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1. Introduction

ABSTRACT

Understanding risks from the human-mediated spread of non-indigenous species (NIS) is a critical com-
ponent of marine biosecurity management programmes. Recreational boating is well-recognised as a NIS
pathway, especially at a regional scale. Assessment of risks from this pathway is therefore desirable for
coastal environments where recreational boating occurs. However, formal or quantitative risk assess-
ment for the recreational vessel pathway is often hampered by lack of data, hence often relies on expert
opinion. The use of expert opinion itself is sometimes limited by its inherent vagueness, which can be
an important source of uncertainty that reduces the validity and applicability of the assessment. Fuzzy
logic, specifically interval type-2 fuzzy logic, is able to model and propagate this type of uncertainty, and
is a useful technique in risk assessment where expert opinion is relied upon. The present paper describes
the implementation of a NIS fuzzy expert system (FES) for assessing the risk of invasion in marine envi-
ronments via recreational vessels. The FES was based on expert opinion gathered through systematic
elicitation exercises, designed to acknowledge important uncertainty sources (e.g., underspecificity and
ambiguity). The FES, using interval type-2 fuzzy logic, calculated an invasion risk value (integrating NIS
infection and detection probabilities) for a range of invasion scenarios. These scenarios were defined by
all possible combinations of two vessel types (moored and trailered), five vessel components (hull, deck,
internal spaces, anchor, fishing gear), two infection modes (fouling, water/sediment retention) and six
frequently visited marine habitats (marina, mooring, farm, ramp, wharf, anchorage). Although invasion
risk values determined using the FES approach was scenario-specific, general patterns were identified.
Moored vessels consistently showed higher invasion risk values than trailered vessels. Invasion risk val-
ues were higher for anchorages, moorings and wharves. Similarly, hull-fouling was revealed as the highest
infection risk mode after pooling results across all habitats. The NIS fuzzy expert system presented here
appears as a valuable prioritising and decision-making tool for NIS research, prevention and control activ-
ities. Its easy implementation and wide applicability should encourage the development and application
of this type of system as an integral part of biosecurity, and other environmental management plans.

© 2009 Elsevier B.V. All rights reserved.

2000; Colautti et al., 2006). It is not surprising then, that the risks
of NIS to marine, freshwater and terrestrial environments are cur-

Biological invasion, defined as the entry, establishment and
spread of non-indigenous species (NIS) into a new region, is
recognised today (after habitat destruction) as the main threat to
biodiversity (Vitousek etal., 1997). Although the effects of NIS in the
environment depend on specific species-ecosystem interactions,
there are examples throughout the world showing that biological
invasions can cause significant impacts (frequently irreversible),
which can have adverse economic consequences (Pimentel et al.,
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rently one of the main concerns in environmental management
(Deines et al., 2005).

Although interest in biological invasions amongst scientists has
increased in recent decades, knowledge of invasion processes and
pathways is still limited. This is especially true in the marine
field, where research on bioinvasion pathways has focused on bal-
last water and fouling associated with commercial shipping (e.g.
Carlton, 1985; Gollasch, 2002; Coutts and Taylor, 2004). To date
however, at least 15 invasion pathways have been identified in
the marine environment (Carlton, 1985; Hewitt et al., 2004), with
aquaculture (Naylor et al., 2001; Locke et al., 2007; Minchin, 2007)
and recreational boating (Johnson et al.,, 2001; Bax et al., 2002;
Dijkstra et al., 2007; Floerl and Inglis, 2009) being among the most
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important. In fact, relatively recent research suggests that recre-
ational boating (defined here as the movement of recreational
vessels between different habitats such as marinas, wharves and
boat ramps) could play an important (if not crucial) role in the
spread of NIS, especially at regional scales (e.g., Johnson et al., 2001;
Bax et al., 2002; Floerl et al., 2005; Ashton et al., 2006). Research
has also identified that the likelihood of NIS entrapment, transport
and release via recreational boating is subject to a large number of
variables such as vessel component (e.g., deck, hull) (Hayes, 2002),
user habits, species biology, and spatio-temporal characteristics of
the environment (Floerl and Inglis, 2003; Acosta and Forrest, 2009).

Ecological risk assessment has been recognised as a useful
methodology for identifying, prioritising and managing marine
bioinvasion risks (Hayes, 1997; Hewitt and Hayes, 2003; Forrest et
al., 2006a), which can assist scientists and managers to optimize the
allocation of available (usually scarce) resources. Often however,
due to a lack of research or the complexity of the system/process
considered, the required information for the risk assessment is lim-
ited or unavailable. A normal practice to overcome this problem is
the use of expert opinion. Expert opinion (also known as expert
judgement) is commonly used as a data source and support for
system analysis, alternative evaluation and decision-making pro-
cesses in a wide range of fields such as nuclear power generation
(e.g., Guimardes and Lapa, 2004; Ha and Seong, 2004; Evsukoff
and Gentil, 2005), business and finances (Fildes, 2006; Chin et
al.,, 2009; Wu et al., 2009), and occupational health (Azadeh et
al., 2008), among many others. There are however, factors associ-
ated with expert opinion such as underspecificity and vagueness
that can considerably increase the uncertainty present in such
approaches (Burgman, 2005). In order to reduce this uncertainty
and make expert data useful therefore, three main aspects need
to be considered in the risk assessment process: (i) the knowl-
edge of experts, (ii) the elicitation method, and (iii) when more
than one expert is considered, the averaging technique (Moon and
Kang, 1999). Fuzzy logic (Zadeh, 1965) is a technique that can
accommodate these three considerations, hence provides a use-
ful approach for dealing with risk-based processes that rely on
expert opinion. Fuzzy logic is able to handle data imprecision and
provides the additional ability to deal naturally with vagueness of
language, a valuable advantage when data are represented through
linguistic terms (e.g., likely, high). Fuzzy logic systems (FLS) are
nowadays commonly used in fields where different levels of uncer-
tainty are present such as modelling and control (Bezdek, 1993),
signal processing (Castro et al., 2009), computer and communica-
tion networks (Cheong and Lai, 2009; Tajbakhsh et al., 2009; Fadaei
and Salahshoor, 2008), diagnostic medicine (Schaefer et al., 2009;
Toprak and Giiler, 2008) and financial investing (Celikyilmaz et al.,
2009; Plikynas et al., 2005). Most of these studies however, have
applied traditional fuzzy sets (i.e., type-1 fuzzy sets, T1FS), and
only recently have interval type-2 fuzzy sets (IT2FS) been recog-
nised as a more suitable approach to modelling expert opinion
and linguistic uncertainties (e.g., Wu and Mendel, 2007a; Wu and
Tan, 2006; Mendel, 2001). Similarly, despite increasing interest in
the benefits of fuzzy logic in ecology and environmental manage-
ment fields (e.g. Cheong and Lai, 2009; Mouton et al., 2009; Li
and Sun, 2008; Prato, 2007, 2005; Marchini and Marchini, 2006;
Cheung et al., 2005; Regan and Colyvan, 2005), the potential of
FLS to model and analyse biological invasions, or even to assist in
the implementation of expert systems in this field, has not been
explored.

