
Efficient Algorithms for Computing a Class of Subsethood and

Similarity Measures for Interval Type-2 Fuzzy Sets

Dongrui Wu, Member, IEEE, and Jerry M. Mendel, Life Fellow, IEEE

Abstract— Subsethood and similarity measures are important
concepts in fuzzy set (FS) theory. There are many different
definitions of them, for both type-1 (T1) FSs and interval type-
2 (IT2) FSs. In this paper, Rickard et al.’s definition of IT2 FS
subsethood measure, extended from Kosko’s T1 FS subsethood
measure using the Representation Theorem, and Nguyen and
Kreinovich’s IT2 FS similarity measure, extended from the
Jaccard similarity measure for T1 FSs, are introduced. Efficient
algorithms for computing them are also proposed. Simulations
demonstrate that our proposed algorithms outperform existing
algorithms in the literature.

Index Terms— Interval type-2 fuzzy sets, efficient algorithms,
similarity measures, subsethood measures

I. INTRODUCTION

Subsethood [5], [29] and similarity [30], [31] measures are

important concepts in fuzzy set (FS) theory. The subsethood

of a FS A in another FS B is a quantity in [0, 1] indicating

the degree of containment of A in B, and the similarity

of A to B is a quantity in [0, 1] indicating how similar A

is to B. Both measures have had wide applications, e.g.,

subsethood measures of FSs have been used in approximate

reasoning [1], classification [10], [14], computing with words

[9], [27], control [6], etc, and similarity measures of FSs

have been used in approximate reasoning [2], [13], [25], [26],

classification [17], clustering [28], computing with words [9],

[23], etc.

The most popular subsethood measure for type-1 (T1) FSs

was proposed by Kosko [5], which is

ss
K
(A,B) =

∑N
i=1 min(µA(xi), µB(xi))

∑N
i=1 µA(xi)

(1)

and the most popular similarity measure for T1 FSs is the

Jaccard similarity measure [3], [23], which is

sm
J
(A,B) =

∑N
i=1 min(µA(xi), µB(xi))

∑N
i=1 max(µA(xi), µB(xi))

. (2)

Observe the analogy between ss
K
(A,B) and sm

J
(A,B).

Rickard et al. [15], [16] and Nguyen and Kreinovich [11]

have independently extended Kosko’s subsethood measure

for T1 FSs to interval type-2 (IT2) FSs [7], and in this paper

it is called Rickard et al.’s subsethood measure for IT2 FSs

and denoted as ss
R

since Rickard et al.’s paper was published

a little earlier. Nguyen and Kreinovich [11] also extended

Dongrui Wu is with the Institute for Creative Technologies and the Signal
Analysis and Interpretation Laboratory, University of Southern California,
Los Angeles, CA 90089 (phone: 213-595-3269; email: dongruiw@usc.edu).

Jerry M. Mendel is with the Ming Hsieh Department of Electrical
Engineering, University of Southern California, Los Angeles, CA 90089
(phone: 213-740-4445; email: mendel@sipi.usc.edu).

the Jaccard similarity measure for T1 FSs to IT2 FSs, and

in this paper it is called Nguyen and Kreinovich’s similarity

measure for IT2 FSs and denoted as sm
NK

. How to compute

these measures efficiently is the focus of this paper.

The rest of this paper is organized as follows: Section II

introduces the definition of ss
R

, Rickard et al’s exhaus-

tive computation approach for computing it, Nguyen and

Kreinovich’s fast algorithm, and our efficient algorithm.

Their performances are also compared. Section III intro-

duces the definition of sm
NK

, an exhaustive computation

approaching for computing it, Nguyen and Kreinovich’s fast

algorithm, and our efficient algorithm. Their performances

are also compared. Finally, Section IV draws conclusions.

II. ss
R

: DEFINITION AND COMPUTATION

Rickard et al. [15], [16] extended Kosko’s subsethood

measure to IT2 FSs based on the Representation Theorem [8]

of IT2 FSs. This section presents their results and compares

several algorithms for computing ss
R

.

