
Enhanced Karnik-Mendel Algorithms for
Interval Type-2 Fuzzy Sets and Systems

Dongrui Wu and Jerry M. Mendel

Signal and Image Processing Institute, Ming Hsieh Department of Electrical Engineering,
University of Southern California, 3740 McClintock Ave., Los Angeles, CA 90089-2564

Email: dongruiw@usc.edu; mendel@sipi.usc.edu.

Abstract— The Karnik-Mendel (KM) algorithms are iterative
procedures widely used in fuzzy logic theory. They are known to
converge monotonically and super-exponentially fast; however,
several (usually two to six) iterations are still needed before
convergence occurs. Methods to reduce their computational cost
are proposed in this paper. Extensive simulations show that
on average the enhanced KM algorithms can save about two
iterations, which corresponds to more than a 39% reduction in
computation time.

Index Terms— Karnik-Mendel algorithms, interval type-2
fuzzy sets, type-reduction, centroid computation

I. INTRODUCTION

The following problem is frequently met in (but not
limited to) fuzzy logic theory:

Given

xi ∈ Xi ≡ [xi, xi], i = 1, 2, . . . , N (1)

wi ∈ Wi ≡ [wi, wi], i = 1, 2, . . . , N (2)

where

xi ≤ xi, i = 1, 2, . . . , N (3)

wi ≤ wi, i = 1, 2, . . . , N (4)

compute

Y =
∑N

i=1 XiWi∑N
i=1 Wi

≡ [yl, yr], (5)

where

yl = min
∀xi∈[xi,xi]
∀wi∈[wi,wi]

∑N
i=1 xiwi∑N
i=1 wi

(6)

yr = max
∀xi∈[xi,xi]
∀wi∈[wi,wi]

∑N
i=1 xiwi∑N
i=1 wi

(7)

Places where this problem occurs are:
1. Computing uncertainty measures for interval type-2

fuzzy sets (IT2 FSs):

1.1) In computing the centroid of an IT2 FS Ã [1],
[3], [5], xi = xi = zi represent discretizations
of the primary variable z, and interval [wi, wi] is
the membership grade1 of zi, as shown in Fig. 1.
Y is the centroid of Ã.

1The lower and upper memberships of zi are usually denoted as µ(zi)
and µ(zi), respectively [1]. To be consistent with (6) and (7), in this paper
we denote them as wi and wi, respectively.

1.2) In computing the variance of an IT2 FS Ã [9],
xi = xi = [zi − c(Ã)]2, where c(Ã) is the
center of the centroid of Ã, and [wi, wi] is the
membership grade of zi. Y is the variance of Ã.

1.3) In computing the skewness of an IT2 FS Ã [9],
xi = xi = [zi − c(Ã)]3, and [wi, wi] is the
membership grade of zi. Y is the skewness of
Ã.

2. Type-reduction:

2.1) In centroid and center-of-sums type-reduction of
IT2 fuzzy logic systems (FLSs) [1], an IT2 FS
is first obtained by combining the output sets
for fired rules, after which computing the type-
reduced set is equivalent to computing the cen-
troid of that IT2 FS, as in Item 1.1. Y is the
type-reduced set.

2.2) In center-of-sets type-reduction of IT2 FLSs [1],
Xi represents the centroid of the consequent IT2
FS of the ith rule, and Wi is the firing level of
that rule. Y is the type-reduced set.

2.3) In height type-reduction of IT2 FLSs [1], xi = xi

represents the point having maximum member-
ship in the consequent type-1 FS of the ith rule,
and Wi is the firing level of that rule. Y is
the type-reduced set. The operations in modified
height type-reduction [1] are quite similar, except
that Wi is multiplied by a scale factor.

3. Computing novel weighted averages2 (NWAs):

3.1) In computing the interval weighted average
(IWA) [6], Xi are input signals and Wi are their
associated weights, both of which are interval
sets. Y , which is also an interval set, is the IWA.

3.2) In computing the fuzzy weighted average (FWA)
[4], [6], Xi and Wi are α-cuts on the input signals
and the weights, both of which are type-1 FSs.
Y is the corresponding α-cut on the FWA.

3.3) In computing the linguistic weighted average
(LWA) [6], [7], Xi and Wi are α-cuts of the upper
membership functions–UMFs (lower membership
functions–LMFs) of the inputs signals and the
weights, both of which are IT2 FSs. Y is the

2NWAs are weighted averages in which at least one of the weights are
novel models [6], i.e., intervals, type-1 FSs, or IT2 FSs.

