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Abstract—The application space for brain–computer interface
(BCI) technologies is rapidly expanding with improvements in
technology. However, most real-time BCIs require extensive
individualized calibration prior to use, and systems often have
to be recalibrated to account for changes in the neural signals
due to a variety of factors including changes in human state, the
surrounding environment, and task conditions. Novel approaches
to reduce calibration time or effort will dramatically improve the
usability of BCI systems. Active Learning (AL) is an iterative
semi-supervised learning technique for learning in situations in
which data may be abundant, but labels for the data are difficult
or expensive to obtain. In this paper, we apply AL to a simulated
BCI system for target identification using data from a rapid serial
visual presentation (RSVP) paradigm to minimize the amount of
training samples needed to initially calibrate a neural classifier.
Our results show AL can produce similar overall classification
accuracy with significantly less labeled data (in some cases less
than 20%) when compared to alternative calibration approaches.
In fact, AL classification performance matches performance
of 10-fold cross-validation (CV) in over 70% of subjects when
training with less than 50% of the data. To our knowledge, this is
the first work to demonstrate the use of AL for offline electroen-
cephalography (EEG) calibration in a simulated BCI paradigm.
While AL itself is not often amenable for use in real-time systems,
this work opens the door to alternative AL-like systems that are
more amenable for BCI applications and thus enables future
efforts for developing highly adaptive BCI systems.
Index Terms—Active learning, brain–computer interface, elec-

troencephalography, rapid-serial visual presentation.
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I. INTRODUCTION

T HERE are vast amounts of human variability in neural
activity, both within and across individuals. As a result,

attempting to classify the neural activity found in modalities
such as electroencephalography (EEG) requires extensive cali-
bration prior to each use by an individual. This calibration re-
quirement directly affects the development of brain–computer
interface (BCI) technologies that rely on the classification of
neural activity. Most real-time BCIs require a calibration period
that can last from 5 to 20 min [1]. Furthermore, these systems
tend to lack robustness over time due to decreased classifier per-
formance caused by changes in human state, the surrounding
environment, and task conditions that alter the relationship be-
tween brain activity and task. This need for extensive individu-
alized calibration renders most BCI technologies inconvenient
or impossible to use for many people. As a result, developing
EEG classification methods that reduce this need for calibration
will improve the usability of these systems.
One promising approach for reducing individual calibration

effort for EEG classification is through Active Learning (AL)
[2]. AL is an iterative semi-supervised learning technique in
which, at each iteration, an active learner (in this case, amachine
learning algorithm such as a support vector machine (SVM))
identifies maximally informative data points, queries an oracle
for ground-truth labels for those points, and then incorporates
that labeled data into the training model for the next iteration.
AL is an ideal approach for learning in situations in which data
may be abundant, but labels for the data are difficult or expen-
sive to obtain. Examples of this scenario include the following:
speech recognition and annotation [3] where expert listeners
manually identify spoken words in audio recordings; image and
video classification [4] where experts manually categorize im-
ages and video based on image features; and document catego-
rization and text classification [5] where experts determine cate-
gories of books and other written materials based on small para-
graphs or chapters. As an example, human labeling of words in
audio recordings have reported efforts of 8–10 times the length
of audio recordings for full word annotation [6]. This represents
an extremely expensive labeling task that may not be completely
necessary to achieve optimal classification performance. In each
of these scenarios, AL significantly reduces the amount of la-
beling effort needed to obtain comparable performance with full
data set classification training.
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However, while AL has enjoyed success in many research
fields, it is not commonly used in EEG analysis. We believe
the key reason for this is that AL requires an oracle to label
the unlabeled data, and in many EEG classification tasks, the
data may not be amenable to manual labeling. This is because
manually labeling the EEG data is not a viable approach, as it
is difficult or impossible to visually distinguish EEG data from
two or more distinct conditions. However, there are situations
in current BCI applications that could be amenable to AL given
a slight change in the BCI paradigm being employed. Generally
speaking, AL can be used by having the user be the oracle who
provides the labels for uncertain data points in any paradigm in
which either the BCI provides feedback to the user, or the user
is directly queried about the output of the BCI.
One example of this is P300 speller BCIs [7]. The P300

speller is a BCI system that provides the user a way to spell
words based on the detection of the P300 waveform. Letters
are commonly arranged in a 6 6 grid and flashed in differing
patterns. The user then focuses on a particular letter so that
the flashing of the letter induces a P300 waveform that is then
detected by the BCI. Once the BCI system predicts the letter, it
is shown to the user as system feedback. Previous research has
shown that an error-related negativity (ERN) occurs when the
predicted letter is not the letter that the user desires [7]. One
possibility of applying AL to this situation is to ask the user
if the letter is correct based on the presence of the ERN. This
user feedback is then used to derive better decision boundaries
for better initial classification of the P300 waveform and better
detection of the ERN. Ideally, the user should not be queried
too often as that disrupts the operation of the BCI; however,
obtaining new labels when necessary can significantly improve
the performance of the BCI.
Our initial research has shown that AL can be applied to