A. Definition of ss
R

Let Ã and B̃ be two IT2 FSs, and Ae and Be be embedded

T1 FSs [7] of Ã and B̃, respectively. Then, the subsethood

of Ã in B̃, ss(Ã, B̃), is an interval defined as [15], [16]

ss
R
(Ã, B̃) =

⋃

∀Ae,Be

ss
K
(Ae, Be)

=
⋃

∀Ae,Be

∑N
i=1 min(µAe

(xi), µBe
(xi))

∑N
i=1 µAe

(xi)

≡ [ss
Rl
(Ã, B̃), ss

Rr
(Ã, B̃)] (3)

where

ss
Rl
(Ã, B̃) = min

∀Ae,Be

∑N
i=1 min(µAe

(xi), µBe
(xi))

∑N
i=1 µAe

(xi)
(4)

ss
Rr
(Ã, B̃) = max

∀Ae,Be

∑N
i=1 min(µAe

(xi), µBe
(xi))

∑N
i=1 µAe

(xi)
. (5)

Rickard et al. [15], [16] and Nguyen and Kreinovich [11]

independently showed that it is not necessary to enumerate all

possible Ae in order to compute ss
Rl
(Ã, B̃) and ss

Rr
(Ã, B̃),

as suggested by (4) and (5). Their main results are summa-

rized in the following:

Theorem 1: [11], [16] Let

I1 ≡ {xi|µB̃
(xi) 6 µ

Ã
(xi)} (6)

I2 ≡ {xi|µB̃
(xi) > µÃ(xi)} (7)

I ≡ {xi|µÃ
(xi) < µ

B̃
(xi) < µÃ(xi)} (8)

978-1-4244-8126-2/10/$26.00 ©2010 IEEE

and

µAl
(xi) =

µÃ(xi), xi ∈ I1
µ
Ã
(xi), xi ∈ I2

µ
Ã
(xi) or µÃ(xi), xi ∈ I

(9)

µAr
(xi) =

µ
Ã
(xi), µB̃(xi) 6 µ

Ã
(xi)

µÃ(xi), µB̃(xi) > µÃ(xi)
µB̃(xi), µ

Ã
(xi) < µB̃(xi) < µÃ(xi)

(10)

Then,

ss
Rl
(Ã, B̃) = min

µAl
(xi) in (9)

∑N
i=1 min

(

µAl
(xi), µB̃

(xi)
)

∑N
i=1 µAl

(xi)

(11)

ss
Rr
(Ã, B̃) =

∑N
i=1 min (µAr

(xi), µB̃(xi))
∑N

i=1 µAr
(xi)

. � (12)

B. Rickard et al.’s Exhaustive Computation Approach

Observe from (12) that ss
Rr
(Ã, B̃) has a closed-form

solution; however, because for each xi ∈ I , µAl
(xi) in

(9) can have two possible values, to compute ss
Rl
(Ã, B̃),

2L evaluations of the bracketed term in (11) have to be

performed, where L is the number of elements in I . This

approach [16] is referred to in the present paper as the “ex-

haustive computation approach” for computing ss
Rl
(Ã, B̃).

Because 2L can be a rather large number depending on

L, the exhaustive computation approach is not efficient. Two

more efficient algorithms are introduced next.

C. Nguyen and Kreinovich’s Fast Algorithm

Before introducing Nguyen and Kreinovich’s fast algo-

rithm for computing ss
Rl
(Ã, B̃), an important result is

needed:

Theorem 2: [11] Define

rj =
µ
B̃
(xj)− µ

Ã
(xj)

µÃ(xj)− µ
Ã
(xj)

, xj ∈ I (13)

I3 = {xj |rj 6 ss
Rl
(xj)} (14)

I4 = {xj |rj > ss
Rl
(xj)} (15)

Then,

ss
Rl
(Ã, B̃) =

∑

xj∈I1∪I3
µ
B̃
(xj) +

∑

xj∈I2∪I4
µ
Ã
(xj)

∑

xj∈I1∪I3
µÃ(xj) +

∑

xj∈I2∪I4
µ
Ã
(xj)

. �

(16)
According to Theorem 2, for every xj ∈ I we can compute

its corresponding rj . For each xj whose corresponding rj
is smaller than or equal to ss

Rl
(Ã, B̃), µÃ(xj) must be

used in computing ss
Rl
(Ã, B̃), and for each xj whose

corresponding rj is larger than ss
Rl
(Ã, B̃), µ

Ã
(xj) must

be used in computing ss
Rl
(Ã, B̃). However, since we do

not know ss
Rl
(Ã, B̃) a priori, we cannot determine when

µÃ(xj) or µ
Ã
(xj) should be used.

