1(KP dėe1 +KP ė1de +KP ėe1 +KIe1e)

e1ė1 + dėde − ėde
(21)

Hence, the output of the IT2 FLC is

u̇ =
u̇l + u̇r

2

=
ė2
1
(e2

1
− d2e)KP ė+ ė1(ė1e

2

1
+ e1dėde)KIe

(e1ė1 + dėde)2 − d2e ė
2

=
ė2
1
(e2

1
− d2e)

(e1ė1 + dėde)2 − d2eė
2
KP ė

+
ė1(ė1e

2
1 + e1dėde)

(e1ė1 + dėde)2 − d2eė
2
KIe

≡ αKP ė+ βKIe (22)

where

α =
ė2
1
(e2

1
− d2e)

(e1ė1 + dėde)2 − d2eė
2

(23)

β =
e1ė1(ė1e1 + dėde)

(e1ė1 + dėde)2 − d2eė
2

(24)

αKp is the equivalent Proportional gain of the resulting IT2

fuzzy PI controller, and βKI is the equivalent Integral gain.

Observe that:

1) When ė1KP > e1KI , both α and β are functions of

ė but not e, i.e., the equivalent PI gains change as the

input ė changes.

2) α is always smaller than 1; when |ė| is small, e.g.,

|ė| ≤ dė, β is also smaller than 1. So, for small

inputs (disturbances) around the origin, the equivalent

PI gains are smaller than the PI gains of the baseline

T1 FLC. Consequently, the same amount of disturbance

will cause a smaller control signal change, and hence

reduces the risk of oscillation.

3) Because ∂α
∂de

< 0, ∂β
∂de

< 0, ∂α
∂dė

< 0, and ∂β
∂dė

< 0 for

small ė, generally an increase in de and/or dė will reduce

both α and β, i.e., larger FOUs will result in smaller

equivalent PI gains around the origin, and hence the

resulting IT2 FLC is potentially more robust; however,

the settling time may increase.

4) Dividing (23) by (24) yields

α

β
=

e2
1
ė1 − ė1d

2

e

e2
1
ė1 + e1dėde

< 1 (25)

i.e., the equivalent Proportional gain decreases relatively

faster compared with the equivalent Integral gain. Ob-

serve also that when the FOUs increase, i.e., dė and/or

de increase, α/β decreases. Consequently, a larger FOU

will increase the damping of the PI controller, and hence

reduces overshoots and oscillations. However, this may

also increase the settling time.

Knowing u̇l and u̇r in (20) and (21), constraint (19) can be

re-expressed as

|(KP e1ė1 −KPdeė1 +KIe1de)ė+KIe1ė1e| ≤

KP ė1(ė1 − dė)(e1 − de)−KIe1(e1ė1 + dėde) (26)

Equation (26), together with (3) and (4), determines the

complete input region in which the equivalent PI gains (23)

and (24) are applicable.

B. Case 2: ė1KP < e1KI

When ė1KP < e1KI ,

u̇−1,−1 < u̇1,−1 < 0 < u̇−1,1 < u̇1,1 (27)

Similar to the method adopted in the previous subsection,

the following constraint is imposed to deduce closed-form

solutions and also ensure that the input region under consid-

eration is around the origin:

u̇1,−1 ≤ u̇l ≤ u̇r ≤ u̇−1,1 (28)
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By repeating the mathematical manipulations described in the

previous sub-section, the output of the IT2 fuzzy PI controller

is found to be

u̇ = α′KP ė + β′KIe (29)

where

α′ =
e1ė1(e1ė1 + dėde)

(e1ė1 + dėde)2 − d2ėe
2

(30)

β′ =
e2
1
(ė2

1
− d2ė)

(e1ė1 + dėde)2 − d2ėe
2

(31)

The equivalent Proportional gain is α′Kp and the equivalent

Integral gain is β′KI . Observe that:

1) When ė1KP < e1KI , both α′ and β′ are functions of

e but not ė, i.e., the equivalent PI gains change as the

input e changes.

2) β′ is always smaller than 1; when |e| is small, e.g.,

|e| ≤ de, α′ is also smaller than 1. So, for small

inputs (disturbances) around the origin, the equivalent

PI gains are smaller than the PI gains of the baseline

T1 FLC. Consequently, the same amount of disturbance

will cause a smaller control signal change, and hence

reduces the risk of oscillation; however, the settling time

may increase.

3) Because ∂α′

∂de

< 0 for small e, ∂β′

∂de

< 0, ∂α′

∂dė

< 0,

and ∂β′

∂dė

< 0, generally an increase in de and/or dė
will reduce both α′ and β′, i.e., larger FOUs will result

in smaller equivalent PI gains around the origin, and

hence the resulting IT2 FLC is potentially more robust;

however, the settling time may increase.

