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Abstract— This paper studies the continuity of the input-
output mappings of fuzzy logic systems (FLSs), including both
type-1 (T1) and interval type-2 (IT2) FLSs. We show that a T1
FLS being an universal approximator is equivalent to saying
that a T1 FLS has a continuous input-output mapping. We also
derive the condition under which a T1 FLS is discontinuous.
For IT2 FLSs using Karnik-Mendel type-reduction and center-
of-sets defuzzification, we derive the conditions under which
continuous and discontinuous input-output mappings can be
obtained. Our results will be very useful in selecting the
parameters of the membership functions to achieve a desired
continuity (e.g., for most traditional modeling and control
applications) or discontinuity (e.g., for hybrid and switched
systems modeling and control).

I. INTRODUCTION

Modeling and control is the most widely used application

of both type-1 fuzzy logic systems (FLSs) [3], [24], [33],

[42], [43] and interval type-2 (IT2) FLSs [11], [26], [31],
[39]–[41]. Essentially, a FLS implements a function repre-

senting a mapping between inputs and outputs.
In many cases, continuous and smooth input-output map-

ping is desired for a FLS, because most physical systems are

continuous, and a continuous and smooth control surface is

usually more favorable in terms of stability and performance,
e.g., Wu and Tan [37], [39], [40] and Jammeh et al. [12] have

shown that an IT2 fuzzy logic controller may outperform its

T1 counterpart because it gives a smoother control surface,
especially in the region around the steady state (both the

error and the change of error approach 0). So, for such

applications, we need to avoid abrupt changes, especially
discontinuities, in the input-output mappings. It would be

very beneficial to find the conditions under which a FLS
gives a continuous input-output mapping so that we can

ensure a continuous mapping when it is desired.
Nevertheless, discontinuous FLSs may be very useful in

hybrid and switched systems [22], [30] modeling and control,
which is becoming increasingly popular recently due to

the wide applications of computers and digital controllers.

Hybrid systems [4] are finite-state machines coupled with
controllers and plants modeled by differential or difference

equations. They arise whenever logical decision making
is mixed with the generation of continuous-valued control

laws. Switched systems are an important class of hybrid

systems. They consist of “a finite number of continuous-time

subsystems and a logical rule that orchestrates switching

between them” (p. 3, [30]). FLSs have been extensively used

in hybrid and switched systems modeling and control [1],
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[10], [21], [23], [28], [29]; however, to the authors’ best
knowledge, all these approaches consider each continuous-

time subsystem separately. For example, considered a simple

room-temperature control problem: If the temperature is
lower than 10◦C, then the heater is on; otherwise, the heater

is off. Clearly, the differential equations representing the

room-temperature dynamics are different in the two states
(with or without heater). Traditional modeling approach

for switched systems would model the two discrete states

separately; however, a discontinuous FLS may be designed
to have a discontinuity at 10◦C to model the two discrete

states by a single FLS. This would simplify the model
understanding and representation. This paper will shed some

light on how to do this.
Surprisingly, though fuzzy sets have been used for more

than 40 years, little research has been conducted directly on

the continuity of FLSs. Many results have shown that T1
FLSs are universal approximators [5]–[7], [17]–[19], [32].

This is equivalent to saying that a T1 FLS can implement

any real continuous function, as we will prove in this paper;
however, it is still unclear whether and when a T1 FLS can

implement a discontinuous real function. Furthermore, to the

best of the authors’ knowledge, no researcher has considered
the continuity of IT2 FLSs.

The rest of this paper is organized as follows: Section II

studies the continuity of T1 FLSs. Section III studies the

continuity of IT2 FLSs with Karnik-Mendel type-reduction
and center-of-sets defuzzification, the most popular IT2 FLSs

in practice. Finally, Section IV draws conclusions.

II. CONTINUITY OF T1 FLSS

This section studies the continuity of T1 FLSs. First,

properties of continuous functions are reviewed.

A. Properties of Continuous Functions

Definition 1: A single-variable function f(x) is continu-

ous at c if and only if f(x) is defined at c, and whenever x
is infinitely close to c, f(x) is infinitely close to f(c), i.e.,
for any ǫ > 0, there exists a δ > 0 such that |x− c| < δ ⇒
|f(x)− f(c)| < ǫ. �

Recall the following facts about continuous functions from

elementary calculus [8], [14]:

1) If f(x) is differentiable at c, then it is con-

tinuous at c.
2) Suppose both f1(x) and f2(x) are continuous

at c:

a) For any constant k, the function k · f1(x)
is continuous at c.

b) f1(x) + f2(x) is continuous at c.
c) f1(f2(x)) is continuous at c if f1(x) is

continuous at f2(c).
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d) f1(x)/f2(x) is continuous at c if f2(c) 6=
0.