1841-4244-1214-5/07/$25.00 ©2007 IEEE

corresponding α-cut on the UMF (LMF) of the
LWA, which is also an IT2 FS.

z

()zµ

UMF

LMF
i

w

i
w

i
z

A%

Fig. 1. An IT2 FS. UMF: upper membership function; LMF: lower
membership function.

It is well-known that yl and yr can be expressed as [1]

yl = min
wi∈[wi,wi]

∑N
i=1 xiwi∑N
i=1 wi

=
∑L

i=1 xiwi +
∑N

i=L+1 xiwi∑L
i=1 wi +

∑N
i=L+1 wi

(8)

yr = max
wi∈[wi,wi]

∑N
i=1 xiwi∑N
i=1 wi

=
∑R

i=1 xiwi +
∑N

i=R+1 xiwi∑R
i=1 wi +

∑N
i=R+1 wi

(9)

where L and R are switch points. There is no closed-form
solution for L and R, and hence for yl and yr. KM algorithms
[1] are used to compute them iteratively. Because the com-
putational burden and iterative nature of KM algorithms may
hinder them from some real-time applications, a reduction in
the computational cost is desired, and this is the focus of our
paper.

This paper is organized as follows: Section II briefly
introduces the original KM algorithms; Section III proposes
the enhanced KM (EKM) algorithms; Section IV presents
simulation results to verify the effectiveness of the proposed
algorithms; and, finally, Section V draws conclusions.

II. THE ORIGINAL KM ALGORITHMS

A. KM Algorithm for Computing yl [1], [3]

1) Sort xi (i = 1, 2, . . . , N) in increasing order and call
the sorted xi by the same name, but now x1 < x2 <
· · · < xN . Match the weights wi with their respective
xi and renumber them so that their index corresponds
to the renumbered xi.

2) Initialize wi by setting

wi =
wi + wi

2
i = 1, 2, . . . , N (10)

and then compute

y =
∑N

i=1 xiwi∑N
i=1 wi

(11)

3) Find switch point k (1 ≤ k ≤ N − 1) such that

xk ≤ y ≤ xk+1 (12)

4) Set

wi =
{

wi, i ≤ k
wi, i > k

(13)

and compute

y′ =
∑N

i=1 xiwi∑N
i=1 wi

(14)

5) Check if y′ = y. If yes, stop, set yl = y and call k L.
If no, go to Step 6.

6) Set y = y′ and go to Step 3.

B. KM Algorithm for Computing yr [1], [3]

1) Sort xi (i = 1, 2, . . . , N) in increasing order and call
the sorted xi by the same name, but now x1 < x2 <
· · · < xN . Match the weights wi with their respective
xi and renumber them so that their index corresponds
to the renumbered xi.

2) Initialize wi by setting

wi =
wi + wi

2
i = 1, 2, . . . , N (15)

and then compute

y =
∑N

i=1 xiwi∑N
i=1 wi

(16)

3) Find switch point k (1 ≤ k ≤ N − 1) such that

xk ≤ y ≤ xk+1 (17)

4) Set

wi =
{

wi, i ≤ k
wi, i > k

(18)

and compute

y′ =
∑N

i=1 xiwi∑N
i=1 wi

(19)

5) Check if y′ = y. If yes, stop, set yr = y and call k R.
If no, go to Step 6.

6) Set y = y′ and go to Step 3.

The KM algorithms have been proven to converge mono-
tonically and super-exponentially fast [5]; however, several
(usually two to six) iterations are still needed before conver-
gence occurs. As pointed out in [5], “an open problem is to
find an optimal way to initialize the KM algorithm,” optimal
in the sense that the super-exponential convergence factor δ
defined below in (37) is minimized.

III. EKM ALGORITHMS

This section presents EKM algorithms to reduce the com-
putational cost of the original ones. Similar to the original
KM algorithms, the EKM algorithms also consist of two
parts, one for computing yl and the other for computing yr.
Because the two parts are quite similar, we focus on the
EKM algorithm for computing yl in this section.

185

A. Optimal Initial Switch Point

When we use (10) to initialize the KM algorithm, yl in
the first iteration can be expressed as

yl =
∑N

i=1 xi
wi+wi

2∑N
i=1

wi+wi

2

(20)

which looks quite different from (8), and suggests that better
choices for the initialization of the KM algorithm in line with
(8) should be possible.