This paper describes the design and implementation of a fuzzy
expert system (FES) to assess the hypothetical infection risk of
coastal marine habitats via the release of NIS from recreational
vessels. The system used expert information generated through
systematic elicitation exercises and integrated with fuzzy logic;
specifically interval type-2 fuzzy logic (IT2FL, Mendel, 2001). This

approach not only simplified expert data averaging, a frequently
difficult and computer-demanding task, but also ensured that
uncertainties associated with expert opinion were both mod-
elled and propagated. The final product, the IT2FL expert system,
appears as a valuable prioritising and decision-making tool for NIS
research, prevention and control activities. Its easy implementa-
tion and wide applicability should encourage the development of
this type of system as an integral part of biosecurity management
plans.

2. Methods
2.1. Expert opinion and elicitation exercises

Expert data were generated through three elicitation exercises,
which were based on questionnaires designed to: (i) assess the
probability of coastal habitats becoming infected with NIS viarecre-
ational vessels, (ii) estimate the probability of detecting NIS in
the coastal environment, and (iii) integrate these two probabil-
ities to define single risk values for specific invasion scenarios.
The first exercise, which was used to develop a conceptual model
for marine invasions, included ten experts with experience in at
least one of the following fields: marine biology, invasion biology,
recreational boating or risk assessment. However, as high accuracy
levels for expert estimates can be reached with between 3 and 6
people (Ashton, 1986; Ashton and Ashton, 1985), the second and
third exercises (where experts had to give probability estimates)
involved only five of the ten experts. This subgroup was selected
for their particular knowledge on recreational boating and inva-
sion biology. Experts were chosen from different governmental
and non-governmental agencies, reducing the likelihood of their
answers being correlated (Clemen and Winkler, 1999).

Five specific aspects were considered in this process to improve
the accuracy of experts, and both reduce the uncertainty in the
generated data and model it throughout the analysis. First, each
questionnaire (including a cover letter explaining the aim of the
exercise and the methodology to follow) was tested with groups
of at least five people before being sent to the experts. Second,
specific baseline information was included at the beginning of
the exercises so all the experts had a common knowledge of the
issues considered (Ayyub, 2001). Third, technical terms and words
with unclear or potentially confusing meanings were clearly
defined to prevent ambiguity (Burgman, 2005) and definitional
disagreements (Clemen and Winkler, 1999). Similarly, in order
to avoid underspecificity, a plausible and specific scenario was
always given when experts had to estimate probabilities (Morgan
and Henrion, 1990). Fourth, after giving an initial estimate, experts
were required to think about one reason that could “make it
wrong” (i.e., disconfirming information) and decide whether this
would lead them to change their answer (Morgan and Henrion,
1990). Finally, and most importantly, experts had to indicate their
assessments of probability and risk through simple and commonly
used words (e.g., likely, high).

2.2. First exercise

One of the main sources of uncertainty when using expert opin-
ion comes from differences in the way experts conceive the working
of the process/system (Burgman, 2005). The main objective in the
first exercise was therefore to produce a comprehensive concep-
tual model, accepted by all the experts as valid, for the invasion
process via recreational vessels. For this, experts were provided
with information on this pathway and its role in the marine inva-
sion problem, and asked to analyse, modify and comment on an
initial model created by the authors. An updated and more com-
prehensive model was then generated with their feedback. The
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Table 1
List of variables considered when estimating the invasion risk.

Habitat Vessel type  Vessel component  Infection mode
Anchorage Moored Hull Fouling

Boat ramp Trailered Deck Water/sediment retention
Mooring Internal spaces

Marine farm Anchor

Marina? Fishing gear

Wharf?

2 Invasion risk was estimated in the presence and absence of surveillance.

model described and analysed the infection process applying the
Fault-tree analysis technique. This technique uses a top-bottom
approach to define the occurrence of the top event (i.e., event of
interest) as the consequence of previous events (Bedford and Cooke,
2001). In this particular case, the event of interest was the infection
of a coastal marine environment by the release of a NIS from arecre-
ational vessel. The model considered recreational vessels to have
five distinct components (i.e., Hull, Deck, Internal spaces, Anchor and
Fishing gear), that could become contaminated with NIS through
two infection modes: (i) fouling (i.e., sessile and mobile organisms
that use a surface as a habitat) and/or (ii) water/sediment retention
(Hayes, 2002) (Table 1). Although the model represented the inva-
sion process as a whole, each component was analysed separately,
identifying the main variables and series of events that would
lead to the release of NIS into the environment (see Acosta and
Forrest, 2009, for details on this exercise and the final conceptual
model).

2.3. Second exercise

A survey of vessel users conducted in Tasman Bay, New Zealand,
in 2004 showed that recreational boats visit mainly six types of
coastal habitats: (i) wharves/jetties, (ii) anchorages, (iii) mooring,
(iv) boat ramps, (v) marinas, and (vi) marine farms (Acosta, unpubl.
data). Hence, such localities are potential introduction points for
NIS and stepping stones for further spread (Floerl and Inglis, 2009).
The second elicitation exercise was therefore designed to assess the
probability of these six coastal marine habitats becoming infected
via movements of recreational vessels (Table 1).

The second exercise comprised three sections. The initial sec-
tion presented the conceptual model created in the first exercise.
It also provided baseline information on the characteristics of
the marine structures and habitats considered. The next section
required experts to use the conceptual model and information
provided, as well as their personal knowledge, to assess the
probability of the structures becoming infected with a NIS from an
infected recreational vessel. Experts in general are recognised as
having more difficulty assessing a complicated system/process as
a whole than as a set of simpler/basic sub-systems (Morgan and
Henrion, 1990). Because of this, and the fact that the potential of
a vessel to release a NIS into a new environment depends not only
on the species but also on the vessel component and infection
mode considered (Hayes, 2002; Acosta and Forrest, 2009), experts
had to assess the probability for each particular combination (i.e.,
system disaggregation). Experts were therefore asked to indicate
the likelihood of infection for each infection scenario specified by
72 possible habitat-vessel component-infection mode combinations
(e.g., marina-deck-fouling) (Table 1). Experts however, were only
allowed to use one of the following four words when indicating
their assessment: (i) very unlikely, (ii) unlikely, (iii) likely, or (iv)
very likely.