We distinguish between two types of discontinuities in this

paper.

Definition 2: A function f(x) has a gap discontinuity at

c if f(c) is undefined. �

For example, f1(x)/f2(x) has a gap at c if f2(c) = 0.

Definition 3: A function f(x) has a jump discontinuity at
c if f(c) is defined but it does not satisfy the continuity

defined by Definition 1, i.e., both f(c) and f(c + δ) are

defined, but f(c) 6= f(c+ δ), where δ is an arbitrarily small
positive or negative number. �

For example, f(x) =
{

2, x<0
3, x>0 has a jump discontinuity at

x = 0.

A multi-variable continuous function f(x) of an M -

dimension input x = (x1, x2, ..., xM ) is defined as:

Definition 4: A multi-variable function f(x) is continuous
at c = (c1, c2, ..., cM ) if and only if for any ǫ > 0, there

exists a δ > 0 such that max
m=1,...,M

|xm − cm| < δ ⇒ |f(x)−

f(c)| < ǫ. �
The facts about continuous single-variable functions, in-

troduced earlier in this subsection, also hold for continuous

multi-variable functions.

B. Structure of the T1 FLSs

For simplicity we consider only multi-antecedent single-

consequent T1 FLSs in this paper; however, our results can

be easily extended to multi-antecedent multi-consequent T1
FLSs, because the latter can be decomposed into several

multi-antecedent single-consequent T1 FLSs [20].

The T1 FLS has M inputs, {xm}m=1,2,...,M , and one

output, y. Assume the mth input has Nm membership

functions (MFs) in its universe of discourse, Xm. Denote
the nth MF in the mth input domain as Xmn. A complete

rulebase with all possible combinations of the input MFs

consists of K =
∏M

m=1 Nm rules in the form of:

Rk: IF x1 is X1,n1k
and ... and xM is XM,nMk

, THEN y is

yk, nik = 1, 2, ..., Ni, k = 1, 2, ..., K

where yk is a constant, and generally it is different for

different rules. An example rulebase for a T1 FLS with two

inputs (M = 2) and three MFs for each input (N1 = N2 = 3)
is shown in Table I. Note that this T1 FLS can be viewed

as the simplest TSK model, where each rule consequent is
represented by a crisp number. It can also be viewed as

a Mamdani model with centroid (or height) defuzzification

[26], i.e., yk represents the centroid (or point with the
maximum membership degree) of the consequent T1 FS of

the kth rule. Though the rulebase looks simple, it actually

represents the most frequently used T1 FLS in practice.

TABLE I

AN EXAMPLE RULEBASE OF A T1 FLS WITH TWO INPUTS AND THREE

MFS FOR EACH INPUT.

x1 \ x2 X21 X22 X23

X11 y1 y2 y3
X12 y4 y5 y6
X13 y7 y8 y9

For an input x = (x1, x2, ..., xM ), the output of a T1 FLS

with the above structure is computed as:

y(x) =

∑K

k=1 fkyk
∑K

k=1 fk
(1)

where fk is the firing level of x for the kth rule, computed

by a t-norm, i.e.,

fk = µX1,n1k
(x1) ⋆ µX2,n2k

(x2) ⋆ · · · ⋆ µXM,nMk
(xM ) (2)

Only minimum and product t-norms [15] are considered in
this paper since they are the most frequently used ones in

practice.

In this paper we consider only continuous fuzzy sets (FSs)

as MFs because discontinuous T1 FSs are almost never used

in modeling and control.

Definition 5: A T1 FS X is continuous if and only if its

MF, µX(x), is a continuous function of x. �

C. Universal Approximators

Many authors have shown that various configurations of

T1 FLSs are universal approximators [5]–[7], [17]–[19], [32],
i.e., a T1 FLS can uniformly approximate any real continuous

function on a compact domain to any degree of accuracy. For
example, Wang and Mendel [32] proved that T1 FLSs with

Gaussian MFs, product t-norm and centroid defuzzification

are universal approximators; Kreinovich et al. [19] further
showed that such T1 FLSs are universal approximators for

a smooth function and also its derivatives, i.e., not only

the smooth function is approximated by the T1 FLS, but
also its derivatives; Castro [7] showed that T1 FLSs with

Gaussian, triangular or trapezoidal MFs, any t-norm and any

practical defuzzification method are universal approximators;
and, Kosko [17] showed that all additive T1 FLSs1 [16] are

universal approximators. Kreinovich et al. [18] also gave a

comprehensive review of many such results.