EEG signal classification. For example, in previous work [8],
we used AL for classification of oddball images in single-trial
visual-evoked potential (VEP) responses. We showed that AL,
when combined with transfer learning, can significantly reduce
the number of labeled user-specific data samples, and that in a
few subjects, AL can hit a performance level similar to that of
5-fold cross-validation (CV) with labels for less than 20% of
the data. We have also shown that combining transfer learning
with active class selection, a variant of active learning, can be
used to predict cognitive load in a virtual reality Stroop task with
significantly reduced labeling effort [9]. However, both of these
applications combined AL with transfer learning, and the effect
of AL alone has not been thoroughly investigated.
In this paper, we have identified a BCI application that is

highly amenable to AL, which is the use of Rapid Serial Vi-
sual Presentation (RSVP) for image triage. We apply AL to a
simulated BCI system for target identification using data from
an RSVP paradigm to minimize the amount of training samples
needed to initially calibrate the neural classifiers. In an RSVP
paradigm, analysts are shown a sequence of images in rapid suc-
cession (e.g., 2–10 Hz) [10], [11] and asked to detect sparsely
appearing images from a specific target class that appear in a
series of non-target or distractor stimuli. When a target is de-
tected in an image, a neural response commonly associated with
the P300 event-related potential (ERP) is evoked and classified

by the BCI system [12]. Each image in an RSVP task is classi-
fied based on the neural response of the analyst. Images that are
deemed most likely to contain targets are triaged for subsequent
inspection by the analyst. RSVP-based BCI systems have en-
abled image analysts to detect targets in large aerial photographs
faster and more accurately than traditional standard searches
[13]–[20].
Traditionally, these systems have been calibrated by having

an analyst identify known targets in an initial calibration RSVP
stream, where all images are manually labeled as being from
the target class or from the non-target class. Ideally, these la-
beled images should be a representative subset of the overall
image set being analyzed. After this calibration procedure is fin-
ished, the neural classifiers are trained on the data by relating the
neural responses collected to the labels provided by the analyst.
The trained neural classifiers are then used in subsequent RSVP
streams for target identification. Short calibration periods can
reduce manual labeling effort (by reducing the overall number
of trials to label), but this can also result in insufficient training
data. Longer calibration periods provide more data for training;
however, this results in increased manual labeling effort for the
user.
The main advantage of using AL in this paradigm is that the

user is not required to label all the data but only the most in-
formative data, which significantly reduces the labeling effort
required to obtain a good initial calibration. Our AL implemen-
tation uses a Query-by-Committee (QBC) [21] approach with
a heterogeneous ensemble of state-of-the-art neural classifiers
serving as a committee that identifies the most informative data
samples in need of a label. These most informative data sam-
ples are identified on the basis of an aggregate confidence score
for each sample that is derived from the reliability of the predic-
tion from each neural classifier [22], [23]. Our results show AL
can maintain overall classification accuracy when trained with
significantly less labeled data when compared to traditional cal-
ibration using 10-fold cross-validation and full label knowledge
to train a classification model.
Other studies have used semi-supervised learning techniques

for classification of EEG signals that are similar to the work
presented here. For example, Gu et al. [24] use an online up-
dating least squares support vector machine (LS-SVM) classi-
fier that uses its own predictions on the test data set to augment
the training data set and to teach itself for better classification.
This can be viewed as a form of pseudo-label training, which
has been used successfully in training deep neural networks
[25]. This approach was also used in Spüler et al. [26] for adap-
tive training of a classifier for detecting error-related potentials.
Another approach uses a two-classifier co-training approach in
which trials identified as most confident are incorporated into
the training process [27], [28] using the classifier determined
label. Selecting only the most confident trials for incorporation
into the training set was also done in Qin et al. [29] in an on-
line learning SVM. Our approach differs from these approaches
in that trials that are least confident as determined by the com-
mittee of classifiers are incorporated into the training data set,
with a label provided by an oracle.
Finally, there is the possibility that a set of previously labeled

images can be used for training, but this can result in poor classi-
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fier performance if the calibration images are non-representative
of the overall task. For example, an inverse relationship between
target frequency within an image and the strength of the overall
ERPwaveform has been shown in the literature [30]. Also, char-
acteristics of the stimuli have been shown to impact the neural
response and neural classification accuracy. For example, pre-
vious work has shown that target eccentricity and target size
impact neural classification [31]. Other studies have shown that
difficulty of target detection (which can be related to clutter, oc-
clusion, and a variety of other factors) strongly impacts behav-
ioral performance [32], which is strongly linked to neural clas-
sification performance [31]. Thus, using previously labeled data
may not transfer well to new data if the characteristics of the la-
belled image set does not match the target data set. Instead, we
propose using AL to obtain a representative, sufficiently sized
training set with minimal manual labeling effort by intelligently
labeling only the most informative data samples.
While the results presented here focus on an offline analysis

in which the training and testing sets are very similar in char-
acteristics, a key aspect of demonstrating the viability of this
approach is to embed it into an online BCI system with real-
time feedback where AL enables the system to rapidly adapt to
changes in the environment or in the user's performance. Ad-
mittedly, the number of BCI applications that are amenable to
having a human oracle manually label data is limited; however,
there are alternative AL-based methodologies that relax some of
the strict rules of AL (cf. [33]–[35]), such as training in the ab-
sence of ground-truth label information for all data points, and
using pseudo-labels learned from the ensemble as if they were
the ground truth [25]. For example, an alternative oracle in this
case could be a committee of computer vision algorithms trained
to detect targets and non-targets from image features indepen-
dent of neural features [22]. In any event, by demonstrating the
viability of a strict AL implementation, we open the door to
these alternatives, which are potentially applicable to a much
broader space of BCI technologies.