The risk of infection posed by recreational vessels that spend
most of the time (e.g. >80% of the year) in the water (i.e. moored
vessels) is considerably higher than the risk of recreational ves-
sels that are trailered and not kept in the water (Floerl et al.,

2009). Hence, in order to consider this variable in the analysis,
and obtain more realistic estimates, experts had to assess each
vessel category separately (Table 1). Similarly, in order to increase
accuracy and encourage experts to be consistent assessing a con-
siderably long number of scenarios (72), after finishing their initial
assessment experts had to analyse each scenario and answer (i.e.,
assigned probability) again, thinking about a reason that could
make their estimate incorrect and decide whether it had to be
updated (Morgan and Henrion, 1990). The final section of the exer-
cise asked experts to consider the scenario where “a man reaches
into a bag of 100 golf balls and grabs one”, and state the minimum
and maximum number of blue balls that should be in the bag for
them to consider the probability of the man randomly choosing a
blue ball as: (i) very unlikely, (ii) very unlikely-unlikely, (iii) unlikely,
(iv) unlikely-likely, (v) likely, (vi) likely-very likely or (vii) very likely.
This gave an indication of the natural scale each expert associates
with the words used, including information on their perception of
the uncertainty of the terms.

2.4. Third exercise

Control and eradication programmes are more likely to be effec-
tive atan early stage of the invasion when the numbers of organisms
are low and before the NIS has spread beyond the initial point of
incursion (e.g., Wotton et al., 2004; Miller et al., 2004; Coutts and
Forrest, 2007). Consequently, early NIS detection is expected to
increase the likelihood of success in control and eradication pro-
grammes, which makes detection probability an essential variable
in the assessment of NIS invasion risk management. Hence, the
third elicitation exercise had four sections. The objective of the
first two sections was to estimate the probability of detecting NIS
in the marine environment, while the aim of the remaining sec-
tions was to combine the probabilities of infection and detection
under asingle risk value, and to assess the extent to which detection
probabilities, and thus risk values, were altered by the presence or
absence of active surveillance. The latter was considered for mari-
nas and wharves only, partly for simplicity, but also because new
NIS incursions are often detected on these two types of habitat, as a
result of both active surveillance (e.g., the Mediterranean fanworm
Sabella spalanzanii in New Zealand) and inadvertent discovery (e.g.,
the clubbed tunicate Styela clava in New Zealand; Davis and Davis,
2006).

The first section presented experts with a list of the main vari-
ables that could influence the likelihood of detecting the presence
of NIS in the coastal environment. Each variable was clearly defined
and explained with real examples and references. Experts were
asked to agree or disagree on each variable, providing arguments for
their decision. This induced them to analyse the detection process
carefully, thus was expected to increase the validity and accuracy
of their answer (Morgan and Henrion, 1990). In the second sec-
tion, experts had to apply the same four words used in the second
questionnaire (i.e. very unlikely, unlikely, likely, or very likely) to
indicate the NIS detection probability at each habitat considered
(Table 1). Experts were asked to consider wharves and marinas
with and without active surveillance when assessing detection
probability.

The third section required experts to classify the risk for each
invasion scenario (i.e., infection probability/detection probability
combination) as either: (i) very low, (ii) low, (iii) medium or (iv) high.
For this, experts were presented with a simple example explaining
the use of linguistic if-then rules and their construction procedure,
so they could indicate their answers in a risk matrix following this
methodology. Finally, experts were asked to scale between 0 and
10 the previously used risk words following the same procedure as
the second exercise (see details of the second and third elicitation
exercises in supplementary material).
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Fig. 1. Membership functions. (a) Four type-1 fuzzy sets used to describe the vari-
able Risk. Each set is defined by its MF, which was created based on the answers of
expert 1 in exercise 2. (b) MFs of the type-1 fuzzy set Low based on the value range
given by each expert to this word. (c) MF of the interval type-2 fuzzy set Low created
by using the Interval Approach method (Liu and Mendel, 2008) to integrate all the
value ranges given by experts to this risk word. The FOU of the IT2FS is defined by
the union of the upper MF and the lower MF (shaded area).

2.5. Fuzzy logic, interval type 2 fuzzy logic and fuzzy logic systems

The present study used fuzzy logic to integrate, under a sin-
gle fuzzy expert system, the NIS infection, detection and risk data
generated through the elicitation exercises. Fuzzy logic was first
introduced by Zadeh (1965) as an alternative to binary logic, where
elements can only “belong” or “not-belong” to a set. In fuzzy logic
on the contrary, elements belong to a set (i.e., fuzzy set) but only
to a certain degree defined by a continuous function between [0,1],
called membership function (MF) (Fig. 1a and b). Fuzzy sets there-
fore, provide a more robust and realistic representation of linguistic
terms and thus, reality. For example, people could be described as
short or tall if their heights were less than or greater than 1.70 cm,
respectively. Following this classification, a person who is 1.69 cm
would be considered as short, and a person 1.71 cm would be con-
sidered tall. In reality however, the 1cm above or below the 1.70
threshold would not make much difference when describing the
height of either person, and both would be probably described as

FLS
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TIES Inference Engine IIESL,) DEFUZZIFIER [MTToupur
crisp INPUT BLOCK
input Fuzzifier . Fuzzyrules . H
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Fig. 2. Fuzzy logic systems. General architecture of a T1FLS (solid lines) and a T2FLS
(dashed lines). The output block in the T2FLS also includes a Type-reducer, which
reduces the resulting T2FS into a T1FS so it could be defuzzified later.

“sort of tall”. Fuzzy logic overcomes this kind of problem by assign-
ing degrees of belonging to each category; in this way, each person
would belong to a certain degree to the group of “short people” and
to a certain degree to the group of “tall people”.

Membership functions were initially conceived to have only
crisp values (i.e. type-1 fuzzy sets, T1FS). Zadeh (1975) however,
introduced type-2 fuzzy sets (T2FS) characterised by a fuzzy MF,
which means that the membership value (degree of membership)
for each element of a T2FS is a T1FS instead of a crisp number. This
fuzziness of the MF improves the ability of the set to both model
and minimize the effect of numerical and linguistic uncertainties.
It also avoids the problem of defining an exact MF when this is
not a straightforward or valid procedure; as in modelling words
(e.g., small, fast, high) (Mendel and Wu, 2010). Although having
more design degrees of freedom (parameters) makes T2FS better
than T1FS when modelling words, the computational complexity
associated with this T2FS approach has usually discouraged peo-
ple from using it (Mendel, 2007). However, Interval type-2 fuzzy
sets (IT2FSs), a special case of T2FSs defined by Mendel (2001),
assume the membership grade for every point of the secondary MF
to be 1 (Fig. 1c). Although this reduces its complexity, the essence
of the T2FS is preserved and its ability to represent uncertainty
is maintained. IT2FSs are usually represented by the footprint of
uncertainty (FOU), which is the bounded region defined between
the upper MF and the lower MF; which are type-1 functions that
represent the maximum and minimum membership grade of the
set, respectively (Fig. 1c).