Intuitively, a T1 FLS must realize a continuous input-

output mapping in order to approximate a continuous func-
tion to any degree of accuracy. This conjecture is mathemat-

ically proved in the following:

Theorem 1: A universal approximator f(x) of a continu-

ous function g(x) must be continuous. �

The proof of Theorem 1, as well as proofs for all other

theorems in this paper, are given in the Appendix.

So far, we have shown that as long as a T1 FLS is

an universal approximator, it is continuous. According to
Castro [7], T1 FLSs with Gaussian, triangular or trapezoidal

MFs, any t-norms and centroid defuzzification are universal

approximators, and hence they are continuous. However,
there are still two questions remaining unanswered:

1) Are T1 FLSs with arbitrary continuous MFs (not neces-
sarily Gaussian, triangular or trapezoidal) continuous?

2) In order to be an universal approximator, the T1 FSs

must cover all input domains completely. What if there
are gaps in at least one input domain?

These two questions are considered next.

1Additive T1 FLSs [16] use summation (instead of maximum, as sug-
gested by the Extension Principle [15]) to combine the scaled consequent
FSs and then use centroid type-reduction to obtain a crisp output.



D. Continuity of T1 FLSs

Consider the T1 FLS structure introduced in Section II-B.

Theorem 2: The T1 FLS y(x) is continuous at c =
(c1, c2, ..., cM ) if and only if max

n=1,2,...,Nm

µXmn
(cm) > 0

for ∀m = 1, 2, ...M , i.e., every cm is covered by some

continuous T1 FSs. �
Note that in this paper “cm is covered by some continuous

T1 FSs” means that the membership grade of cm on at least
one of the T1 FSs is larger than 0, e.g., in the middle column

of Fig. 1, x1 = 0 is covered by X12, but x1 = ±0.5 are not

covered.
Theorem 3: The T1 FLS y(x) has a gap discontinuity at

c = (c1, c2, ..., cM ) if and only if there exists a cm such that
max

n=1,2,...,Nm

µXmn
(cm) = 0, i.e., there is at least one cm not

covered by any continuous T1 FS in its domain. �
Observe that T1 FLSs cannot have jump discontinuities,

because Theorems 2 and 3 have covered all possible T1

FLSs.
For practical T1 FLSs, usually all inputs domains are fully

covered by continuous T1 FSs, and hence the T1 FLSs are

continuous. That’s why people have not paid much attention

to the continuity of T1 FLSs; however, the case is quite
different and complicated for IT2 FLSs, as we will see in

Section III.

E. Examples

Examples demonstrating Theorems 2 and 3 are presented

in this subsection.
Fig. 1 shows three input-output mappings of T1 FLSs

with only one input. The rulebase is shown in Table II, and
product t-norm is used. The numbers in Table II are chosen

only for illustration purpose. The first row of Fig. 1 shows
the three MFs in the input domain and the second row the

corresponding input-output mappings. Observe that:

1) When the input MFs fully cover the input domain, as

shown in the first column of Fig. 1, the corresponding

input-output mapping is continuous, as indicated by
Theorem 2.

2) When at least one point in the input domain is not
covered by the MFs, the corresponding input-output

mapping has gap discontinuities, as shown in the

second and third columns of Fig. 1. These results are
consistent with Theorem 3.

3) The gaps in the output domain are determined by

the uncovered intervals in the input domain, e.g., as
shown in the second column of Fig. 1, x1 has gaps at

x1 = ±0.5, and hence its input-output mapping also

has gap discontinuities at x1 = ±0.5, as indicated by
Theorem 3. Similarly, as shown in the third column of

Fig. 1, x1 has gaps at x1 = [−0.6,−0.3] ∪ [0.3, 0.6],
and hence its input-output mapping also has gap dis-
continuities at x1 = [−0.6,−0.3]∪ [0.3, 0.6].

TABLE II

THE RULEBASE FOR THE T1 FLSS SHOWN IN FIG. 1.

x1 X11 X12 X13

y 1 2 3
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Fig. 1. Example input-output mappings of T1 FLSs with only one input.

Fig. 2 shows the input-output mappings of three T1 FLSs
with two inputs. The rulebase is shown in Table III, and

product t-norm is used. Again, the numbers in Table III are

chosen only for illustration purpose. Observe from Fig. 2
that:

1) When the input MFs fully cover the input domains, as

shown in the first column of Fig. 2, the corresponding
input-output mapping is continuous, as indicated by

Theorem 2.

2) When at least one point in the input domain is not
covered by the MFs, the corresponding input-output

mapping has gap discontinuities, as shown in the last
two columns of Fig. 2. These results are consistent

with Theorem 3.