One approach is to sort these L rj in ascending order.

Then, there must exist a switch point k such that

µAl
(xj) =

{

µÃ(xj), j 6 k

µ
Ã
(xj), j > k

(17)

where1 rk 6 ss
Rl
(Ã, B̃) < rk+1.

The problem then simplifies to determining the switch

point k. Since k can only assume L + 1 values (k =
0, 1, ..., L), we can enumerate all these k and substitute (17)

into (11) to compute the corresponding ssk
Rl
(Ã, B̃). The final

ss
Rl
(Ã, B̃) must be the smallest of these L + 1 resulting

ssk
Rl
(Ã, B̃).

Nguyen and Kreinovich’s [11] fast algorithm for comput-

ing ss
Rl
(Ã, B̃) is based on the above idea, and is given in

Algorithm 1. It is much faster than the exhaustive computa-

tion approach, as demonstrated in Section II-E; however, it

first needs to sort rj , which requires extra memory and is also

time-consuming, especially when the set I is large. A more

efficient algorithm, which avoids the ranking, is proposed

next.

Algorithm 1: Nguyen and Kreinovich’s Fast Algorithm

for Computing ss
Rl

(Ã, B̃)
Find I1 in (6), I2 in (7), and I in (8)
n =

∑

xi∈I1∪I

µ
Ã
(xi) +

∑

xi∈I2

µ
B̃
(xi)

d =
∑

xi∈I1∪I

µ
Ã
(xi) +

∑

xi∈I2

µ
Ã
(xi)

ss0 = n/d
for each xj ∈ I

Compute rj in (13)
end

Sort {rj} in ascending order and call them r1, r2, ..., rL
Match {xj} in I with the order of {rj} and call them x1, x2, ..., xL

for j = 1 to L
n = n+ µ

B̃
(xj)− µ

Ã
(xj)

d = d+ µ
Ã
(xj) − µ

Ã
(xj)

ssj = n/d
end

ss
Rl

(Ã, B̃) = min
j=0,1,...L

ssj

D. New Efficient Algorithm for Computing ss
Rl
(Ã, B̃)

Theorem 1 indicates that in computing ss
Rl
(Ã, B̃),

µAl
(xi) can either be µ

Ã
(xi) or µÃ(xi) for xi ∈ I . Let

I5 be an arbitrary subset of I , and I6 be its complementary

set in I . Define

Ae ≡

{

µÃ(xi), xi ∈ I1 ∪ I6
µ
Ã
(xi), xi ∈ I2 ∪ I5

(18)

Then, it follows from (4), (18) and (11) that

ss
Rl
(Ã, B̃)

=min
I5,I6

[

∑

xi∈I1∪I6
µ
B̃
(xi) +

∑

xi∈I2∪I5
µ
Ã
(xi)

∑

xi∈I1∪I6
µÃ(xi) +

∑

xi∈I2∪I5
µ
Ã
(xi)

]

(19)

1Note that k in (17) is very similar to the switch point used in the Karnik-
Mendel (KM) Algorithms [4], [7] or the Enhanced Karnik-Mendel (EKM)
Algorithms [21], [24] for computing the centroid of IT2 FSs, type-reduction

of IT2 fuzzy logic systems, etc. So, ss
Rl

(Ã, B̃) can also be computed
using a modified KM Algorithm; however, our experiments showed that
this approach is slower than our efficient algorithm. So, its details are not
presented here.

Define

a ≡
∑

xi∈I1

µ
B̃
(xi) +

∑

xi∈I2

µ
Ã
(xi) (20)

b ≡
∑

xi∈I1

µÃ(xi) +
∑

xi∈I2

µ
Ã
(xi) (21)

y(I5, I6) ≡

∑

xi∈I5
µ
Ã
(xi) +

∑

xi∈I6
µ
B̃
(xi) + a

∑

xi∈I5
µ
Ã
(xi) +

∑

xi∈I6
µÃ(xi) + b

(22)

Then, (19) can be re-expressed as

ss
Rl
(Ã, B̃) = min

I5,I6
y(I5, I6). (23)

The following theorem specifies the properties of y(I5, I6)
when ss

Rl
(Ã, B̃) is obtained. The proof is given in the

Appendix.