Observe that (8) shows that when i ≤ L, wi is used
to compute yl; and, when i > L, wi is used to compute
yl. This implies that a better initialization of yl is to find
a good guess of L, L0. Because yl is the smallest value
of Y , we conjecture that very probably it is smaller than3

x[N/2], the center element of xi; consequently, L0 should also
be smaller than [N/2]. We performed extensive simulations
by initializing L0 = {[N/2], [N/2.1], . . . , [N/2.6]} and
comparing the number of iterations for the algorithms to
converge for uniformly and independently distributed wi, wi

and xi, and found that L0 = [N/2.4] gave the fewest number
of iterations (more details on the simulations and comparison
are given in Section IV). We performed similar simulations
for yr, and found that the optimal initial switch point is
R0 = [N/1.7].

B. The Termination Test

Observe from Step 5 in Section II-A that the test y′ = y is
performed to determine whether the iterations should stop or
continue. When the iterations stop, y′ = y, and because y′ is
obtained during the present iteration and y was obtained from
the previous iteration, y′ = y means the present iteration
makes no contribution to minimizing yl, consequently, it can
be deleted without changing yl.

Denote the switch points for y′ and y as k′ and k,
respectively. Then,

y′ =
∑k′

i=1 xiwi +
∑N

i=k′+1 xiwi∑k′
i=1 wi +

∑N
i=k′+1 wi

(21)

y =
∑k

i=1 xiwi +
∑N

i=k+1 xiwi∑k
i=1 wi +

∑N
i=k+1 wi

(22)

Obviously, y′ = y is equivalent to k′ = k. So, by changing
the termination condition from y′ = y to k′ = k, we have
the same yl but save one iteration. How to do this is shown
in Section III-D.

C. Further Computational Cost Reduction

In the original KM algorithm for computing yl, in each
iteration we compute

∑N
i=1 wi and

∑N
i=1 xiwi in entirety

and then compute y′ in (14). This is a waste of computational
power because results from the previous iteration are not
utilized.

After the jth iteration, let switch point k,
∑N

i=1 wi and∑N
i=1 xiwi be denoted as kj , (

∑N
i=1 wi)j and (

∑N
i=1 xiwi)j ,

3[N/2] denotes the nearest integer number that N/2 can be rounded to.
This conversion is needed because L0 (R0) must be an integer number
whereas N/2 is not necessarily an integer.

respectively. Usually kj and kj+1 are quite close to each
other. Consequently, the wi in the (j + 1)th iteration share
lots of common terms with the wi from the jth iteration.
This means (

∑N
i=1 wi)j and (

∑N
i=1 xiwi)j can be used to

compute (
∑N

i=1 wi)j+1 and (
∑N

i=1 xiwi)j+1, i.e., only the
differences between (

∑N
i=1 wi)j+1 and (

∑N
i=1 wi)j , as well

as (
∑N

i=1 xiwi)j+1 and (
∑N

i=1 xiwi)j , need to be computed,
after which these differences are added to (

∑N
i=1 wi)j and

(
∑N

i=1 xiwi)j [as shown in (27) and (28)]. A similar tech-
nique was already used in [2].

D. EKM Algorithms

As a summary, the complete EKM algorithms are pre-
sented.

The EKM algorithm for computing yl is:
1) Sort xi (i = 1, 2, . . . , N) in increasing order and call

the sorted xi by the same name, but now x1 ≤ x2 ≤
· · · ≤ xN . Match the weights wi with their respective
xi and renumber them so that their index corresponds
to the renumbered xi.

2) Set k = [N/2.4] (the nearest integer to N/2.4), and
compute

a =
k∑

i=1

xiwi +
N∑

i=k+1

xiwi (23)

b =
k∑

i=1

wi +
N∑

i=k+1

wi (24)

and

y = a/b (25)

3) Find k′ ∈ [1, N − 1] such that

xk′ ≤ y ≤ xk′+1 (26)

4) Check if k′ = k. If yes, stop, set yl = y and call k L.
If no, continue.