3) The gaps in the output domain are determined by the
uncovered intervals in the input domains, e.g., in the

second column of Fig. 2 there are two uncovered points

x2 = ±0.5, and hence the input-output mapping has
gap discontinuities at x2 = ±0.5, as indicated by

Theorem 3. Similarly, as shown in the third column of

Fig. 2, both x1 and x2 are uncovered at [−0.6,−0.3]
and [0.3, 0.6], and hence the input-output mapping has

gap discontinuities at [−0.6,−0.3] and [0.3, 0.6] in

both x1 and x2 domains.

TABLE III

THE RULEBASE FOR THE T1 FLSS SHOWN IN FIG. 2.

x1 \ x2 X21 X22 X23

X11 1 2 3
X12 4 5 6
X13 7 8 9

III. CONTINUITY OF IT2 FLSS

Karnik-Mendel (KM) type-reduction and center-of-sets
defuzzification [13], [26], [36] are so far the most popular

type-reduction and defuzzification method for IT2 FLSs. The

continuity of such IT2 FLSs is studied in this section.

A. Structure of the IT2 FLS

Again we consider only multi-antecedent single-

consequent IT2 FLSs in this section; however, our results

can be easily extended to multi-antecedent multi-consequent
IT2 FLSs, because the latter can be decomposed into several

multi-antecedent single-consequent IT2 FLSs.
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Fig. 2. Example input-output mappings of T1 FLSs with two inputs.

An example IT2 FS X̃mn is shown in Fig. 3. Its upper
membership function (UMF) is denoted Xmn and lower

membership function (LMF) Xmn.

1

0

u

m
x

mn
X%

mn
X

mn
X

Fig. 3. An IT2 FS X̃mn and its upper membership function (UMF) Xmn

and lower membership function (LMF) X
mn

. Shaded area is the footprint
of uncertainty (FOU).

The IT2 FLS has M inputs, {xm}m=1,2,...,M , and one

output, y. Assume the mth input has Nm MFs in its universe
of discourse Xm. Denote the nth MF in the mth input domain

as X̃mn. A complete rulebase with all possible combinations

of the input MFs consists of K =
∏M

m=1Nm rules in the

form of:

R̃k: IF x1 is X̃1,n1k
and ... and xM is X̃M,nMk

, THEN y is

[y
k
, yk], nik = 1, 2, ..., Ni, k = 1, 2, ..., K

where [y
k
, yk] is a constant interval, and generally it is

different for different rules. Note that this IT2 FLS can

be viewed as a Mamdani model with center-of-sets type-
reduction and centroid defuzzification [26], i.e., [y

k
, yk]

represents the centroid of the consequent IT2 FS of the kth

rule. When y
k
= yk, this rulebase represents the simplest

TSK model, where each rule consequent is represented by

a crisp number. Again, this rulebase represents the most
commonly used IT2 FLSs in practice. An example rulebase

for an IT2 FLS with two inputs (M = 2) and three MFs for

each input (N1 = N2 = 3) is shown in Table IV.

When KM type-reduction and center-of-sets defuzzifica-
tion are used, the output of an IT2 FLS with the above

structure for an input x = (x1, x2, ..., xM ) is computed as

TABLE IV

AN EXAMPLE RULEBASE OF AN IT2 FLS WITH TWO INPUTS AND THREE

MFS FOR EACH INPUT.

x1 \ x2 X̃21 X̃22 X̃23

X̃11 [y
1
, y1] [y

4
, y4] [y

7
, y7]

X̃12 [y
2
, y2] [y

5
, y5] [y

8
, y8]

X̃13 [y
3
, y3] [y

6
, y6] [y

9
, y9]

[26]:

y(x) =
yl(x) + yr(x)

2
(3)

where

yl(x) =

∑kl

k=1 fkyk +
∑K

k=kl+1 fk
y
k

∑kl

k=1 fk +
∑K

k=kl+1 fk

(4)

yr(x) =

∑kr

k=1 fk
yk +

∑K

k=kr+1 fkyk
∑kr

k=1 fk
+
∑K

k=kr+1 fk

(5)

in which [f
k
, fk] is the firing interval of the kth rule, i.e.,

f
k
= µX

1,n1k
(x1) ⋆ µX

2,n2k
(x2) ⋆ · · · ⋆ µX

M,nMk
(xM )

(6)

fk = µX1,n1k

(x1) ⋆ µX2,n2k

(x2) ⋆ · · · ⋆ µXM,nMk

(xM )

(7)

Observe that both f
k

and fk are continuous functions

when all IT2 MFs are continuous. Note also that {y
k
} and

{yk} have been sorted in ascending order in (4) and (5),
respectively. The switch points kl and kr are determined by

the KM Algorithms [13], [26] or the Enhanced KM (EKM)

Algorithms [34]–[36], and they satisfy:

y
kl

6 yl(x) 6 y
kl+1

(8)

ykr
6 yr(x) 6 ykr+1 (9)

Only continuous IT2 FSs are of interest in this paper,
which are defined as follows:

Definition 6: An IT2 FS X̃ is continuous if and only if

both its UMF and its LMF are continuous T1 FSs. �

The continuity of the IT2 FLS is more interesting and
complicated than the T1 FLS because, unlike the T1 FLS

introduced in Section II-B, the output of the IT2 FLS

does not have a closed-form solution. Furthermore, the KM
algorithms for type-reduction involve switch points, which

give the impression of discontinuity.