II. METHODS

A. Participants
18 participants volunteered for the current study. Partici-

pants provided written informed consent, reported normal or
corrected-to-normal vision, and reported no history of neuro-
logical problems. Data from 3 participants was discarded due
to excessive artifacts and/or noise within the EEG data. The 15
remaining participants included nine male and 14 right-handed
participants who ranged in age from 18–57 (mean age 39.5).
The voluntary, fully informed consent of the persons used in

this research was obtained as required by federal and Army reg-
ulations [36], [37]. The investigator adhered to Army policies
for the protection of human subjects [37].

B. Stimuli and Procedure
Fig. 1 shows an example RSVP stream used in the experi-

ment, consisting of short video clips [38]. Video clips contained
either people or vehicles in background scenes, or only back-
ground scenes. Participants were instructed to make a manual
button press with their dominant hand when they detected a

Fig. 1. Visualization of the RSVP experiment used in this study. RSVP pre-
sentation rate was 2 Hz, with each presentation consisting of a 500 ms movie,
shown as five images at 10 Hz rate. Each 500 ms block consisted of either a
target or a non-target movie. Target classes included images containing people
or vehicles, with non-targets shown as background images. Figure reproduced
from Ries and Larkin [38] with permission.

person or vehicle (targets) and to abstain from responding when
a background scene (distractor) was presented. Video clips con-
sisted of five consecutive images, each 100 ms in duration; each
video clip was presented for 500 ms. There was no interval be-
tween videos such that the first frame was presented immedi-
ately after the last frame of the prior video. Fifty percent of
the video clips showed static scenes, meaning that all five im-
ages in the video clip were identical. The other 50% contained
some type of motion (e.g., trees moving in the wind, car driving
across the scene). If a target appeared in the video clip, it was
present on each 100 ms image. The distracter to target ratio was
90/10. RSVP sequences were presented in 2 minute blocks after
which time participants were given a short break. Additionally,
to reduce the impact of ocular artifacts on the EEG data, a blink
screen appeared every 10 seconds and remained on screen for
500 ms. Participants completed a total of 10 blocks.

C. EEG Recording and Analysis

Electrophysiological recordings were digitally sampled at
512 Hz from 64 scalp electrodes arranged in a 10-10 mon-
tage using a BioSemi Active Two system (Amsterdam, The
Netherlands). External leads were placed on the outer canthi
and below the orbital fossa of both eyes to record electroocu-
lography (EOG). Continuous EEG data were referenced offline
to the average of the left and right earlobes and digitally filtered
0.1–55 Hz. Extended Infomax Independent Components Anal-
ysis along with subsequent visual inspection of components
was used to remove muscle and ocular artifacts from the EEG
signal [39].

D. EEG Signal Classification

Three different single-trial classification methods were used
to determine the presence of an ERP related to the target. For
each classifier, the EEG signals were first bandpass filtered (But-
terworth filter of order 4) with cutoff frequencies at 1 and 10.66
Hz. The results of the competition in the 2010 IEEE Work-
shop onMachine Learning for Signal Processing [40] suggested
that improved performance could be obtained by downsampling
the EEG data to 32 Hz. In the current study, this downsam-
pling was only beneficial for two of the three classifiers when
using a 10-fold cross-validation and thus was only used for those
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two methods (XDawn+Bayesian Linear Discriminant Analysis
and Common Spatial Patterns). The remaining classifier (Hier-
archical Discriminant Component Analysis) used the original
sampling rate of 512 Hz for classification. For each classifier,
we then focused the subsequent analysis on 1 s of post-stimulus
data. Details of each method are briefly described below.
1) Hierarchical Discriminant Component Analysis (HDCA):

HDCA is a binary classification method based on an ensemble
of logistic regression classifiers that transforms multi-channel
EEG data collected over a temporal window relative to image
onset into a single “interest score.” Ideally, the interest score is
generated so that the range of scores for each class are distinct,
thereby allowing for simple discrimination of the two classes.
Generating interest scores from HDCA involves a two-stage

classification. In the first stage, a set of 20 logistic regression
discriminators are applied to 20 equally-sized, non-overlapping
time windows that range from image onset up to 1 s post-image
onset. Each of the 20 discriminators are trained independently.
Each of these 20 discriminators serve to collapse the informa-
tion contained in all 64 EEG channels collected over the course
of the corresponding time window into a single value for dis-
criminating between the neural signal evoked by the two image
classes. In the second stage, a separate logistic regression dis-
criminator is applied to the output of the 20 Stage 1 discrimina-
tors to create a single interest score that can efficiently discrim-
inate the two image classes. The choice of 20 Stage 1 discrim-
inators was largely based on previous studies [14], [41]; how-
ever, using 10 Stage 1 discriminators (100 ms time windows)
has also been done [42] and produced no significant differences
in the classification performance reported here.
2) Common Spatial Patterns (CSP): The second classifi-

cation method used here combined CSP spatial filtering with
a Bayesian linear discriminant analysis (BLDA) classifier.
CSP creates linear combinations of signals that maximize the
difference in signal variance between two known conditions
[43], [44]. In our implementation, eight spatial filters were
used for the classifier input. The input vector was obtained
by concatenation of the eight spatially filtered EEG signals,
and the BLDA classifier was used to discriminate targets from
non-targets [45], [46].
3) XDawn+Bayesian Linear Discriminant Analysis (XD-