Theorem 3: If y(I5, I6) cannot be reduced by converting

any single xk in I5 to I6, i.e., ∀xk ∈ I5,
∑

xi∈I5\xk
µ
Ã
(xi) +

∑

xi∈I6∪xk
µ
B̃
(xi) + a

∑

xi∈I5\xk
µ
Ã
(xi) +

∑

xi∈I6∪xk
µÃ(xi) + b

> y(I5, I6)

(24)

where I5 \ xk denotes a set obtained by removing xk from

I5, and y(I5, I6) cannot be reduced either by converting any

single xk in I6 to I5, i.e., ∀xk ∈ I6,
∑

xi∈I5∪xk
µ
Ã
(xi) +

∑

xi∈I6\xk
µ
B̃
(xi) + a

∑

xi∈I5∪xk
µ
Ã
(xi) +

∑

xi∈I6\xk
µÃ(xi) + b

> y(I5, I6)

(25)

Then ss
Rl
(Ã, B̃) = y(I5, I6). �

According to Theorem 3, given an arbitrary initialization

of ss
Rl
(Ã, B̃), one can switch µAl

(xi) from µ
Ã
(xi) to

µÃ(xi) or from µÃ(xi) to µ
Ã
(xi) for ∀xi ∈ I gradually

until any single switch of µAl
(xi) cannot reduce ss

Rl
(Ã, B̃)

further, as described by Algorithm 2. Observe that this algo-

rithm is very similar to the sequential minimal optimization

(SMO) algorithm [12] for training support vector machines

(SVMs) [18].

E. Comparative Studies

Simulations were performed to compare the three algo-

rithms for computing ss
Rl
(Ã, B̃). The platform was a Dell

PWS690 running Windows XP X64 and Matlab R2007a with

Intel Xeon 5150@2.66GHz processor and 2GB RAM.

N was chosen to be {10, 20, 50, 100, 200, 500, 1000}. For

each N , 10,000 Monte Carlo simulations were used to com-

pute ss
Rl
(Ã, B̃), i.e., for each N , 10,000 µ

B̃
(xi) were gener-

ated from random IT2 FSs with trapezoidal upper and lower

membership functions, and 10,000 pairs of {µ
Ã
(xi), µÃ(xi)}

were generated in a similar way.

The total computation time of 10,000 Monte Carlo sim-

ulations for the three algorithms are shown in Table I for

different N . Observe that both Nguyen and Kreinovich’s

fast algorithm and our efficient algorithm outperform the

exhaustive computation approach significantly, and our ef-

ficient algorithm is faster than Nguyen and Kreinovich’s fast

Algorithm 2: New Efficient Algorithm for Computing ss
Rl

(Ã, B̃)
Find I1 in (6), I2 in (7), and I in (8)
n =

∑

xi∈I1

µ
Ã
(xi) +

∑

xi∈I∪I2

µ
B̃
(xi)

d =
∑

xi∈I1

µ
Ã
(xi) +

∑

xi∈I∪I2

µ
Ã
(xi)

ss
Rl

(Ã, B̃) = n/d
ss0 = 1
Denote {xj} in I as x1, x2, ..., xL

signj = −1, j = 1, 2, ..., L

while ss0 > ss
Rl

(Ã, B̃)

ss0 = ss
Rl

(Ã, B̃)
for j = 1 to L

n′ = n+ signj · (µ
B̃
(xj)− µ

Ã
(xj))

d′ = d+ signj · (µ
Ã
(xj)− µ

Ã
(xj))

if n′/d′ < ss
Rl

(Ã, B̃)
signj = −signj
n = n′

d = d′

ss
Rl

(Ã, B̃) = n/d
end

end

end

algorithm, though the performance improvement decreases

as N increases2.

TABLE I

TOTAL COMPUTATION TIME (10,000 MONTE CARLO RUNS) OF THE

THREE ALGORITHMS USED TO COMPUTE ss
Rl

(Ã, B̃).