The main contribution of fuzzy logic and fuzzy sets has been pro-
viding a methodology for computing directly with words (Zadeh,
1996; Mendel and Wu, 2010), which at the same time has made
fuzzy logic systems (FLS) possible. These are knowledge—or rule-
based systems built in the form of inference if-then rules (Wang,
1997), which comprises three main parts: (i) an input block or fuzzi-
fier, (ii) an inference block, and (iii) an output block or defuzzifier
(Fig. 2). The fuzzifier turns crisp inputs into fuzzy inputs, which
are then computed by the inference block to produce output sets
based on the specified if-then rules. Finally, the defuzzifier trans-
forms these sets into crisp outputs. As with fuzzy sets, there are
three categories of FLS: (i) type-1 FLS (T1FLS), (ii) type-2 FLS (T2FLS)
and (iii) interval type-2 FLS (IT2FLS). The main difference between
them, as suggested by their names, is the type of fuzzy set each is
based on. Also, while a T1FLS only uses crisp inference rules, T2FLS
and IT2FLS use fuzzy inference rules. Consequently, although the
structure of the systems is very similar, the output block of T2FLSs
and IT2FLSs includes a type-reducer; an additional component pre-
ceding the defuzzifier that converts the type-2 set yielded by the
fuzzy inference block into a type-1 set output. Then, as in T1FLSs,
this output is passed onto the defuzzifier to obtain a crisp answer.

2.6. NIS fuzzy expert system implementation

In this study we used an IT2FLS designed with two inputs (i.e.,
infection and detection probabilities) and one output (i.e. invasion
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Fig. 3. Fuzzy logic expert system (FES). Architecture of the FES, which was designed as a Per-C. This FES combined the Interval Approach (Liu and Mendel, 2008), Linguistic
weighted average (Wu and Mendel, 2007a) and Perceptual reasoning (Wu and Mendel, 2009a; Mendel and Wu, 2010) to encode probability and risk words, integrate expert
answers and generate risk estimates. The Jaccard similarity measure (Wu and Mendel, 2009b) was also used by the system to decode the answers (i.e., present results in a

linguistic format).

risk); all represented by IT2FSs (Fig. 3). However, as the responses
of the experts were words, an encoder was required to process their
answers before using them in the system. Similarly, in order to map
the final crisp results of the IT2FS into meaningful risk words, a
decoder was also integrated into the system (Fig. 3). An IT2FS like
this one, for which inputs and outputs are perceptions (i.e. granu-
lated terms, words), is called ‘Perceptual computer’ (Per-C) and is
ideal for analysing expert opinion represented through linguistic
terms (Mendel and Wu, 2010).

2.7. MFs, fuzzifier and encoder

Membership functions are the core of fuzzy logic, hence the way
in which they are defined (shape, levels and values) determines the
validity of the FS represented. Unfortunately, MFs are variable and
situation-specific, and although techniques have been suggested
to obtain partitions for fuzzy variables (e.g., de Soto and Recasens,
2001), no standard method or rules on how to define their functions
is currently available. Some studies, for example, have used the
Delphi approach (Dalkey and Helemer, 1963) to help experts to
generate ‘unanimous’ MFs (e.g., Kaufmann and Gupta, 1988). It is
possible to say therefore, that MFs are usually created by analysts
ad hoc, with (Marchini and Marchini, 2006) or without (e.g., Raj and
Kumar, 1999) input from experts.

The present study considered that by obliging experts to either
agree on MFs or use previously defined functions, their answers
would be less natural and intuitive and, more importantly, the
uncertainty originating from different opinions on the meaning of
the words would be ignored. Therefore, to minimise the interfer-
ence of the analyst and maintain this uncertainty, experts were
told to apply probability and risk words intuitively, and not until
they had finished the assessments were they asked for a value range
describing each term (see exercise 2). These ranges were integrated
using the Interval Approach (Liu and Mendel, 2008) to define a rep-
resenting IT2FS for each word, which achieved both fuzzification
and encoding (Figs. 1, 3 and 4Figs. 1b, c, 3, 4). All answers (i.e.,

Very Unlikely Unlikely Likely Very likely
@ ; - -

| OSW
0 \
0 1 A 3 4 5 6 7 8 9 10
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5 05
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Fig. 4. Membership functions used in the study. Each MF was generated using the
Interval Approach method (Liu and Mendel, 2008) to integrate the probability (exer-
cise 2) and risk (exercise 3) value ranges given by the experts. (a) MFs of the four
words used to describe infection and detection probabilities. (b) MFs of the four
words used to describe risk.

3 4 5 6 7 8 9 10
Risk



H. Acosta et al. / Ecological Modelling 221 (2010) 850-863 855

Table 2

Risk matrix. IF-THEN fuzzy rules of the system integrated under a matrix, where row headings indicate infection probability (ﬁiﬂf) and column headings detection probability
(Pger) (antecedents). Cells indicate the resulting risk R; (consequents) for each combination of antecedents, which the IT2FS is resulting from the LWA of the responses of all
the experts (see Section 4 from exercise 3). Consequents are also represented by their corresponding risk word after decoding R; using the Jaccard similarity measure.

pinf pdet

Very unlikely Unlikely Likely Very likely
Very unlikely Ri = Low R, = Low R3 = Verylow R4 = Verylow
Unlikely Rs = Low Rs = Low R; = Verylow Rs = Verylow
Likely Rg = High Ri0 = Medium Ri1 = Medium Ri2 = Medium
Very likely Ri3 = High R4 = High Ri5 = Medium Ri6 = Medium

words) given by experts in exercises 2 and 3 on invasion proba-
bility, detection probability and risk, were then replaced by their
representing IT2FSs. This not only made computation of different
words possible, but also incorporated into the analysis the uncer-
tainty arising from perception differences among experts about
word meanings (Mendel, 2003).