4) Dividing (30) by (31) yields

α′

β′
=

e1ė
2

1
+ ė1dedė

e1ė21 − ė1d2ė
> 1 (32)

i.e., the equivalent Proportional gain decreases relatively

slower compared to the equivalent Integral gain. Observe

also that when the FOUs increase, i.e., dė and/or de in-

crease, α′/β′ increases. This will decrease the damping

of the PI controller, and hence increases the response

speed. However, because the magnitudes of both the PI

gains are reduced, the output control signal is small in

magnitude, and hence the acceleration in response speed

may not be obvious.

Similarly, the constraint (28) can be re-expressed as

|KP e1ė1ė+ (KIe1ė1 +KP ė1dė −KIe1dė)e| ≤

KIe1(e1 − de)(ė1 − dė)−KP ė1(e1ė1 + dėde) (33)

Equation (33), together with (3) and (4), determines the

complete input region that the equivalent PI gains (30) and

(31) are applicable.

C. Case 3: ė1KP = e1KI

When ė1KP = e1KI , u̇−1,1 = u̇1,−1 = 0. Similar analysis

in the previous two sub-sections cannot be performed here.

However, since ė1KP = e1KI rarely happens in practice, it

does not affect the effectiveness of the results in this paper.

IV. EXAMPLE

Recent experimental results on IT2 fuzzy PI controller [1],

[13], [15] indicate that IT2 fuzzy PI controllers are more

robust and are better able to eliminate oscillations. This section

utilizes the expressions for the equivalent PI gains as a tool to

explain why this is possible.

A. Equivalent PI Gains

The following simple first-order plus dead-time plant is

employed as the nominal system and used to design an IT2

fuzzy PI controller:

G(s) =
K

τs+ 1
e−Ls =

1

10s+ 1
e−2.5s (34)

Two MFs are used to characterize each input domain, e and

ė. The IT2 FSs used here are shown in Fig. 1, where ė1 =
e1 = 1. Furthermore, dė = de ≡ d is employed. According

to the integral of time absolute error (ITAE) setpoint tracking

tuning rule [9], the baseline PI parameters for G(s) are

u̇ = 0.586K

(
L

τ

)
−0.916

[
ė+

1.03− 0.165L
τ

τ
e

]

= 2.086ė+ 0.2063e (35)

Hence, consequents of the rules for the IT2 fuzzy PI controller

are generated by substituting KP = 2.086 and KI = 0.2063
into (2).

As ė1KP > e1KI , the equivalent PI gains are determined

by (22). The closed-form solutions of the equivalent PI gains

are derived using the assumption shown in (19). Using (3), (4)

and (26), the input regions in which the equivalent PI gains

are valid when d = {0.2, 0.5} are plotted in Figs. 3(a) and

3(b), respectively. The diagrams indicate that the constraint

(26) further restricts the region where the equivalent PI gains

are applicable.

−1 0 1
−1

0

1

e

ė

(a)

−1 0 1
−1

0

1

e

ė

(b)

Fig. 3. The input regions where (22) is applicable when (a) dė = de = 0.2;
and (b) dė = de = 0.5. The dashed squares are the input regions when the
constraint (26) is not considered.

Fig. 4 shows how α and β vary with ė in the range where the

equivalence is valid. Observe that the extra degrees of freedom

provided by the FOUs result in varying equivalent PI gains.

Unlike the baseline T1 FLC whose input-output relationship

is linear, the IT2 fuzzy PI controller realizes a non-linear PI

control law around the origin. Because both α and β are

smaller than unity, the equivalent PI gains are smaller than
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Fig. 4. Relationship between α, β and ė, where dė = de = d.

the PI gains for the baseline T1 FLC. The deviation from the

T1 FLC becomes larger as dė increase.

The control surfaces of the baseline T1 FLC and the

IT2 FLC with d = 0.5 are shown in Figs. 5(a) and 5(b),

respectively. Denote the output of the T1 FLC as u̇0, the

output of the IT2 FLC with d = 0.2 as u̇0.2, and the output

of the IT2 FLC with d = 0.5 as u̇0.5. Then, |u̇0| − |u̇0.2| is

shown in Fig. 5(c), and |u̇0.2| − |u̇0.5| is shown in Fig. 5(d).

Observe that as the FOU increases, the output becomes smaller

in magnitude.

−0.5
0

0.5

−0.5
0

0.5
−1

0

1

eė

u̇

(a)
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eė
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−0.5
0
0.5

−0.500.5
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0.2

0.4

e

ė

u̇

(d)

Fig. 5. (a) Control surfaces of the T1 FLC; (b) control surface of the IT2
FLC with d = 0.5; (c) |u̇0| − |u̇0.2|; and, (d) |u̇0.2| − |u̇0.5|.