BLDA): The third classification method employed here used
a combination of the XDawn spatial filtering technique cou-
pled with a BLDA classifier. Collectively, this technique
will be referred to as XDBLDA and a full description can
be found in Rivet et al. [47] and Cecotti et al. [48], [49].
XDawn spatial filtering results in a set of spatial filters that
are rank ordered such that the highest rank filters maximize
the signal-to-signal-plus-noise ratio in the EEG signals. Just
as with CSP, our implementation used the top eight spatial
filters for classifier input, and the input vector was obtained
by concatenating the eight spatially filtered EEG signals. The
BLDA classifier was then used to discriminate targets from
non-targets.
4) Confidence: Confidence measures were derived for each

neural classifier to identify the reliability of the classification
made for each trial. Similar approaches have been used in pre-
vious RSVP studies as a means to sort the images by likelihood

of containing a target to improve the speed of target detection
[41], [42], [50], [51]. Here, we defined the confidence measure
as the distance of a given classifier score from the discriminating
boundary. The utility of this approach has been previously pre-
sented [22], [23], and a more in-depth analysis is being done in
a separate study. Confidence was calculated as follows:

(1)

Here, Scorewas the score produced on a single trial,max(Score)
and min(Score) were the maximum and minimum observed
values of Score across all trials in the training set, respectively,
and threshold was the discriminating boundary, which was
defined as the value that maximized the difference between the
true positive rate and false positive rate in the training set.
5) Merging Classifier Output: For each neural classifier, a

prediction of target/non-target (coded as ) and a con-
fidence score were obtained. We merged the two outputs to
create new covariate variables for each classifier (one each for
HDCA, CSP, and XDBLDA) by multiplying the binary pre-
diction variable with the confidence score for each
trial. This produced a continuous measure where larger posi-
tive values indicated higher confidence in target, while larger
negative values denoted higher confidence in non-target. Values
near 0 (either positive or negative) denoted a lower degree of
confidence. We then fit an ensemble classifier using logistic re-
gression that predicted individual trials as being from the target
class or non-target class using the outputs of the three neural
classifiers (HDCA, CSP, and XDBLDA) as covariates. We used
step-wise regression to select a statistically significant model
from among the three covariates using the model deviance as
the criterion. The difference in deviances between two models
is a statistical measure of the quality of a model fit and follows
an approximate distribution with degrees of freedom, with
being the difference in the number of parameters in the model

[52]. Note that for a step-wise search. We will use the
terminology “joint decision” to refer to this logistic regression
fusion of the outputs of HDCA, CSP, and XDBLDA for the re-
mainder of the manuscript.
6) Cross-Validation (CV): For the purpose of statistical

testing, for each classifier we performed 10-fold CV in which
the data is divided into 10 non-overlapping blocks and classi-
fiers were trained on all but one block and tested against the
remaining block. This was done 10 times so that each block
was used as the testing set. The overall CV accuracy is then
reported as the average of the 10 testing set accuracies.

E. Active Learning

As a means to minimize calibration effort, AL selects the
most informative samples to label so that a given learning per-
formance can be achieved with less labeling effort.
A hypothetical illustration of AL is shown in Fig. 2. Sup-

pose there are two classes (stars and triangles), which are sep-
arated by some true underlying decision boundary [shown as
a dashed purple circle in Fig. 2(a)] and an estimated decision
boundary [shown in dashed black in Fig. 2(b)] obtained from a
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Fig. 2. Illustration of AL. (A) True underlying distribution, which is assumed unknown, of a binary decision space, with red triangles and purple stars denoting
two distinct classes. The dashed purple line denotes the underlying decision boundary. (B) An estimated decision boundary (black dashed) given three labeled
samples from each class. Grey circles denote unlabeled samples. (C) An estimated decision boundary given two additional labeled samples (black arrows) as
determined by AL. (D) An estimated decision boundary given two additional labeled samples that have been selected at random. This represents the SizeBaseline
(SB) measure described in Table I. Note that these newly labeled samples provide no additional information, so the original decision boundary is sufficient. (E) An
estimated decision boundary given two additional labeled samples drawn from the same class as the two samples learned from AL in (C). This measure represents
the potential improvement in the estimated decision boundary when knowledge of the class distribution is known (see the ClassBaseline [CB] measure in Table I).
Note that the decision boundaries in (C) and (E) more accurately resemble the true decision boundary, with (C) having the best representation.