2.8. IF-THEN rules, inference model and firing levels

IF-THEN fuzzy rules, also known as inference or firing rules, can
be considered the essence of a FLS and thus responsible for its
behaviour under different input scenarios. They are comprised of
antecedents (IF part) and consequents (THEN part), and must cover
every input possibility. The present system had 16 rules integrated
under a risk matrix, which indicated the resulting risk value for
each combination of four infection and four detection probabilities
(Table 2). In this matrix the first rule for example reads as:

IF Py = Very unlikely AND Pyo; = Very unlikely THEN Risk = R; (1)

where Pj¢, Pger and R; represents the infection probability, detec-
tion probability and resulting risk value of the rule, respectively. For
each rule, the resulting risk value R; was calculated as the average
of the risk assigned by experts to that particular Pjps <> Pger com-
bination (exercise 3) using the Linguistic Weighted Average (LWA,
Wu and Mendel, 2007a). The LWA is defined as:

5w
Z}lﬂwj

where n is the number of experts, w/ is the weight for expert j,
and le represents the word chosen by expert j. However, as all
experts were considered to be equally important in the system,
their answers were equally weighted.

Although it is the fuzzy rules set of the FLS that maps inputs
into outputs, the actual rule firing and combining process that
leads to an answer is determined by the specific type of fuzzy
reasoning used. The NIS fuzzy expert system applied the recently
proposed Perceptual reasoning (PR) that characterises Per-C (Wu
and Mendel, 2009a). In contrast to other reasoning models, includ-
ing the commonly used Mandami model (Mandami, 1974), PR is
the only one that generates a combined fired rule output with an
FOU resembling the FOUs of the encoded IT2FSs (Wu and Mendel,
2009a; Mendel and Wu, 2010). Hence, with PR, not only the mean-
ing of the answer but the entire process is more intuitive. The two
required steps of PR are: (i) obtaining a firing level for each rule
and, (ii) combining the IT2FS consequents of the fired rules using
an LWA, where the weights are the firing levels from step one (Wu
and Mendel, 2009a; Mendel and Wu, 2010). The firing level of the
ith rule in the present system was calculated following Wu and
Mendel (2009a) and Mendel and Wu (2010) as:

Fi = Sj(lexp Pint(iy) * Si(Dexps Paerciy) (3)

where lexp and Dexp are the actual IT2FSs (generated from exercises
2 and 3) used by the system as input values or entries (infection

R; (2)

and detection, respectively) to produce the risk estimate (Fig. 4).
Each system entry was calculated as the LWA of the responses
obtained from all the experts for that particular infection or detec-
tion scenario. The terms Py and Pyeys) are the IT2FS infection
and detection antecedents of the rule (e.g., unlikely, likely) and * the
minimum t-norm. S; represents the Jaccard similarity measure (Wu
and Mendel, 2009b) for IT2FSs, calculated as

SN min(pa (%), (%) + S, min(ua(x;). pp(x:)

SN max(u (%), wp(x:)) + o, min(pa(xi), ug(xi))( |

4
where N is the number of samples and jtj, ug, 4a and up are the
membership grades of x on the upper and lower MFs of A and B,
respectively. Once all firing levels (F;) had been obtained, the out-
put IT2FS of the PR (¥) was computed as (Wu and Mendel, 2009a;
Mendel and Wu, 2010):

7= z;l:lFfRi
n
Zi:lFi

where n is the total number of rules and R; is the consequent of the
ith rule.

Si(A, B) =

(5)

2.9. Defuzzifier, decoder and output values

A main characteristic and advantage of Per-C is its capacity to
present results in a linguistic format so users understand them
readily (without any particular knowledge of the system). Similarly,
the NIS fuzzy expert system defuzzified and decoded the results
simultaneously using the Jaccard similarity measure to classify each
Y as one of the four risk words defined (Mendel and Wu, 2010). The
output was therefore the word with the maximum Jaccard similar-
ity with Y. This classification gave a general idea of the estimated
risk and made broad comparisons possible. Having only four levels
however, restricted the system from clearly ranking the large num-
ber of scenarios considered, and identifying those with the highest
invasion risks. For this, the system also calculated the centroid of
Y which is defined by the characterizing left- and right-end points
([C,CGr]) and calculated as

N
= min Z,'7V1YlMY(}’1) (6)
Yy eluyGny Ol 3™y (i)
N
D oinYily (i) %)

G = max N
iy eluy g Ol 37wy (vi)

where N is the number of samples, and uy(y;) and uy(y;) are
the membership grades of y; on the upper and lower MFs of
Y, respectively. ¢; and C; were computed using the Enhanced
Karnik-Mendel algorithm (Wu and Mendel, 2009¢) producing an
interval T1FS that could be later defuzzified into a crisp value
(Figs. 3 and 5). As an interval T1FS is characterised entirely by its
left- and right-end points (i.e., C; and C;), the defuzzification (i.e.,
centroid computation) is reduced to simply calculating the mean
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Fig. 5. Computation sequence followed by the FES to estimate the invasion risk of the invasion scenario trailered-deck-fouling-anchorage. (a) Integration of five expert
infection assessments (1 Very unlikely and 4 Unlikely) into a single infection probability IT2FS using the Linguistic weighted average (LWA, Wu and Mendel, 2007a). (b)
Integration of five expert detection assessments (2 Very unlikely and 3 Unlikely) into a single detection probability IT2FS using the LWA. (c¢) Computation of inputs (i.e., LWA
infection and LWA detection) using the Per-C to estimate the invasion risk Y. (d) Comparison between the resulting ¥ and each of the four risk IT2FS very low, low, medium
and high, based on the Jaccard similarity index (S;). This figure also shows the centroid of the IT2FS invasion risk, which was computed as the mean of the characterising
end-points of the interval T1FS obtained using the Enhanced Karnik-Mendel algorithm (Wu and Mendel, 2008, 2009c). The uncertainty for this crisp value calculated as the
spread of the centroid (i.e., C; — C}, the difference between the characterising left- and right-end point of the interval T1FS) is also represented in the figure by the dotted line.

of these end-points (Mendel, 2001). This crisp value therefore rep-
resented the actual risk estimated (r) for the invasion scenario
considered (Figs. 3 and 5):

C[ + Cr
2

= crisp value =r (8)

Crisp values (i.e., defuzzified), were then used not only to com-
pare the risk between scenarios but also to estimate and compare
average risk values for habitats, vessel components and infection
modes.

2.10. Variability measure

Several measures such as, cardinality, centroid, fuzziness and
variance, have been proposed to estimate the uncertainties, or vari-
ability, associated with IT2FS (Wu and Mendel, 2007b). However,
uncertainty, defined as the distance between the characterizing
left- and right-end points (C; and C;) of the resulting interval T1FS
has been identified as the best variability measure when dealing
with expert opinion (Wu and Mendel, 2009b). The present study
therefore, used uncertainty to estimate variability among IT2FSs.
Similarly, standard deviation was the preferred option to represent
variation among crisp (i.e., defuzzified) values.