N
Exhaustive Fast Algorithm Efficient Algorithm tNK−tWM

tNKComputation (s) tNK (s) tWM (s)

10 31.1902 0.5897 0.4221 28.42%
20 — 0.6022 0.4421 26.59%
50 — 0.6944 0.5336 23.17%
100 — 0.8111 0.6350 21.71%
200 — 0.9973 0.8136 18.42%
500 — 1.5823 1.4332 9.42 %

1,000 — 2.5202 2.3276 7.64 %

III. sm
NK

: DEFINITION AND COMPUTATION

Nguyen and Kreinovich [11] extended the Jaccard simi-

larity measure for T1 FSs to IT2 FSs. This section presents

their results and compares several algorithms for computing

sm
NK

.

A. Definition

Let Ã and B̃ be two IT2 FSs, and Ae and Be be

their embedded T1 FSs. Then, the similarity of Ã in B̃,

2For our efficient algorithm, the number of while iterations is O(Na),
where a is a very small positive number, i.e., the number of while iterations
increases slightly as N increases. Meanwhile, the time to finish each while

iteration is O(N), so the total computational cost of the while loop is
O(N1+a). For the fast algorithm, the for loop has computational cost
O(N). So, as N increases, the computational cost saving of the efficient
algorithm, gained by not computing and sorting {rj}, diminishes.

sm
NK

(Ã, B̃), is an interval defined as [11]

sm
NK

(Ã, B̃) =
⋃

∀Ae,Be

sm
K
(Ae, Be)

=
⋃

∀Ae,Be

∑N
i=1 min(µAe

(xi), µBe
(xi))

∑N
i=1 max(µAe

(xi), µBe
(xi))

≡ [sm
NKl

(Ã, B̃), sm
NKr

(Ã, B̃)] (26)

where

sm
NKl

(Ã, B̃) = min
∀Ae,Be

∑N
i=1 min(µAe

(xi), µBe
(xi))

∑N
i=1 max(µAe

(xi), µBe
(xi))

(27)

sm
NKr

(Ã, B̃) = max
∀Ae,Be

∑N
i=1 min(µAe

(xi), µBe
(xi))

∑N
i=1 max(µAe

(xi), µBe
(xi))

(28)

Nguyen and Kreinovich [11] showed that it is not neces-

sary to enumerate all possible Ae and Be in order to compute

sm
NKl

(Ã, B̃) and sm
NKr

(Ã, B̃), as suggested by (27) and

(28). Their main results are summarized in the following:

Theorem 4: [11] Let

I1 ≡ {xi|µB̃
(xi) > µÃ(xi)} (29)

I2 ≡ {xi|µÃ
(xi) > µB̃(xi)} (30)

I ≡ {xi|max(µ
Ã
(xi), µB̃

(xi)) 6 min(µÃ(xi), µB̃(xi))}

(31)

i.e., I is the set of all xi whose [µ
Ã
(xi), µÃ(xi)] and

[µ
B̃
(xi), µB̃(xi)] overlap. Define

µAl
(xi) =

µ
Ã
(xi), xi ∈ I1

µÃ(xi), xi ∈ I2
µ
Ã
(xi) or µÃ(xi), xi ∈ I

(32)

µBl
(xi) =

{

µ
B̃
(xi), µAl

(xi) = µÃ(xi)

µB̃(xi), µAl
(xi) = µ

Ã
(xi)

(33)

µAr
(xi) =

µÃ(xi), xi ∈ I1
µ
Ã
(xi), xi ∈ I2

min(µÃ(xi), µB̃(xi)), xi ∈ I

(34)

µBr
(xi) =

µ
B̃
(xi), xi ∈ I1

µB̃(xi), xi ∈ I2
min(µÃ(xi), µB̃(xi)), xi ∈ I

(35)

Then,

sm
NK

(Ã, B̃) ≡ [sm
NKl

(Ã, B̃), sm
NKr

(Ã, B̃)] (36)

where

sm
NKl

(Ã, B̃)

= min
µAl

(xi) in (32)

µBl
(xi) in (33)

[

∑N
i=1 min (µAl

(xi), µBl
(xi))

∑N
i=1 max (µAl

(xi), µBl
(xi))

]

(37)

sm
NKr

(Ã, B̃) =

∑N
i=1 min (µAr

(xi), µBr
(xi))

∑N
i=1 max (µAr

(xi), µBr
(xi))

. � (38)

B. The Exhaustive Computation Approach

Observe from (38) that sm
NKr

(Ã, B̃) has a closed-form

solution; however, because for each xi ∈ I , µAl
(xi) in (32)

can have two possible values, to compute sm
NKl

(Ã, B̃),
2L evaluations of the bracketed term in (37) have to be

performed, where L is the number of elements in I . This

approach is referred to in this paper as the “exhaustive

computation approach” for computing sm
NKl

(Ã, B̃).
Because 2L can be a very large number depending on

L, the exhaustive computation approach is not efficient. Two

faster algorithms for computing sm
NKl

(Ã, B̃) are introduced

next.