classifier learning on six labeled samples (shown as red trian-
gles and purple stars). This decision boundary can be estimated
by any classification routine (for example, logistic regression
or SVMs). The problem domain of AL is that we are given
only a few labeled samples from each class to learn this ini-
tial decision boundary. Given this limitation, our task is to se-
lect a few more samples, obtain the labels for those few sam-
ples, and incorporate their information into the classification
efficiently. One possible strategy is to select points at random
(Fig. 2(d), arrows); however, there exists a possibility that these
points will not provide any significant information. AL instead
uses a heuristic to estimate informative points for labeling and
re-estimates the decision boundary using this new information
(Fig. 2(c), arrows). Several strategies have been proposed to se-
lect these samples. Examples include QBC [21] and uncertainty
sampling [53], [54]. QBC selects points by forming a committee
of classifiers (usually homogeneous classifiers provided by a
k-fold CV) and finding points where classifiers disagree on class
labels, whereas uncertainty sampling uses a heuristic to estimate
uncertain points and samples data points with the lowest cer-
tainty. One example of such a heuristic is a distance-to-deci-
sion boundary metric (used in Fig. 2). In this work, we used a
combination of QBC and uncertainty sampling by using HDCA,
CSP, and XDBLDA as our committee of classifiers and an un-
weighted linear summation of each classifier's confidence score
(see Section II-D-4) as the uncertainty metric. Pseudocode for
our AL implementation is shown in Fig. 3.
A flowchart of the AL process is shown in Fig. 4. We as-

sumed all the data was initially unlabeled (shown in orange in
Fig. 4). The data was then partitioned into three sets: training

Fig. 3. Pseudocode for AL algorithm. Note that the joint decision classifiers
are trained using the classifiers from Step 1; however, the output of the joint
decision classifier is not considered when performing the AL-based update in
Steps 2 and 3.

, testing , and validation . The training and valida-
tion sets were then sent to the oracle for labeling. The validation
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Fig. 4. Diagram for AL. Numbers in parentheses correspond to the steps in the pseudocode shown in Fig. 3. The initial data set, assumed unlabeled (orange),
is partitioned into three separate data sets: Training (X), Testing (Y), and Validation (V). The Training and Validation sets are then manually labeled by the user
(green). Step (1) consists of training all neural classifiers on X and evaluating performance on Y and V. Classifier-labeled instances are shown in blue. Step (2)
identifies the K trials with lowest confidence as labeled by the classifier (red) and removes them from Y. Step (3) queries the labels for the lowest confidence trials
and then merges these labels with X. These steps are repeated until either a desired level of accuracy is obtained in V or a fixed number of iterations have been
completed. The latter approach has been used in this study.

set was a random selection without replacement of 10% of the
trials such that the ratio of target to non-target trials is reflective
of the ratio in the overall data set. From the remaining trials,
the training set was chosen by randomly selecting, without
replacement, 15 target and 15 non-target trials. This initial bal-
ancing of the training set helps to produce accurate decision
boundaries. All remaining trials were then placed into the test
set . Step 1, shown as (1) in Fig. 4, starts with training all
neural classifiers using and evaluating the performance on
using the area under the receiver operating characteristic (ROC)
curve performance metric. The ROC curve is a plot of the true
positive rate against the false positive rate, across a range of
possible discriminating threshold values. Taking the area under
this curve (the AUC) produced a measure of classifier efficacy.
In Step 2, the trained model was evaluated on the testing set
and the aggregate confidence was calculated for each trial. The

trials with the least overall confidence were then removed
from (see Step 2 in Fig. 4). In Step 3, these trials were sent
to the oracle for labeling (see Step 3 in Fig. 4). In our simula-
tions, the oracle was assumed to be the user, given unlimited
time, who labels each image as being from either the target or
non-target class. Once the low confidence trials were labeled,
they were merged into the training set , whereby the process
started anew at Step 1. This process continued for a pre-deter-
mined number of iterations. In this work, we set the number of
iterations to be 100, and we set for our analysis.

F. Statistical Analysis
We conducted a series of simulations to validate the improved

performance of the AL classification models against three base-
lines. In the first baseline, we compared the AL performance at
each iteration to the 10-fold CV classification (Section II-D-6).
The 10-fold CV classification provided an estimate of overall
classification accuracy given full data annotation, and as such,

TABLE I
SUMMARY OF DATA SELECTION METHODS

For each of the methods described here, the data selection criteria described
in this table replaces the data selection portion of Step 3 in the pseudocode
above. The 10-fold CV baseline condition is not shown here as there is no
iterative ‘Data Selection Criteria’ for this method.

was an effective baseline to compare the overall performance
of the AL-derived classifiers. Two additional baselines were re-
quired to validate the effectiveness of the AL process for itera-
tively improving classifier performance. The first of these addi-
tional baselines, called SizeBaseline (SB), was calculated by se-
lecting points at random instead of selecting based on aggre-
gate confidence [Table I, Fig. 2(d)]. This baseline controlled for
the effect of improved performance based purely on increased
sample size and offered the same performance as a set of stan-
dard block organized CV tests in which a given fraction of the
data was used for training. The final baseline, called ClassBase-
line (CB), selected points at random, but followed the same
class distribution that was selected using AL [Table I, Fig. 2(e)].
For example, if in AL the and trials were selected from
Classes 1 and 2, respectively, then CB randomly selected
trials from Class 1 and trials from Class 2 from all avail-
able trials in . Whereas SB controlled for the effect of sample
size, CB controlled for whether the aggregate confidence ac-
curately identified useful trials and statistically controlled for