B. Continuity of IT2 FLSs

Two theorems on the discontinuities of IT2 FLSs are
introduced next.

Theorem 4: The IT2 FLS has a gap discontinuity at c if

and only if ∃cm such that max
n=1,2,...,Nm

µXmn
(cm) = 0, i.e.,

there exist at least one cm not covered by the UMFs. �

Theorem 5: The IT2 FLS has a jump discontinuity at c =
{c1, c2, ..., cM} if and only if:

1) max
n=1,2,...,Nm

µXmn
(xm) > 0 for ∀xm, i.e., the input

domain is fully covered by the UMFs; and,



2) ∃cm such that max
n=1,2,...,Nm

µX
mn

(cm) = 0, i.e., there

exists at least one cm not covered by the LMFs; and,
3) There exists an m′ 6= m such that, the minimum y

k
and/or maximum yk for all fired rules (i.e., those rules

with fk > 0) changes as cm′ changes to cm′+δ, where
δ is an arbitrarily small positive or negative number. �

Theorems 4 and 5 suggest that an IT2 FLS can have both
gap and jump discontinuities, whereas a T1 FLS can only

have gap discontinuities.

The third criterion in Theorem 5 requires m′ 6= m, i.e.,

there must be at least two inputs in order to have jump

discontinuities. Hence, we have the following:

Lemma 1: An IT2 FLS with only one input does not have

jump discontinuities. �

By finding the complement of Theorems 4 and 5, we

have the following necessary and sufficient conditions of a
continuous IT2 FLS:

Theorem 6: The IT2 FLS is continuous at c =
{c1, c2, ..., cM} if and only if:

1) max
n=1,2,...,Nm

µX
mn

(cm) > 0 for ∀m; or,

2) For every m such that max
n=1,2,...,Nm

µX
mn

(cm) = 0, the

minimum y
k

and maximum yk of all fired rules do not

change as any cm′ (m′ 6= m) changes to cm′+δ, where

δ is an arbitrarily small positive or negative number. �

Since the second condition of Theorem 6 is more difficult

to test than the first one, we suggest that practitioners who
want to avoid both gap and jump discontinuities should

focus on satisfying the first condition. Essentially, the first
condition of Theorem 6 says that an IT2 FLS is continuous

as long as its input domain is fully covered by both the UMFs

and the LMFs. It is not a tight constraint on the shapes of the
IT2 FS MFs, e.g., it is satisfied by all IT2 FLSs in [2], [11],

[27], [38], [40], [41]; so, it should not limit the modeling

power of IT2 FLSs.

C. Examples

Examples demonstrating Theorems 4-6 are presented in
this subsection.

Fig. 4 shows three input-output mappings of IT2 FLSs
with only one input. The first row shows the three MFs

in the input domain and the second row the corresponding

input-output mappings. The corresponding rulebase is given
in Table V. Observe from Fig. 4 that:

1) When both the input UMFs and the input LMFs fully
cover the input domain, as shown in the first column

of Fig. 4, the corresponding input-output mapping is
continuous, as indicated by Theorem 6.

2) When the input domain is fully covered by the UMFs

but at least one point in the input domain is not covered
by the LMFs, as shown in the middle column of

Fig. 4, the corresponding input-output mapping is still

continuous for the 1-input case, because it does not
satisfy the third criterion of Theorem 5.

3) When the input UMFs do not fully cover the input

domain, as shown in the last column of Fig. 4, the
corresponding input-output mapping has gap disconti-

nuities, as indicated by Theorem 4.

Fig. 4 demonstrates that an IT2 FLS with only one input

cannot have jump discontinuities, as suggested by Lemma 1;
however, that IT2 FLS can still have gap discontinuities.

TABLE V

THE RULEBASE FOR THE IT2 FLSS SHOWN IN FIG. 4.

x1 X̃11 X̃12 X̃13

y [0.8, 1.2] [1.8, 2.2] [2.8, 3.2]
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Fig. 4. Example input-output mappings of IT2 FLSs with only one input.