C. Nguyen and Kreinovich’s Fast Algorithm

Without loss of generality, assume µÃ(xi) > µB̃(xi) for

∀xi. If this is not true, then we can swap [µ
Ã
(xj), µÃ(xi)]

and [µ
B̃
(xj), µB̃(xi)], and this does not affect the value of

sm
NKl

(Ã, B̃).
Theorem 5: [11] Define

rj =
µ
B̃
(xj)− µ

Ã
(xj)

µÃ(xj)− µB̃(xj)
, xj ∈ I (39)

I3 = {xj |rj 6 sm
Rl
(xj)} (40)

I4 = {xj |rj > sm
Rl
(xj)} (41)

Then,

ss
Rl
(Ã, B̃) =

∑

xj∈I1∪I4
µ
Ã
(xj) +

∑

xj∈I2∪I3
µ
B̃
(xj)

∑

xj∈I1∪I4
µB̃(xj) +

∑

xj∈I2∪I3
µÃ(xj)

. �

(42)

Theorem 5 is the basis of Nguyen and Kreinovich’s

[11] fast algorithm for computing sm
NKl

(Ã, B̃), as shown

in Algorithm 3. The rationale is similar to that explained

in Section II-C. Algorithm 3 is much faster than the ex-

haustive computation approach, as demonstrated in Sec-

tion III-E; however, it needs to swap [µ
Ã
(xi), µÃ(xi)] and

[µ
B̃
(xi), µB̃(xi)] and to rank rj , which requires extra mem-

ory and is also time-consuming. A more efficient algorithm,

which avoids these steps, is proposed next.

D. New Efficient Algorithm for Computing sm
NKl

(Ã, B̃)

Theorem 4 indicates that in computing sm
NKl

(Ã, B̃),
µAl

(xi) can either be µ
Ã
(xi) or µÃ(xi) for xi ∈ I . Let

I5 be an arbitrary subset of I , and I6 be its complementary

set in I . Define

Ae ≡

{

µ
Ã
(xi), xi ∈ I1 ∪ I5

µÃ(xi), xi ∈ I2 ∪ I6
(43)

Be ≡

{

µB̃(xi), µAe
(xi) = µ

Ã
(xi)

µ
B̃
(xi), µAe

(xi) = µÃ(xi)
(44)

Then, sm
NKl

(Ã, B̃) can be re-written as

sm
NKl

(Ã, B̃)

=min
I5,I6

[

∑

xi∈I1∪I5
µ
Ã
(xi) +

∑

xi∈I2∪I6
µ
B̃
(xi)

∑

xi∈I1∪I5
µB̃(xi) +

∑

xi∈I2∪I6
µÃ(xi)

]

(45)

Algorithm 3*: Nguyen and Kreinovich’s Fast Algorithm

for Computing sm
NKl

(Ã, B̃)
for i = 1 to N

if µ
Ã
(xi) < µ

B̃
(xi)

Swap [µ
Ã
(xi), µÃ

(xi)] and [µ
B̃
(xi), µB̃

(xi)]

end

end

n =
N∑

i=1

µ
B̃
(xi)

d =
N∑

i=1

µ
Ã
(xi)

sm0 = n/d
Find I1 in (29)

Construct I′ as the complement of I1 in {xi}
N
i=1

for each xj ∈ I′

Compute rj in (39)
end

Sort {rj} in descending order and call them r1, r2, ..., rL
Match {xj} in I with the order of {rj} and call them x1, x2, ..., xL

for j = 1 to L
n = n− µ

B̃
(xj) + µ

Ã
(xj)

d = d− µ
Ã
(xj) + µ

B̃
(xj)

smj = n/d
end

sm
NKl

(Ã, B̃) = min
j=0,1,...L

smj

* This algorithm is not exactly the same as that in [11] because the latter
has some typographical errors.