2.11. Input values and FES operation

Once the NIS fuzzy expert system was implemented, the
answers of the experts (already represented as IT2FSs) for each
invasion and detection scenario were integrated using the LWA
method (Wu and Mendel, 2007a). The resulting averaged IT2FSs
were the infection and detection input values used by the system
to assess the invasion risk for coastal habitats via different ves-
sel types, vessel components and infection modes (Figs. 3 and 5).
Each of these combinations of infection and detection probabilities
fired a specific set of if-then rules, producing an IT2FS (V) that repre-
sented the calculated risk. This IT2FS was then both defuzzified into
a single crisp value and translated into a risk word. The uncertainty
associated with this IT2FS was also calculated (Fig. 3). For example,
the input used by the FES as the probability of infection (Pi,¢ in Eq.
(1)) for the invasion scenario trailered-deck-fouling-anchorage was
the IT2FS generated by the LWA of one ‘Very unlikely’ (i.e., 1 expert
considering this scenario Very unlikely) and four ‘Unlikelies’ (i.e., 4
experts considering this scenario Unlikely) (Fig. 5a). Similarly, the
input used by the FES as the probability of detection (Pge; in Eq.
(1)) in the habitat anchorage was the IT2FS generated by the LWA
of two ‘Very Unlikelies’ (i.e., 2 experts considering the detection of
the invasion in this habitat Very likely) and three ‘Unlikelies’ (i.e.,
3 experts considering the detection of the invasion in this habitat
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Fig. 6. Invasion risk values for six coastal habitats and associated uncertainties. Crisp values (i.e., defuzzified IT1FS) generated by the fuzzy expert system for each invasion
scenario. Invasion scenarios for each habitat were defined by the vessel type, vessel component, infection mode and habitat considered. The variability of the generated invasion
risk values was estimated using their associated uncertainty value (+), following Wu and Mendel (2009b). (a) Trailered vessels. (b) Moored vessels. H = Hull, D = Deck, 1 = Internal
spaces, A=Anchorage, F = Fishing gear, w = water/sediment retention, and f = fouling. Dark grey bars and light grey bars indicate risk invasion values that the fuzzy expert system
represents linguistically as medium and low risk, respectively. The symbol a indicates that this infection mode is not considered for the Hull component.

Unlikely) (Fig. 5b). The resulting invasion risk (Y) for this particular
combination of infection and detection inputs was also an IT2FS
calculated using equation 5 (Fig. 5¢). Y was defuzzified (using the
Karnik-Mendel algorithm to calculate Eqs. (6) and (7)) into the crisp
value (r)=4.3 (Eq.(8)). It was also decoded into the word low, as this
was the risk word with the highest Jaccard similarity measure (S;
Eq. (4)) (Fig. 5d). The uncertainty of ¥ was then calculated as 1.7
(i.e., G — C[).

3. Results

The NIS fuzzy expert system generated a crisp (i.e., defuzzified)
single risk value between 0 and 10 (i.e., very low risk-high risk) for

each invasion scenario. All values are initially displayed in single
graphs for trailered and moored vessels (Fig. 6a and b), so that
combinations of habitat-vessel component-infection mode for each
vessel category that leads to the greatest invasion risk, or greatest
uncertainty among experts, can be readily visualised.

Although results varied among invasion scenarios, a similar
pattern was observed between moored vessels and trailered ves-
sels (Figs. 6 and 7). In Fig. 7a, which shows the mean of the
invasion risk values when grouped by habitat type, it is evident
that the values in both vessel types were considerably lower for
wharves with active surveillance compared with wharves with-
out surveillance. In contrast, for marinas the difference in risk
values with and without surveillance was not visually evident in
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Fig. 7. Invasion risk value and associated uncertainty means for each habitat. (a) Invasion risk value mean. Mean calculated using the crisp representation (i.e., defuzzified
value) of calculated invasion risk value Y (i.e., defuzzified as the centroid of Y, Eq. (8)) for vessel component-infection mode scenarios grouped under the variable habitat. (b)
Associated uncertainty means. Mean of associated uncertainties of calculated invasion risk values for vessel component-infection mode scenarios grouped under the variable

habitat.

most of the infection scenarios (especially for trailered vessels),
with only the risk from the scenario hull-fouling in moored vessels
being reduced by surveillance (Figs 6 and 7a). Overall, surveillance
for wharves and marinas led to experts ranking invasion risk val-
ues for these habitats among the lowest for all combinations of
habitat-vessel component-infection mode (Figs. 6 and 7a). Inva-
sion risk values for ramps were also consistently low compared
with other habitats (Figs. 6 and 7a). Anchorages, moorings and
wharves without surveillance displayed higher risk values, with
scenarios hull-fouling-wharf (no surveillance) and anchor-fouling-
anchorage having the highest values for both vessel types (Fig. 6).
After pooling across habitats within each vessel component, hull-
fouling was scored by experts as having the highest invasion risk
(Fig. 8). Comparisons between fouling and water/sediment reten-
tion risks in both vessel types did not show clear differences, and
only for wharves (both with and without surveillance) was the
invasion risk for fouling comparatively higher (Fig. 9).

Despite similarities in patterns for each vessel type across dif-
ferent habitats, vessel components and infection modes, actual
risk values were consistently higher in moored vessels (max-
imum=6.90, minimum=2.61) compared with trailered vessels
(maximum =6.16, minimum =2.59) (Figs. 6 and 7a). In both vessel
types however, decoding of risk values only generated the word
either medium or low (Fig. 6), despite the NIS fuzzy expert sys-
tem using a four-word risk classification format (i.e., very low,
low, medium and high). The majority of these values were con-
sidered low, with only 33% of the scenarios for moored vessels
and 21% of the scenarios for trailered vessels being classified as
medium. The absence of very low and high (extreme values) in
the results did not reflect experts not using these words in their
answers. It was instead due to the “smothering” effect of vari-
ance from two sources. First, variability among the value ranges
used by experts to represent each probability and risk term used.
Large FOUs associated with these terms indicated that this was
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Fig. 8. Mean invasion risk value for vessel components. (a) Trailered vessels, (b) Moored vessels. Means calculated using the crisp representation (i.e., defuzzified value) of
calculated invasion risk value Y (i.e., defuzzified as the centroid of Y, Eq. (8)) for habitat-infection mode scenarios grouped under the variable vessel component. f=fouling,
w =water/sediment retention. a indicates that this infection mode is not considered for the Hull component.

an important source of variance (Fig. 4). Second, there was vari-
ance among expert assessments. As there was always at least one
expert in disagreement, all the infection and detection assessments
showed some level of variation; even those that generated the
highest risk values (e.g., hull-fouling, anchor-fouling, anchorage,
wharf). Similarly, although there was consensus on some of their
consequents, most fuzzy rules had at least one expert in disagree-
ment.