5) Compute s = sign(k′ − k), and

a′ = a + s

max(k,k′)∑
i=min(k,k′)+1

xi(wi − wi) (27)

b′ = b + s

max(k,k′)∑
i=min(k,k′)+1

(wi − wi) (28)

y′ = a′/b′ (29)

6) Set y = y′, a = a′, b = b′ and k = k′. Go to Step 3.
The EKM algorithm for computing yr is:
1) Sort xi (i = 1, 2, . . . , N) in increasing order and call

the sorted xi by the same name, but now x1 ≤ x2 ≤
· · · ≤ xN . Match the weights wi with their respective
xi and renumber them so that their index corresponds
to the renumbered xi.

2) Set k = [N/1.7] (the nearest integer to N/1.7), and
compute

a =
k∑

i=1

xiwi +
N∑

i=k+1

xiwi (30)

186

b =
k∑

i=1

wi +
N∑

i=k+1

wi (31)

and

y = a/b (32)

3) Find k′ ∈ [1, N − 1] such that

xk′ ≤ y ≤ xk′+1 (33)

4) Check if k′ = k. If yes, stop, set yr = y and call k R.
If no, continue.

5) Compute s = sign(k′ − k), and

a′ = a − s

max(k,k′)∑
i=min(k,k′)+1

xi(wi − wi) (34)

b′ = b − s

max(k,k′)∑
i=min(k,k′)+1

(wi − wi) (35)

y′ = a′/b′ (36)

6) Set y = y′, a = a′, b = b′ and k = k′. Go to Step 3.

IV. COMPARATIVE STUDIES

Extensive simulations have been conducted to verify the
performance of the EKM algorithms. The platform was a
Dell Precision 690 Workstation running Windows XP x64
Edition and Matlab 7.3.0 with two Intel Xeon 2.66GHZ
processors and 2GB RAM. Because the results for computing
yr are quite similar to those for computing yl, only the
comparative studies for computing yl are presented in this
section.

In the simulations, we increased N by one from 3 to
20 (i.e., N = 3, 4, . . . , 20), and then increased it by five
from 20 to 100 (i.e., N = 25, 30, . . . , 100). For each N ,
10,000 Monte Carlo simulations were used to compute yl,
i.e., for each N , 10,000 xi were generated using Matlab
function rand(10000,1), and 10,000 pairs of {wi, wi} were
generated by using Matlab function rand(10000,2). Observe
that all xi, wi and wi were constrained in [0, 1], and xi

were independent of wi and wi. To make sure wi ≤ wi,
we checked each pair of {wi, wi} and assigned the smaller
value to wi and the larger one to wi.

A. Performance Measures and Observations

The performance measures used in the comparative studies
and the corresponding observations are:

1) Mean and standard deviation of super-exponential
convergence factor δ (Fig. 2), which is defined in
(30) of [5] as an indicator of the super-exponential
convergence speed for computing yl. Because δ in [5]
is defined for the continuous version of KM algorithms,
and in this study we used the discrete version of KM
algorithms, we used the following discrete version of
δ:

δ ≡ yl1 − yl

yl0 − yl
(37)

In (37), yl0 is the initial value of yl (i.e., the y
computed by (11) for the original KM algorithm, or
the y computed by (25) for the EKM algorithm), and
yl1 is the y′ computed from the first iteration of each
algorithm.

Observe from Fig. 2 that both the mean and the
standard deviation of δ for the EKM algorithm are
smaller than those of the original KM algorithm. Most
impressively, the mean of δ calculated from the EKM
algorithm is about 1/100 of that from the original
KM algorithm, which suggests that the EKM algorithm
converges much faster than the original one.

2) Average number of iterations obtained from different
algorithms (Fig. 3). For both the original and EKM
algorithms the number of iterations is defined as the
times the loop consisting of Steps (3)-(6) in Sections II-
A and III-D are executed. These definitions are con-
sistent with those used in [5].

From Fig. 3, observe that the average number of
iterations for the EKM algorithm is smaller than that
for the original KM algorithm. More interestingly, the
average number of iterations for the EKM algorithm
is less than one. This is because uniformly and inde-
pendently distributed wi, wi and xi were used in the
simulation, and hence L0 = [N/2.4] has a good chance
to be the final switch point, especially when N is small,
as confirmed by Fig. 4 and explained in Observation
(3). When the distributions of wi, wi and xi are not
uniform and independent, the average number of itera-
tions for the EKM algorithm will increase, as discussed
in [8]. Observe also that as N increases, the average
number of iterations in the original KM algorithm also
increases; however, the increase becomes much slower
as N gets larger. This coincides with the conclusion
that KM algorithms converge monotonically and super-
exponentially fast [5].