Define

a ≡
∑

xi∈I1

µ
Ã
(xi) +

∑

xi∈I2

µ
B̃
(xi) (46)

b ≡
∑

xi∈I1

µB̃(xi) +
∑

xi∈I2

µÃ(xi) (47)

y(I5, I6) ≡

∑

xi∈I5
µ
Ã
(xi) +

∑

xi∈I6
µ
B̃
(xi) + a

∑

xi∈I5
µB̃(xi) +

∑

xi∈I6
µÃ(xi) + b

(48)

Then, (45) can be re-expressed as

sm
NKl

(Ã, B̃) = min
I5,I6

y(I5, I6) (49)

The following theorem specifies the properties of y(I5, I6)
when sm

NKl
(Ã, B̃) is obtained. Its proof is very similar to

that in the Appendix, and is left to the reader as an exercise.
Theorem 6: If y(I5, I6) cannot be reduced by converting

any single xk in I5 to I6, i.e., ∀xk ∈ I5,
∑

xi∈I5\xk
µ
Ã
(xi) +

∑

xi∈I6∪xk
µ
B̃
(xi) + a

∑

xi∈I5\xk
µB̃(xi) +

∑

xi∈I6∪xk
µÃ(xi) + b

> y(I5, I6) (50)

and y(I5, I6) cannot be reduced either by converting any
single xk in I6 to I5, i.e., ∀xk ∈ I6,
∑

xi∈I5∪xk
µ
Ã
(xi) +

∑

xi∈I6\xk
µ
B̃
(xi) + a

∑

xi∈I5∪xk
µB̃(xi) +

∑

xi∈I6\xk
µÃ(xi) + b

> y(I5, I6) (51)

Then sm
NKl

(Ã, B̃) = y(I5, I6). �
According to Theorem 6, given an arbitrary initialization

of sm
NKl

(Ã, B̃), one can switch µAl
(xi) from µ

Ã
(xi) to

µÃ(xi) or from µÃ(xi) to µ
Ã
(xi) [µBl

(xi) is updated

accordingly] for ∀xi ∈ I gradually until any single switch

of µAl
(xi) cannot reduce sm

NKl
(Ã, B̃) further, as described

by Algorithm 4.

Algorithm 4: New Efficient Algorithm

for Computing sm
NKl

(Ã, B̃)
Find I1 in (29), I2 in (30), and I in (31)
n =

∑

xi∈I1

µ
Ã
(xi) +

∑

xi∈I∪I2

µ
B̃
(xi)

d =
∑

xi∈I1

µ
B̃
(xi) +

∑

xi∈I∪I2

µ
Ã
(xi)

sm
NKl

(Ã, B̃) = n/d
sm0 = 1
Denote {xj} in I as x1, x2, ..., xL

signj = −1, j = 1, 2, ..., L

while sm0 > sm
NKl

(Ã, B̃)

sm0 = ss
NKl

(Ã, B̃)
for j = 1 to L {

n′ = n+ signj · (µ
B̃
(xj)− µ

Ã
(xj))

d′ = d+ signj · (µ
Ã
(xj)− µ

B̃
(xj))

if n′/d′ < sm
NKl

(Ã, B̃)
signj = −signj
n = n′

d = d′

sm
NKl

(Ã, B̃) = n/d
end

end

end

E. Comparative Studies

Simulations were performed to compare the three algo-

rithms for computing sm
NKl

(Ã, B̃). The platform was the

same as that described in Section II-E. This simulation

setup was also similar, except that here 10,000 pairs of

{µ
B̃
(xi), µB̃(xi)} instead of µ

B̃
(xi) were also generated

from random IT2 FSs.

The total computation time of 10,000 Monte Carlo sim-

ulations for the three algorithms are shown in Table II

for different N . Observe that both our efficient algorithm

and Nguyen and Kreinovich’s fast algorithm outperform the

exhaustive computation approach significantly. Our efficient

algorithm is also faster than Nguyen and Kreinovich’s fast

algorithm.

TABLE II

TOTAL COMPUTATION TIME (10,000 MONTE CARLO RUNS) OF THE

THREE ALGORITHMS FOR sm
NKl

(Ã, B̃).