MARATHE et al.: IMPROVED NEURAL SIGNAL CLASSIFICATION IN A RAPID SERIAL VISUAL PRESENTATION TASK USING ACTIVE LEARNING 339

the effect that class distribution may have on the overall perfor-
mance. Note that the AL analysis was performed prior to the CB
analysis since the class distribution was only known after the
AL analysis was performed.
Furthermore, the CB analysis assumed that all labels in

are known a priori since we were randomly sampling trials of
specific sizes from each class. Therefore, the CB analysis was
used only as a statistical measure of improved performance and
does not represent a viable alternative to AL. Each of the three
different methods (AL, SB, CB) was simulated 100 times, with
a total of iterations per simulation. The 30 initial trials
plus the additional 1000 trials added over the course of the 100
iterations (10 trials per iteration) resulted in a final training set of
1030 trials. For the purpose of presenting the results, the number
of trials in the training set at each iteration was converted to a
percentage of the total number of trials available.
To assess the overall performance among the three methods

(AL, CB, SB), we defined a novel measure called the Area-
Under-Performance-Curve (AUPC) as the area under the curve
of the AUC values plotted for each iteration nor-
malized so that the range of One AUPC value is
obtained for each simulated run, so AL, CB, and SB will each
have 100 AUPC values for each subject.
Our statistical testing procedure was performed in multiple

stages. In the first stage, we checked for an overall difference in
AUPC for each subject by performing a non-parametric analysis
of variance (ANOVA) (Kruskal-Wallis), using AL, CB, and SB
as the three factors. If this overall test was significant, we then
performed non-parametric ANOVAs on the AUC values at each
iteration to determine which iteration produced
significant deviations. If this test was significant at iteration
, we performed further post-hoc pairwise analyses (Tukey-

Kramer) to determine which method (AL, CB, SB) had sig-
nificantly different AUC values. False-Discovery Rate (FDR)
analyses were used to control for the effect of multiple compar-
isons [55], [56].

III. RESULTS
AL produces more accurate classifiers with less manually la-

beled data than both CB and SB (Fig. 5). For each of the 15 sub-
jects, the average AUPC for the joint decision classifier trained
using AL is greater than comparable classifiers trained with CB,
which is in turn greater than classifiers trained with SB. This re-
sult is intuitive given that CB gives some additional information
that helps in estimating a better decision boundary [Fig. 2(e)].
The difference across the three conditions is statistically sig-
nificant (individual Kruskal-Wallis tests per subject with FDR
adjustment, ). Subsequent post-hoc comparisons using
Tukey-Kramer (see Section II-F) show that AL has larger values
than both CB and SB for nearly all subjects.
In addition to outperforming CB and SB, for a majority of

subjects, AL performance was similar to the performance of
10-fold CV when training with substantially less training data
(Fig. 6). Fig. 6(a) compares the AUC values for AL, CB, and SB
when using 5%, 25%, and 50% of the data for training the joint
decision classifier (see Section II-D-5) with the performance of
the 10-fold cross-validated joint decision classifiers trained on
90% of the data. When 25% of the data is used for training, the

Fig. 5. Comparison of AUPC across all subjects with AL, CB, and SB for the
joint decision classification. Error bars denote one standard deviation across
the 100 repetitions for the individual subjects. For the “Avg,” error bars denote
one standard deviation across the subject means. Note: 10-fold CV baseline is
not included here because the AUPC measure requires an iteratively trained
classifier to measure performance.

Fig. 6. (A) AUC for AL, CB, and SB using 5%, 25%, and 50% of the data for
training compared to a 10-fold cross-validated classifier that uses 90% of the
trials for training. Error bars represent standard deviation. (B) Plot of the per-
centage of subjects whose average AL performance exceeded average 10-fold
CV performance by size of training data set in percent for the three different
selection methods. All performance values were measured based on the joint
decision classification.
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Fig. 7. Classification performance for Subject S08. (A)–(D) AUC values for
the three neural classifiers (HDCA, XDBLDA, CSP) and a joint decision clas-
sifier, respectively, as a function of the percent of trials used for training. The
three curves within each subfigure denote AL (blue), CB (green), and SB (red)
performances, and the dashed horizontal line denotes the 10-fold CV perfor-
mance for that specific classification method, which uses 90% of the data for
training. Error bars denote a 95% bootstrap confidence interval. (E) Percentage
of AL bootstrap models containing significant parameters based on the percent
of data included in the training data set. Nearly all bootstrap models contain all
three neural classifiers as statistically significant variables with the exception of
CSP in the earlier iterations and XDBLDA in the later iterations.