Fig. 5 shows three input-output mappings of IT2 FLSs
with two inputs. The first two rows show the input MFs and

the third row the corresponding input-output mappings. The

rulebase is given in Table VI. Observe from Fig. 5 that:

1) When both the input UMFs and the input LMFs fully

cover the input domain, as shown in the first column
of Fig. 5, the corresponding input-output mapping is

continuous, as indicated by Theorem 6.

2) When the input domain is fully covered by the UMFs
but at least one point in the input domain is not

covered by the LMFs, as shown in the middle column

of Fig. 5, the corresponding input-output mapping
has jump discontinuities (e.g., when x1 = ±0.1 and

x2 ∈ [0.4, 0.7]), as indicated by Theorem 5. Observe

also that through it is the x2 domain that is not fully
covered by the LMFs, the jump discontinuities happen

in the domain of x1.

3) When the input UMFs do not fully cover the input
domain, as shown in the last column of Fig. 5, the

corresponding input-output mapping has gap discon-
tinuities, as indicated by Theorem 4. Note that the

x2 domain is not covered by the UMFs, so the gap

discontinuities happen in the x2 domain, which is also
indicated by Theorem 4.

TABLE VI

THE RULEBASE FOR THE IT2 FLSS SHOWN IN FIG. 5.

x1 \ x2 X̃21 X̃22 X̃23

X̃11 [0.8, 1.2] [1.8, 2.2] [2.8, 3.2]
X̃12 [3.8, 4.2] [4.8, 5.2] [5.8, 6.2]
X̃13 [6.8, 7.2] [7.8, 8.2] [8.8, 9.2]

Theorem 4 is intuitive. Next the second column of Fig. 5

is used as an example to explain in detail how the jump
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Fig. 5. Example input-output mappings of IT2 FLSs with two inputs.

discontinuities suggested by Theorem 5 are generated. A
more detailed plot of the input-output mapping shown in

the second column of Fig. 5 is depicted in Fig. 6. Observe
that when x1 = ±0.1, there are jump discontinuities at

x2 ∈ [−0.7,−0.4]∪ [0.4, 0.7]. The reason is analyzed next.
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Fig. 6. A detailed illustration of jump continuities. The input MFs are
shown in the second column of Fig. 5.

Observe from the second column of Fig. 5 that

max
n=1,2,3

µX1n
(x1) > 0 and max

n=1,2,3
µX2n

(x2) > 0, i.e., the

first criterion in Theorem 5 is satisfied. Consider x2 = 0.4,

where max
n=1,2,3

µX
2n
(x2) = 0, i.e., the second criterion of

Theorem 5 is also satisfied. Further consider the case that x1

changes from 0.1 to 0.1 + δ, where δ > 0 is an arbitrarily

small number:

1) When x1 = 0.1 and x2 = 0.4, the firing intervals of the

antecedents and rules are given in Table VII. Observe
that only the two rules with antecedents (X̃12, X̃22)

and (X̃12, X̃23) are fired, and the lower bounds of both

firing intervals are 0; hence, from the KM algorithms,

yl(x) =
.54× 4.8 + 0× 5.8

.54 + 0
= 4.8 (10)

yr(x) =
0× 5.2 + .3× 6.2

0 + .3
= 6.2 (11)

y(x) =
4.8 + 6.2

2
= 5.5 (12)

2) When x1 = 0.1 + δ and x2 = 0.4, the firing intervals
of the antecedents and rules are given in Table VIII.

Observe that only four rules are fired, and the lower

bounds of all firing intervals are again 0. Observe also
that the minimum y

k
for all fired rules is 4.8 in both

Table VII and VIII; however, the maximum yk for all

fired rules changes from 6.2 to 9.2. So, according to
Theorem 5, there must be a jump discontinuity. Indeed,

yl(x) =
(.54− .6δ)× 4.8 + 0× 5.8 + 0× 7.8 + 0× 8.8

.54− .6δ + 0 + 0 + 0
= 4.8 (13)

yr(x) =
0× 5.2 + 0× 6.2 + 0× 8.2 + δ/2.7× 9.2

0 + 0 + 0 + δ/2.7

= 9.2 (14)

y(x) =
4.8 + 9.2

2
= 7 (15)

So, y(x) jumps from 5.5 to 7 when x2 = 0.4 and x1

moves from 0.1 to 0.1 + δ. Other jump discontinuities can
be analyzed in a similar way.

IV. CONCLUSIONS

In this paper, the continuities and discontinuities of T1
and IT2 FLSs have been defined and investigated. Conditions

under which an FLS gives a continuous/discontinous input-

output mapping were derived. These results should be very
useful in traditional fuzzy logic modeling and control, where

usually a continuous input-output mapping is desired, and in
hybrid and switched systems modeling and control, where

a discontinuous input-output mapping is needed. Our future

research includes how to apply discontinuous FLSs to hybrid
and switched systems modeling and control.