B. Control Performance

In order to examine how the equivalent PI gains correlate

with control performances, step responses were obtained using

IT2 fuzzy PI controllers for the nominal plant in (34) when

d = 0 (corresponding to a T1 fuzzy PI controller), d = 0.2
and d = 0.5. Since the aim is to demonstrate how a change in

FOU size would influence2 the performance of an IT2 fuzzy PI

controller, the IT2 FLC is essentially the same as the baseline

T1 FLC except for the FOU, and no optimization is employed.

Step responses on the nominal plant are shown in Fig. 6.

The corresponding trajectories of α and β are shown in Fig. 7.

Observe that:

2Note that introducing FOUs to a T1 FLC does not necessarily improve its
performance. The experiments in this section are only used to illustrate the
effect of FOUs.

1) The responses of the two IT2 FLCs are slower than the

baseline T1 FLC.

2) α and β vary with time because ė is a function of time.

3) Both α and β are smaller than 1. As the FOU increases,

both α and β decrease.

0 20 40 60 80 100
0

0.5

1

 

 

T1 (PI)

IT2, d=0.2

IT2, d=0.5

Fig. 6. Step responses of the IT2 and T1 fuzzy PI controllers on the nominal

plant, G(s) = Y (s)
U(s)

= 1
10s+1

e−2.5s.

0 20 40 60 80 100
0.8875

0.888

0.8885

 

 
α

0 20 40 60 80 100

0.962

0.963

 

 
β

(a)

0 20 40 60 80 100

0.48

0.481

 

 
α

0 20 40 60 80 100

0.8
0.801
0.802

 

 
β

(b)

Fig. 7. Trajectories of α and β when (a) d = 0.2 and (b) d = 0.5.

Fig. 8 shows step responses that illustrate how IT2 fuzzy

PI controllers (d = {0, 0.2, 0.5}) cope with parameter uncer-

tainty. Robustness of the IT2 fuzzy PI controllers is tested by

varying the static gain and time constant of the process. The

ITAEs for the various tests are listed in Table I. Observe from

Fig. 8 and Table I that:

1) The larger the FOU, the better the ability of an IT2

FLC to eliminate oscillations about the setpoint [see

Figs. 8(a) and 8(c)]. This coincides with the observations

in [5], [13], [14], [16]. As explained in Section III-A,

this is because a larger FOU increases the damping

of the PI controller, and hence reduces overshoots and

oscillations.

2) The IT2 fuzzy PI controller may be slower than its

T1 counterpart when the dynamics of the plant is slow

[Figs. 8(b) and 8(d)]; particularly, the settling time is

longer. This is because the smaller equivalent PI gains

result in smaller control signal, whereas we need a large

control signal when the dynamics of a plant is slow. In

practice, if we know the system dynamics is slow, or
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TABLE I
ITAES OF THE THREE FLCS IN THE FIVE STEP RESPONSES.

k = 1, τ = 10 k = 2, τ = 10 k = 0.5, τ = 10 k = 1, τ = 5 k = 1, τ = 20
T1 FLC (Linear PI) 38 308 85 104 129
IT2 FLC, d = 0.2 36 160 93 73 152
IT2 FLC, d = 0.5 85 70 157 33 336

the IT2 fuzzy PI controller is tuned by an optimization

algorithm, very likely the PI gains around the origin will

be increased to achieve a better compromise between

robustness and response speed.

All observations in this section coincide with the theoretical

results presented in Section III-A.
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Fig. 8. Step responses of the IT2 and T1 fuzzy PI controllers for different
plant parameters. (a) k = 2, τ = 10; (b) k = 0.5, τ = 10; (c) k = 1, τ = 5;
and, (d) k = 1, τ = 20.

V. CONCLUSIONS

The concept of equivalent PI gains of an IT2 fuzzy PI

controller has been introduced in this paper. It is shown that

an IT2 fuzzy PI controller may implement a variable gain

PI control law around the origin. Generally, the equivalent

PI gains are smaller than those of the baseline T1 FLC, and

they decrease as the FOU increases. Because smaller PI gains

generate smaller control signals, this explains why IT2 FLCs

may be more robust to disturbances and why their response

may be slower. The findings provide theoretical explanation for

the experimental observations suggesting that an IT2 fuzzy PI

controller is better able to cope with uncertainty and eliminate

steady-state oscillations. Additionally, because closed-form

solutions of the equivalent PI gains have been obtained,

1) Given a good IT2 FLC, we can examine its PI gains

around the origin and use them to guide the design of

robust PI controllers; and,

2) Given a good PI controller, we can tune the parameters

of an IT2 FLC so that its behavior approximates the PI

controller.

In other words, the results in this paper enable us to connect

traditional PI controllers with IT2 fuzzy PI controllers for the

first time. Our future research is to explore how this connection

can be used for better PI controller design.
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