3) Histograms of the number of iterations obtained from
different algorithms.

Results for N = {5, 10, 100} are shown in Fig. 4,
where {5, 10} represent the typical N used in type-
reduction and in computing the IWA, FWA and LWA,
and 100 represents the typical N used in computing the
centroid, variance and skewness of IT2 FSs. Observe
that when N ≤ 100, the original KM algorithm
converges in 2-4 iterations whereas the EKM algorithm
converges in 0-2 iterations. Observe also that when
N = 5, there is more than 50% probability that the
EKM algorithm converges in zero iterations, i.e. the
initial switch point L0 equals the final switch point
L. This result seems surprising, but it can be easily
explained. When N = 5, there are only four possible
switch points L = {1, 2, 3, 4}. The initial switch point
L0 = [N/2.4] = 2 has a good chance to be the final
switch point, i.e., at least 1/4 in probability. As N
increases, the number of possible switch points also
increases, and hence the probability that the EKM
converges in zero iterations decreases, as confirmed

187

by Figs. 4(d) and 4(f).
4) The average reduced number of iterations.

Observe from Fig. 5 that the EKM algorithm elimi-
nates about two iterations, and that the reduced number
of iterations increases on average as N gets larger.

5) Probability that the algorithm converges in one itera-
tion.

As shown in Fig. 6, the EKM algorithm converges
in one iteration with a probability of 0.97, and that
probability is almost a constant for all N . On the other
hand, the original KM algorithm almost surely needs
more than one iteration to converge. These results are
also verified by Fig. 4.

6) The average computation time for different algorithm.
Observe from Fig. 7 that the average computation

time for both algorithms increases as N increases;
however, the EKM algorithm is much faster than the
original KM algorithm. Observe also that the standard
deviation of the computation time for the EKM algo-
rithm is slightly larger than that for the original KM
algorithm.

7) The percentage of computation time reduction over the
original KM algorithm.

Observe from Fig. 8 that the percentage of compu-
tation time reduction of the EKM algorithm over the
original KM algorithm decreases as N increases. For
N ∈ [3, 100], there is more than a 39% computation
time reduction.

Finally, we wish to emphasize that the above results were
obtained only for uniformly and independently distributed
wi, wi and xi, and the performance of the EKM algorithms
may deteriorate for other distributions, as discussed in a
journal version of this paper [8].

10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

N

M
ea

n
of

 δ

KM
EKM

(a)

10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

N

ST
D

 o
f

δ

KM
EKM

(b)

Fig. 2. (a) Mean and (b) standard deviation of δ when computing yl.

10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

2.5

3

N

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

KM
EKM

Fig. 3. Average number of iterations when computing yl.

0 1 2 3 4
0

50

100

Number of iterations (KM, N=5)

Pe
rc

en
t (

%
)

(a)

0 1 2 3 4
0

50

100

Number of iterations (EKM, N=5)

Pe
rc

en
t (

%
)

(b)

0 1 2 3 4 5
0

50

100

Number of iterations (KM, N=10)
Pe

rc
en

t (
%

)

(c)

0 1 2 3 4 5
0

50

100

Number of iterations (EKM, N=10)

Pe
rc

en
t (

%
)

(d)

0 1 2 3 4 5
0

50

100

Number of iterations (KM, N=100)

Pe
rc

en
t (

%
)

(e)

0 1 2 3 4 5
0

50

100

Number of iterations (EKM, N=100)

Pe
rc

en
t (

%
)

(f)

Fig. 4. Histograms of the number of iterations for different KM algorithms.
(a)-(b): N = 5; (c)-(d): N = 10; (e)-(f): N = 100.

B. Discussions

One of the most time-consuming steps in the EKM algo-
rithms is the first one, i.e., to sort xi (xi) in ascending order;
however, frequently this step can be skipped, e.g.:

1) In computing the centroid of an IT2 FS, xi = xi =
zi, where zi are the samples of the primary variable
(Fig. 1), and they are already in ascending order.

2) In computing the skewness of an IT2 FS, xi = xi =
[zi−c(Ã)]3, because zi are already in ascending order,
[zi − c(Ã)]3 are also in ascending order.

3) For center-of-sets type-reduction, once the design of an
IT2 FLS is completed, the centroids of the consequent
IT2 FSs can be computed and sorted off-line, and
hence they can be used directly in on-line computations
without further sorting.