APPENDIX: PROOF OF THEOREM 1

Consider an arbitrary small number ǫ > 0, and an arbitrary
point c = (c1, c2, ..., cM ) in the input domain of f(x).
Because g(x) is a continuous function of x, we can always

find a δ1 > 0 such that when max
m

|xm − cm| < δ1,

|g(x) − g(c)| < ǫ/3. Since f(x) universally approximates

g(x), we always have |g(c) − f(c)| < ǫ/3 for ∀c, and
we can find δ2 > 0 such that |g(x) − f(c)| < ǫ/3 when

max
m

|xm − cm| < δ2. Let δ = min(δ1, δ2). Then, when

max
m

|xm − cm| < δ,

|f(x)− f(c)| =|f(x)− f(c) + g(x)− g(x) + g(c)− g(c)|

6|f(x)− g(x)|+ |g(c)− f(c)|

+ |g(x)− g(c)|

<ǫ/3 + ǫ/3 + ǫ/3 = ǫ (16)

i.e., f(x) is continuous at c. Since c is an arbitrary point in
the input domain of f(x), f(x) must be continuous in its

entire input domain.



TABLE VII

FIRING INTERVALS OF THE IT2 FLSS SHOWN IN THE MIDDLE COLUMN OF FIG. 5 WHEN x1 = 0.1 AND x2 = 0.4.

Firing interval of antecedents Fired rules

x1 domain x2 domain Firing interval Rule consequent

[µX
11
(0.1), µX11

(0.1)] = [0, 0] [µX
21
(0.4), µX11

(0.4)] = [0, 0] [6/7, 9/10]× [0, 3/5] = [0, .54] [4.8, 5.2]
[µX

12
(0.1), µX12

(0.1)] = [6/7, 9/10] [µX
22
(0.4), µX12

(0.4)] = [0, 3/5] [6/7, 9/10]× [0, 1/3] = [0, .3] [5.8, 6.2]
[µX

13
(0.1), µX13

(0.1)] = [0, 0] [µX
23
(0.4), µX13

(0.4)] = [0, 1/3]

TABLE VIII

FIRING INTERVALS OF THE IT2 FLSS SHOWN IN THE MIDDLE COLUMN OF FIG. 5 WHEN x1 = 0.1 + δ AND x2 = 0.4.

Firing interval of antecedents Fired rules

x1 domain x2 domain Firing interval Rule consequent

[µX
11
(0.1 + δ), µX11

(0.1 + δ)] = [0, 0] [µX
21
(0.4), µX11

(0.4)] = [0, 0] [0, .54− .6δ] [4.8, 5.2]
[µX

12
(0.1 + δ), µX12

(0.1 + δ)] = [(.6 − δ)/.7, .9− δ] [µX
22
(0.4), µX12

(0.4)] = [0, 3/5] [0, .3− δ/3] [5.8, 6.2]
[µX

13
(0.1 + δ), µX13

(0.1 + δ)] = [0, δ/.9] [µX
23
(0.4), µX13

(0.4)] = [0, 1/3] [0, δ/1.5] [7.8, 8.2]
[0, δ/2.7] [8.8, 9.2]

A. Proof of Theorem 2

We need to prove that y(x) in (1) is continuous at
c = (c1, c2, ..., cM ). The firing level of the kth rule, fk,

is computed by (2). Since each µXm,nmn
(xm) is a contin-

uous function of xm, and both product and minimum t-
norms are continuous functions, fk must be continuous at

c. Consequently,
∑K

k=1 fkyk and
∑K

k=1 fk are also con-
tinuous at c. As a result, y(x) in (1) is continuous at c

if and only if
∑K

k=1 fk 6= 0, which holds if and only if
max

n=1,2,...,Nm

µXmn
(cm) > 0 for ∀m = 1, 2, ...M , i.e., every

cm is covered by some continuous T1 FSs.

B. Proof of Theorem 3

Follow the same line of reasoning in the proof of Theo-
rem 2, y(x) in (1) has a gap discontinuity at c if and only

if
∑K

k=1 fk = 0, which holds if and only if there exists cm
such that max

n=1,2,...,Nm

µXmn
(cm) = 0, i.e., cm is not covered

by any continuous T1 FS in its domain.

C. Proof of Theorem 4

To show y(x) has a gap discontinuity at c is equivalent
to showing that at least one of yl(x) and yr(x) has a gap

discontinuity at c, i.e., y(x) is undefined as long as at least

one of yl(x) and yr(x) is undefined. We will show that yl(x)
has a gap discontinuity at c if and only if ∃cm such that

max
n=1,2,...,Nm

µXmn
(cm) = 0, i.e., there exist at least one cm

not covered by the UMFs. The condition is also true for
yr(x). Since its proof is very similar to that for yl(x), it is

left to the reader as an exercise.