The uncertainty, measured as the spread of the centroids of the
resulting IT2FS, had a pattern similar to that described for risk
values. Although this general similarity is observed when pool-
ing results by habitat type and comparing the means of the risk

values (Fig. 7a) and the means of the associated uncertainties
(Fig. 7b), observations of the uncertainty alone showed that higher
risk values did not always correspond with higher uncertainty
values. In both vessel types for example, although the scenar-
ios wharf-hull-fouling, anchorage—anchor-water/sediment retention
and anchorage—anchor-water/sediment-fouling showed the highest
risk values among all scenarios, they had the lowest uncertain-
ties among their respective habitats (Fig. 6). Similarly, while the
invasion risk of marina-anchor-water/sediment retention in moored
vessels was among the lowest, it had the highest uncertainty value,
indicating the low level of agreement among experts on their
assessment for this scenario.
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Fig. 9. Mean invasion risk value for infection modes. (a) Trailered vessels, (b) Moored vessels. Means calculated using the crisp representation (i.e., defuzzified value) of
calculated invasion risk value Y (i.e., defuzzified as the centroid of ¥, Eq. (8)) for habitat-vessel component scenarios grouped under the variable infection mode.

4. Discussion

Expert opinion is considered in risk assessment a useful source
of data but not a source of rational consensus (Cooke, 1991). The
latter is related to the vagueness, ill-definition and imprecision
present in most data representation and aggregation methods used
in expert judgement analysis (Moon and Kang, 1999). However,
if these factors are addressed by the elicitation process and aver-
aging system, and the uncertainty associated with expert data is
both acknowledged and represented, the lack of consensus among
experts could be comparable (to a certain extent) to the normal
variability present in quantitative data. In this sense, the elicita-
tion process and NIS fuzzy expert system developed here followed
a systematic approach that made this possible. Four aspects how-
ever, were considered essential for this approach. First, although
uncertainty about the form of a model is harder to conceive than
uncertainty about the value of a quantity, the first one is usually
more important and more likely to affect the results of the anal-
ysis (Morgan and Henrion, 1990). Often however, in their effort
to present quantitative analyses, researchers overlook and under-
estimate this uncertainty, generating incomplete and inaccurate
models with systematic biases. The NIS fuzzy expert system there-
fore, involved experts in the creation of the conceptual model used
for the assessment (exercise 1, Acosta and Forrest, 2009), which
ensured that a more comprehensive invasion model was devel-
oped and that all experts analysed the problem from the same
perspective.

Second, most people prefer expressing probabilities qualita-
tively rather than quantitatively, especially about situations and

events that they have not previously considered (Morgan and
Henrion, 1990). Hence, in order to make it easier for experts to
indicate their answers, they had to express probability and risk
assessments using words instead of numbers. However, as well
as introducing vagueness associated with linguistic terms, this
approach caused the additional uncertainty of different experts
conceiving the same word differently. Furthermore, conventional
averaging techniques are not able to deal directly with linguistic
terms. For this reason, the use of fuzzy logic in general, and IT2FSs
in particular, was essential for integrating linguistic uncertainty
and computing with these terms. Finally, the development of the
NIS fuzzy expert system as a Per-C made the entire process (elic-
itation, averaging and analysis) more natural and straightforward,
eliminating the need to educate experts on complex fuzzy logic
concepts (e.g., FOU).

Recreational boating is a complex marine NIS pathway that
generates various invasion scenarios and risks, which must be
modelled and assessed in order to design effective risk-based biose-
curity management programmes. However, the limited knowledge
of marine invasions and spatio-temporal variation that character-
izes recreational boating makes risk-based management difficult,
such that NIS management for this pathway is absent in many
parts of the world. Furthermore, where this management is present,
such as in California (Gonzalez and Johnson, 2007), South Australia
(Ballantine, 2008) and Fiordland, New Zealand (MFE, 2004), it is
typically voluntary. The NIS fuzzy expert system presented here
was able to assess different invasion scenarios and estimate their
corresponding invasion risk, which varied among habitats, ves-
sel types, vessel components and infection modes. As indicated
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in Acosta and Forrest (2009), experts considered that the nature
and extent of interaction between each vessel component and the
environment varies depending on the habitat visited. The present
FES reflected this assumption and assigned higher risk values to
those infection scenarios where the interaction between the habi-
tat and the component was potentially greater. For example, while
recreational vessels are likely to repeatedly use their anchor the
same day at different anchorages, this would be a rare event in
other areas such as marinas and boat ramps. The NIS fuzzy expert
system was therefore consistent with this information and ranked
marina-anchor and ramp-anchor scenarios relatively low. Nonethe-
less, infection of such areas is possible, for example because vessel
users may clean their anchors on return to port at the end of a day
boating. By contrast, anchorage-anchor combinations were ranked
among the highest risk values for both vessel types. These high val-
ues agree with evidence that suggests anchors could be an effective
mechanism for the spread of some NIS (e.g., macroalgae); espe-
cially where conditions during vessel passage (e.g. high humidity
in an anchor locker) enhance tolerance to desiccation (Sant et al.,
1996; Schaffelke and Deane, 2005; Forrest and Blakemore, 2006).
Similarly, despite the behaviour of the vessel user at each habitat
being determined by specific variables such as exposure, weather,
habitat usage rules, as well as the specific vessel type (e.g., racing,
cruising), it is not uncommon for recreational vessel users to also
conduct fishing, diving, and vessel repairing and cleaning when
visiting anchorages. As a result, there is potentially a high inter-
action between the vessel (including all its components) and the
anchorage environment, which would explain why all the invasion
scenarios at anchorages were ranked among the highest risks by
the NIS fuzzy expert system.

Hull fouling was highlighted as the most important spread
mechanism for the recreational boating pathway. Although this
would be consistent with the resurgence of interest in this mech-
anism in recent years (e.g., Floerl et al., 2005; Mineur et al., 2008),
it is important to consider that experts (in general) often use the
heuristic procedure of availability, which means that their assess-
ment is driven by how easily they can either think of previous
occurrences of an event or imagine an event occurring (Morgan
and Henrion, 1990; Cooke, 1991). The recent attention focussed on
hull fouling could therefore itself influence experts during the elic-
itation process and make them to both exacerbate the importance
of this mechanism in the spread of NIS and underestimate oth-
ers. Despite this, the system acknowledged the NIS invasion risk
of the other components and highlighted the fact that depending
on the marine habitat analysed their risk could be comparable to
that from hull fouling. The NIS fuzzy expert system showed for
example that, as with hull fouling risk, risks from components
deck and internal spaces at wharves and moorings were consid-
ered to be high. This result could be explained by knowledge or
expectation that skippers may clean vessel decks, inlets, outlets
and bilges when using these habitats (e.g., after sailing or fishing
trips).