Monte Carlo simulations were also used to study the
further computation time reduction for the EKM algorithms
when sorting is not needed. The same wi, wi and xi as
those in Section IV were used. Denote the time to finish
Step 1 of the EKM algorithms as t1, and the time to finish
Steps 2-6 as t2. Then, the ratio t1/(t1 + t2) was used as an

188

10 20 30 40 50 60 70 80 90 100
1.8

1.9

2

2.1

2.2

2.3

N

A
ve

ra
ge

 r
ed

uc
ed

 n
un

m
be

r
of

 it
er

at
io

ns

Fig. 5. Average reduced number of iterations of the EKM algorithm over
the original KM algorithm.

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

N

Pr
ob

ab
ili

ty
 to

 c
on

ve
rg

e
in

 1
 it

er
at

io
ns

KM
EKM

Fig. 6. The probability of each algorithm converging in one iteration. Note
that the probability corresponding to the original KM algorithm is 0.

10 20 30 40 50 60 70 80 90 100

4

6

8

10

12
x 10

−5

N

A
ve

ra
ge

 c
om

pu
ta

tio
n

tim
e

(s
ec

)

KM
EKM

Fig. 7. Average computation time for different KM algorithms.

10 20 30 40 50 60 70 80 90 100

40

42

44

46

48

N

C
om

pu
ta

tio
n

tim
e

re
du

ct
io

n
(%

)

Fig. 8. Percentage of computation time reduction of the EKM algorithm
over the original KM algorithm.

indicator of how much computation time can be saved if no
sorting is needed. The results are shown in Fig. 9. Observe

that when N ∈ [3, 11], the percentage of computation time
reduction decreases as N increases; on the other hand, when
N ∈ [11, 100], the percentage of computation time reduction
increases as N increases. Fig. 9 also shows that there is at
least 23% computation time reduction. This will make the
EKM algorithms more suitable for real-time applications.

10 20 30 40 50 60 70 80 90 100

24

26

28

30

32

N

C
om

pu
ta

tio
n

tim
e

re
du

ct
io

n
(%

)

Fig. 9. Percentage of computation time reduction for the EKM algorithm
if sorting of xi (xi) is not needed.

V. CONCLUSIONS

KM algorithms are iterative procedures widely used in
centroid, variance and skewness computations of IT2 FSs,
type-reduction of IT2 FLSs, and for computing the IWA,
FWA and LWA. They have been proven to converge mono-
tonically and super-exponentially fast; however, several (usu-
ally two to six) iterations are still needed before convergence
occurs. In this paper EKM algorithms have been proposed to
reduce the computational cost. Extensive simulations show
that on average the EKM algorithms can save about two
iterations, which corresponds to a more than 39% reduction
in computation time. An additional (at least) 23% computa-
tional cost can be saved if no sorting of xi (xi) is needed.

REFERENCES

[1] J. M. Mendel, Rule-Based Fuzzy Logic Systems: Introduction and New
Directions. Upper Saddle River, NJ: Prentice-Hall, 2001.

[2] S.-M. Guu, “Fuzzy weighted averages revisited,” Fuzzy Sets and Sys-
tems, vol. 126, pp. 411–414, 2002.

[3] N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy set,”
Information Sciences, vol. 132, pp. 195–220, 2001.

[4] F. Liu and J. M. Mendel, “Aggregation using the fuzzy weighted
average, as computed using the Karnik-Mendel algorithms,” IEEE
Trans. on Fuzzy Systems, 2007, in press.

[5] J. M. Mendel and F. Liu, “Super-exponential convergence of the Karnik-
Mendel algorithms for computing the centroid of an interval type-2
fuzzy set,” IEEE Trans. on Fuzzy Systems, vol. 15, no. 2, pp. 309–320,
2007.

[6] J. M. Mendel and D. Wu, “Signal fusion using novel weighted aver-
ages,” submitted to Proc. IEEE, Feb 2007.

[7] D. Wu and J. M. Mendel, “Aggregation using the linguistic weighted
average and interval type-2 fuzzy sets,” accepted by IEEE Trans. on
Fuzzy Systems, 2007.

[8] ——, “Enhanced Karnik-Mendel Algorithms,” submitted to IEEE
Trans. on Fuzzy Systems, April 2007.

[9] ——, “Uncertainty measures for interval type-2 fuzzy sets,” submitted
to Information Sciences, March 2007.

189