Consider the sufficiency first. When ∃cm such that
max

n=1,2,...,Nm

µXmn
(cm) = 0, all f

k
and fk, computed by

(6) and (7), equal 0; hence, the numerator of (4) is 0.

Consequently, yl(x) is undefined at c, i.e., yl(x) has a gap
discontinuity at c.

Next consider the necessity. When

max
n=1,2,...,Nm

µXmn
(cm) > 0 for ∀m = 1, 2, ...,M , there are

K ′ > 1 rules whose fk > 0, and yl(x) is computed by (17),

which is defined in this case; so, yl(x) does not have a gap

discontinuity at c. Consequently, to have a gap discontinuity
at c, there must ∃cm such that max

n=1,2,...,Nm

µXmn
(cm) = 0.

D. Proof of Theorem 5

A lemma on the sufficient condition of a continuous IT2

FLS is given first. It will be used in the proof of Theorem 5.

Lemma 2: The IT2 FLS is continuous at c if

max
n=1,2,...,Nm

µXmn
(cm) > 0 for ∀m = 1, 2, ...M , i.e.,

every cm is covered by some continuous LMFs. �

Proof: To prove y(x) defined in (3) is continuous at c we
need to show that both yl(x) and yr(x) are continuous at c.

We only show that for yl(x). The proof for yr(x) is very
similar and hence left to the reader as an exercise.

It has been shown [9], [25] that yl(x) can be written as:

yl(x) = min
k′∈[1,K′]

∑k′

k=1 fkyk +
∑K′

k=k′+1 fk
y
k

∑k′

k=1 fk +
∑K′

k=k′+1 fk

(17)

where K ′ is the number of fired rules, i.e., those rules with
fk > 0. So, to show yl(x) is continuous at c we only

need to show each

∑
k′

k=1
fkyk

+
∑

K′

k=k′+1
f
k
y
k∑

k′

k=1
fk+

∑
K′

k=k′+1
f
k

is continuous

at c, because the minimum of several continuous functions
is still continuous. When max

n=1,2,...,Nm

µX
mn

(cm) > 0 for

∀m = 1, 2, ...M , i.e., every cm is covered by some con-

tinuous LMFs, all f
k

and fk are continuous at c, and hence
∑k′

k=1 fk +
∑K′

k=k′+1 fk
> 0; so, yl(x) is continuous at c.

�

Next we prove Theorem 5. Consider the sufficiency first.

When there exists an m such that max
n=1,2,...,Nm

µX
mn

(cm) =

0, all firing levels f
k

are zero for c. Consider yl(x) in (17).

Its minimum is achieved when k = 1, i.e., yl(x) = y
1
=

min
k=1,...,K′

y
k
.

When any cm′ (m′ 6= m) changes to cm′ + δ, because

max
n=1,2,...,Nm

µXmn
(cm) = 0, all firing levels f

k
are still zero;

hence, yl(x) still equals the minimum y
k

of all firing rules.

Clearly, if the minimum y
k

of all firing rules changes as any

cm′ (m′ 6= m) changes to cm′ + δ, then there is a jump



in yl(x), and hence the input-output mapping has a jump

discontinuity at c. Similarly, if the maximum yk of all firing
rules changes as any cm′ (m′ 6= m) changes to cm′ + δ, then

there is a jump in yr(x), and hence the input-output mapping
has a jump discontinuity at c.

Next consider the necessity. y(c) can only have three

cases:

1) There exists cm such that max
n=1,2,...,Nm

µXmn
(cm) = 0.

2) max
n=1,2,...,Nm

µXmn
(cm) > 0 and

max
n=1,2,...,Nm

µX
mn

(cm) > 0 for all cm.

3) max
n=1,2,...,Nm

µXmn
(cm) > 0 for all cm, but there exists

cm such that max
n=1,2,...,Nm

µX
mn

(cm) = 0.

The first case has a gap discontinuity at c, according to
Theorem 4. The second case is continuous at c, according to

Lemma 2. Then, a jump discontinuity can only happen in the

third case, as indicated by the first two criteria in Theorem 5.
When there exists cm such that max

n=1,2,...,Nm

µX
mn

(cm) = 0,

the lower bounds of all fired rules are 0. In this case, yl(c)
equals the minimum y

k
of all fired rules, and yr(c) equals

the maximum yk of all fired rules. So, if Criterion 3 of

Theorem 5 is not satisfied, then both yl(c) and yr(c) are
not changed when c changes; hence, there is no jump dis-

continuity at c. In other words, to have a jump discontinuity

at c, the minimum y
k

and/or maximum yk of all fired rules
must be different as c changes.
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