mean AL AUC performance for 3 out of 15 subjects ( 35%) is
greater than the mean AUC of 10-fold CV. This trend continues
until the data in the training set is about 50%, where over 70%
of subjects had mean AUC values greater than the mean AUC
of 10-fold CV. In contrast, with the CB approach, only 35% of
subjects had mean AUC performance greater than 10-fold CV at
50% training data [Fig. 6(b)]. The SB approach does not exhibit
greater performance until about 50% training data size.
As expected, individual performance across the population

of subjects varies considerably. For 10 of the 15 subjects, the
joint decision classifier using AL outperforms each of the in-
dividual committee members using AL. For Subject S08, high-
lighted in Fig. 7, the performance of the AL joint decision clas-
sifier is better than any individual AL classifier. In contrast, the
joint decision does not perform better than any individual clas-
sifier with the CB (green) and SB (red) measures; in fact, the
SB joint decision appears to perform worse than the SB HDCA
measure at nearly all labeled data set sizes. This suggests that

AL is providing unique information at the joint decision classi-
fication level that is not present in the joint decision classifiers
trained with CB and SB.
For the other five subjects, the joint decision classifier using

AL matched the top performing individual classifier using AL
(Figures S1 and S2), whereas with SB and CB, the joint deci-
sion sometimes appears to perform worse than the individual
classifiers. Across the entire group of subjects, the combination
of using the joint decision classifier with AL appears to provide
the overall best performance.
An important consideration is whether each classifier is re-

quired for the joint decision AL classifiers to be successful. In
general, the utility of each classifier varies across the popula-
tion. For some subjects, all three classifiers are significant for
most of the iterations (see Fig. 7). For this particular subject
(S08), HDCA is always significant in all iterations across all
bootstrap runs [Fig. 7(e)] ( test, , see Section II-D-5)
except for the first few iterations. CSP and XDBLDA are signif-
icant in over 80% of bootstrap iterations at nearly all training set
sizes except for CSP below 10% training set size and XDBLDA
greater than 40% training set size. At around the 15%–25%
range, all three classifiers are almost always significant. This
interval coincides with the best observed tradeoff between clas-
sifier accuracy (accuracy matching that of 10-fold CV) and la-
beling effort [see Fig. 7(d)]. For some subjects, only two of the
three classifiers are always significant (Figure S1). Other sub-
jects (Figure S2) show that the significant classifiers vary across
iterations. These differences across the population of subjects as
to which classifiers will be important indicate that including all
three classifiers would maximize performance of the joint deci-
sion AL classifier.

IV. DISCUSSION

This paper focuses primarily on using Active Learning to ef-
ficiently label a previously unlabeled image dataset using a re-
duced number of manual labels. We show that, in most cases,
comparable classification performance to that of 10-fold cross-
validation can be achieved with significantly fewer labeled sam-
ples. This suggests that Active Learning can be used to reduce
the calibration effort of the user by minimizing the number of la-
bels the user must provide. The reduced labeling effort comes at
a cost of computational time. The iterative nature of AL requires
that each classifier be trained several times during a single cali-
bration session. In many cases, the ability to trade increased la-
beling effort for an image analyst for increased processing load
for a computer may be reason enough to warrant moving to-
wards an AL based approach. However, even in cases where the
amount of analyst time is in abundance, the AL approach can be
more efficient given a sufficiently large data set (e.g., 1000 or
more images).
Given that traditional BCIs are often expected to function

without overt responses, an important issue is whether the AL
results presented here rely on the motor responses. Previous
work has shown that HDCA can effectively classify neural re-
sponses in the absence of motor responses [41]. While similar
studies involving XDBLDA and CSP have not been done, the
aforementioned study implies that the underlying neural signal
needed to classify target images is still present in trials without
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an overt motor response, and thus XDBLDA and CSP should
be able to function on this type of data as well. There does seem
to be a small drop in performance between motor response data
and non-motor response data (0.92 to 0.91 AUC in Gerson, et
al. [41]). Based on this data, one would expect that the overall
classification results may decline by a small amount in the ab-
sence of a motor response. Importantly, however, any decline in
classifier accuracy is likely to similarly affect AL, CB, and SB
(and any cross-validated classification) such that the main find-
ings of this study would be unaltered.

A. Understanding the Basis of Improved Performance
The data presented here demonstrates that a majority of sub-

jects exhibited an improvement in the mean classification AUC
when using AL versus 10-fold CV. The underlying basis for this
improvement is currently unclear. It is commonly understood
in the machine learning literature that aggregating the outputs
of multiple learning algorithms tends to provide more robust
performance by exploiting independent information across mul-
tiple information sources. Our results have mainly corroborated
this point.We have shown that using AL together with ensemble
learning can significantly improve overall classification perfor-
mance over AL with each member of the ensemble trained in-
dividually. However, it is currently unclear if the improved per-
formance can also be tied to specific underlying neural features
that are captured by AL but not captured by training using tra-
ditional approaches. In an attempt to answer this question, we
have performed some initial exploratory analyses looking at the
properties of the ERPs, the stimuli, and the behavioral response.
However, none of these exploratory analyses clearly reveals the
underlying neural basis, implying that there may be several fac-
tors underlying the improved performance of the AL algorithm,
or that the improvement is non-neural in nature.
1) ERP Characteristics: One possibility for the improved