Surveillance of coastal habitats affected the estimated risk value.
Although this was not obvious when comparing surveyed and not
surveyed marinas, a clear difference was observed between sur-
veyed and not surveyed wharves. A determining factor in most
(if not all) successful marine eradications has been detecting NIS
incursions at relatively early stages when pest species have not
reached pest densities (e.g., Wotton et al., 2004; Miller et al., 2004;
Coutts and Forrest, 2007). Paradoxically, the effectiveness of NIS
surveys (i.e., detection of target species) greatly depends on species
density (Hayes et al., 2005). Detection would be therefore more
likely at advanced stages of incursions when densities are usually
higher. Despite this, as the presence of periodic surveys increases
the probability of detecting NIS and thus, increases the likelihood
of conducting effective eradication programs (Inglis et al., 2006),

lower invasion risks are expected in areas with ongoing NIS surveil-
lance programs.

It appears counter-intuitive that invasion risks overall varied
only between medium and low for the different scenarios, but this
reflected the smothering effect of averaging, combined with the
variance in both expert assessments and expert numeric repre-
sentation of the words used. This prevented input scenarios (e.g.,
infection=Very likely AND detection=Very unlikely), which cer-
tainly would lead the FES system to output the word high (Table 2).
Although the lack of “highs” in the assessment could be seen as
an underestimation of some of the risks, it is important to con-
sider that medium is the second highest category used by the NIS
fuzzy expert system to characterise invasion risks. Similarly, the
final linguistic characterization of risk did not interfere with actual
risk values; it was, on the contrary, the result of decoding these
numbers. Therefore, even if linguistic characterization is impracti-
cal for risk ranking, the invasion risk values calculated by the NIS
fuzzy expert system are still useful for comparing and thus prior-
itizing research and management within the recreational boating
pathway.

4.1. Management implications

The results of the NIS fuzzy expert system have two important
NIS management implications. First, they suggest that risk-based
management of NIS spread via recreational vessels in coastal
regions should ideally be scenario-specific, taking into account the
vessel type, vessel component, infection mode and habitat vis-
ited. This type of approach would be most feasible and effective
in situations where a target NIS and its spread mechanisms were
fully identified. For example, for a species like the clubbed tunicate
Styela clava, which transport is often associated with vessel foul-
ing (Liitzen, 1999; Davis and Davis, 2004; Minchin et al., 2006), the
results of the NIS fuzzy expert system presented here suggest that
management should be a priority for moored vessels and around
wharves and moorings. On the other hand, when the objective is to
prevent NIS introductions and spread in general, or if spread mech-
anisms are poorly understood, such specificity is not realistic and a
broader approach may be more desirable, for example the applica-
tion of generic rather than species-specific risk-based approaches
to pathway management (Forrest et al., 2008).

In relation to habitats visited by vessels or likely to become
infected with NIS, an application of the fuzzy expert system and
associated risk values could be useful in setting management pri-
orities (e.g., targeting surveillance or developing response tools for
habitats with the highest invasion risk values). For habitats visited
by recreational vessels, the present FES indicates that particular
attention should be given to anchorages, wharves and moorings as
the most likely points of incursion. Where high risk habitats were
situated in localities having values of ecological or socio-economic
importance, or could be used as stepping stones to such locali-
ties, a comparative analysis of values could be incorporated into
the priority-setting process (e.g., Sinner et al., 2000; Forrest et al.,
2006b).

In Tasman Bay, New Zealand, for example, there are several
wharves, moorings, anchorages and marinas scattered around the
coastline, including an international shipping port having a range of
artificial structures on which high profile NIS have established (e.g.,
Undaria pinnatifida). Across the greater embayment, these habitats
may equally be visited by recreational, fishing and aquaculture ves-
sels (Acosta, unpubl. data), thus providing likely pathways for the
human-mediated spread of NIS at a regional scale. Moreover, two
of the most visited anchorages of this region are located within
close proximity to a marine reserve, and adjacent to a National Park
which is a tourism and conservation asset of national importance
(Sinner et al., 2000). NIS infections at these habitats could have
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much wider ramifications (e.g. lead to a greater likelihood of sec-
ondary spread or adverse impacts) than infections in other areas
where human-mediated or natural spread pathways are absent
or limited, or where values are comparatively less. Prevention of
spread to such habitats, or surveillance and early response to any
pest species that are detected, should be a priority for any biosecu-
rity management program in the region.

Another implication that arises from the present study in
relation to NIS management is that hull fouling should not be
considered the only important spread mechanism associated with
recreational boating. Although the risk from the five vessel compo-
nents considered in our studies varies with the habitat visited, the
results indicate that other components in addition to hull fouling
(i.e., deck, internal space, anchor, fishing gear) are also potentially
effective NIS transport mechanisms. Hence, management of the
recreational vessel pathway should consider all of these mecha-
nisms and not be limited to hull fouling alone, as it typically the
case in many regions around the world. Notwithstanding this view,
abroader approach should not undertaken at the expense of reduc-
ing the attention given to hull fouling, especially at a time when a
global ban on TBT-based antifouling paint (IMO, 2001) is likely to
increase the number of organisms transported this way (Sonak et
al., 2009).

5. Conclusions

Recreational boating encompasses a range of components that
generate different invasion scenarios with different invasion risks
associated. Lack of knowledge of the mechanisms of spread by
recreational boating however, is often translated into NIS manage-
ment plans that are not only limited but also restricted to considera-
tion of hull fouling alone (e.g., Ashton et al., 2006). The invasion risk
ranking presented here could be the basis for managing the poten-
tial of recreational boating to introduce and spread NIS to particular
coastal areas, allowing time for more specific and quantitative data
to be generated. It could also be used to define and support policies
to ensure the management of this pathway in any coastal region
where recreational boating is likely to be important in NIS spread,
and to evaluate recreational vessel risks relative to other pathways.
For this purpose, the NIS fuzzy expert system presented in this
paper will need to be modified if more complex or specific invasion
scenarios were to be simulated. Nonetheless, the general approach
and associated risk ranking that we describe could be seen as an
initial step for more in depth and thus, potentially more effective,
risk-based approaches for managing NIS. This paper also highlights
the particular benefits offered by IT2FLSs to deal with expert data,
which has not previously been exploited in the biological inva-
sions field. Finally, the elicitation methodology and model building
approach (i.e., IT2FL-based) that we describe could be readily used
as a framework for similar risk systems and analyses.
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