performance of classifiers trained with AL is in the character-
istics of the ERPs of the informative trials selected by the AL
algorithm. We hypothesize that these will contain a smaller dif-
ference wave between the two classes, and that learning on these
trials produces a more robust decision boundary. To test this,
we compared the difference wave between target and non-target
ERPs from the training set of the AL iteration that produced the
best overall accuracy to the difference wave between target and
non-target ERPs calculated using the full data for each subject.
Using the area under the difference wave as a measure of sim-
ilarity, we fit a linear regression, using the AUC value at the
optimal AL iteration as the response variable and the area under
the ERP difference waveforms as the predictor. However, this
linear regression was significant in only 2 of the
15 subjects in the study, indicating that this was not the major
factor in explaining the improved performance seen with AL.
Previous research has also shown that an extended time-on-

task may also cause decrements in the ERP waveform [57].
Thus, it is possible that ALwas able to preferentially select trials
near the end of a session, when time-on-task effects would have
diminished the ERP amplitude, to include in the training set.
We tested this by first dividing the total length of the exper-
iment into 10 non-overlapping time windows and finding the
number of trials in each of these windows at the AL iteration
that produced the best overall AUC. We then performed a

test to determine if the distribution of trials in each bin was dif-
ferent than the expected number of trials in each bin (1/10th the
total number of trials). This test was not significant in all sub-
jects (FDR-corrected, ), which again indicates that this
test was not the major factor in explaining the improved perfor-
mance with AL.
2) Stimulus Type: Target and non-target images were pre-

sented either statically or in short movie clips, occurring with
equal proportion [38]. Prior research suggests that moving
images elicit more robust neural responses than static images.
Since AL attempts to identify the trials that are more difficult
to classify (e.g., the most informative trials), then it is possible
that AL was preferentially selecting the static trials to add to the
training set. To test this, we calculated the proportion of trials
that fell into the static class within the AL-identified training
set in each AL simulation, and we performed a non-parametric
sign-rank test to test if the distribution of proportions had a
median of 0.5, versus the alternative that the proportion was
greater than 0.5. If this test is significant, this suggests that
AL is identifying more trials belonging the static image class.
While we did observe statistically significant differences in
most subjects , across all subjects this difference
was not significantly correlated with AL performance. This was
determined by fitting a linear regression, with the mean AUC
across all bootstrap iterations as the response and the mean
proportion of moving images across all bootstrap iterations as
the predictor. These values were calculated for each subject,
resulting in 15 data point pairs. A t-test for a significant slope
parameter ( , , where is the slope
parameter) was not significant . We also tested this
hypothesis non-parametrically using a bootstrap permutation
procedure, which showed similar results . These
results indicate that the stimulus type (moving versus static)
was not the major factor responsible for the improvement seen
in AL.
3) Behavioral Variability: An additional hypothesis was

that subjects who demonstrated higher degrees of response
time variability would show greater improvement in classi-
fication performance using AL. The reasoning behind this
hypothesis stems from the fact that previous work has shown
that increased levels of response time variability decreases
classification accuracy [58], [59]. In both of these studies,
removing the variability, either by removing the extremely
long and extremely short latency trials, or by aligning trials to
the behavioral response, dramatically improved classification
accuracy. For subjects with a high degree of variability, AL
may be improving performance by identifying a subset of trials
with less variability and thereby approximating the effect of
ignoring the extremely long and short latency trials [59].
To test this, we compared the reaction time of the AL-selected

trials to the reaction time in the remaining trials. In a majority of
subjects, the reaction time of the AL-selected trials showed very
little difference from the reaction time of the remaining trials
(t-test between AL-selected trials and remaining trials,
for 11 of 15 subjects). In a small number of subjects, AL prefer-
entially chose slightly faster trials, while in other subjects, AL
preferentially chose slightly slower trials.
Next, we compared the improvement in classification

achieved through AL against the improvement in classification
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when response time variability is removed by aligning the
trials to the timing of the behavioral response. AL was unable
to match the performance increase achieved by removing
response time variability; however, the joint decision classifiers
produced through AL do match the performance of other
classification approaches designed to overcome the temporal
variability of neural response [58]. Our interpretation is that in
some participants, the improvement seen through AL is pre-
dominantly driven by accounting for response time variability,
while in other participants AL improvement is predominantly
driven by other factors.
Overall, these exploratory analyses cannot fully explain the

neural basis for the improvement in classification using AL;
however, they do indicate that the ERP characteristics, stim-
ulus class type, and behavioral variability each may play some
role in enabling AL to improve classification performance. Fur-
ther analysis is required to appropriately characterize the rela-
tionship between these factors and the observed performance
improvements.

V. CONCLUSION
This paper shows that AL can be used to more efficiently, and

in some cases more accurately, calibrate a simulated BCI. How-
ever, the results presented here illustrate an interesting phenom-
enon. A general rule of thumb in the machine learning field is
that classifiers built on larger training sets perform as well as or
better than classifiers built on smaller training sets. Our results,
however, are contrary to this in that we are able to show im-
proved classification with smaller training set sizes with many
of our subjects by intelligently choosing which data to include
in the training set. For online learning, this would mean that
rather than retraining classifiers using all of the new data, a pre-
viously trained classifier may only need a small subset of new
data to recalibrate the existing classifier based on the new signal
dynamics observed. This type of approach has produced good
results in other fields [49], [50], and our results indicate that it
may also be useful for BCI applications.
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