N
Exhaustive Fast Algorithm Efficient Algorithm tNK−tWM

tNKComputation (s) tNK (s) tWM (s)

10 131.7550 0.5042 0.4214 16.43%
20 — 0.5228 0.4279 18.16%
50 — 0.6347 0.5317 16.23%
100 — 0.7515 0.6421 14.56%
200 — 0.9798 0.8592 12.30%
500 — 1.6897 1.5251 9.74%

1,000 — 2.9063 2.6480 8.89%

IV. CONCLUSIONS

Subsethood and similarity measures are important con-

cepts in FS theory. In this paper, Rickard et al.’s definition

of IT2 FS subsethood measure and Nguyen and Kreinovich’s

IT2 FS similarity measure have been introduced. Efficient

algorithms for computing them were also proposed. Simula-

tions demonstrated that our proposed algorithms outperform

existing algorithms in the literature.

∑

xi∈I5\xk
µ
Ã
(xi) +

∑

xi∈I6∪xk
µ
B̃
(xi) + a

∑

xi∈I5\xk
µ
Ã
(xi) +

∑

xi∈I6∪xk
µÃ(xi) + b

=

∑

xi∈I5
µ
Ã
(xi) +

∑

xi∈I6
µ
B̃
(xi) + a+ [µ

B̃
(xk)− µ

Ã
(xk)]

∑

xi∈I5
µ
Ã
(xi) +

∑

xi∈I6
µÃ(xi) + b+ [µÃ(xk)− µ

Ã
(xk)]

=
y(I5, I6)[

∑

i∈I5
µ
Ã
(xi) +

∑

i∈I6
µÃ(xi) + b] + [µ

B̃
(xk)− µ

Ã
(xk)]

∑

i∈I5
µ
Ã
(xi) +

∑

i∈I6
µÃ(xi) + b+ [µÃ(xk)− µ

Ã
(xk)]

(52)

Finally, note that although we have studied Rickard et al.’s

IT2 FS subsethood measure and Nguyen and Kreinovich’s

IT2 FS similarity measure in this paper, this does not mean

that they are always the best subsethood and similarity

measure for IT2 FSs, e.g., in [9], [27] we have shown that

Vlachos and Sergiadis’s IT2 FS subsethood measure [19]

outperforms ss
R

in computing with words, and in [9], [23]

we have shown that a similarity measure constructed based

on the average cardinality [20], [22] may be the best in

computing with words; however, ss
R

and sm
NK

may be

more suitable for applications other than computing with

words, and hence efficient algorithms for computing them

are useful.

APPENDIX

A. Proof of Theorem 3

The left hand side of (24) can be rewritten as (52) on top

of this page,

where the last line follows from (22). Substituting (52)

into (24) and rearranging, it follows that

µ
B̃
(xk)− µ

Ã
(xk) > y(I5, I6)[µÃ(xk)− µ

Ã
(xk)] (53)

Similarly, from (25) it is obtained that

µ
Ã
(xk)− µ

B̃
(xk) > y(I5, I6)[µÃ

(xk)− µÃ(xk)] (54)

To show that ss
Rl
(Ã, B̃) = y(I5, I6), i.e., y(I5, I6) is the

global minimum, it only needs to show that for any I ′5 ⊆ I5
and any I ′6 ⊆ I6,
∑

i∈I5∪I′

6\I
′

5
µ
Ã
(xi) +

∑

i∈I6∪I′

5\I
′

6
µ
B̃
(xi) + a

∑

i∈I5∪I′

6\I
′

5
µ
Ã
(xi) +

∑

i∈I6∪I′

5\I
′

6
µÃ(xi) + b

> y(I5, I6)

(55)

i.e., the switch of any arbitrary number of xi from I5 to I6
and any arbitrary number of xi from I6 to I5 will increase

y(I5, I6). The correctness of (55) is shown in (56) on the

next page.

The next-to-the-last line of (56) has made use of (53) and

(54).

REFERENCES

[1] H. Bustince, “Indicator of inclusion grade for interval-valued fuzzy
sets. Application to approximate reasoning based on interval-valued
fuzzy sets,” International Journal of Approximate Reasoning, vol. 23,
no. 3, pp. 137–209, 2000.

[2] V. V. Cross and T. A. Sudkamp, Similarity and Compatibility in Fuzzy

Set Theory: Assessment and Applications. Heidelberg, NY: Physica-
Verlag, 2002.

[3] P. Jaccard, “Nouvelles recherches sur la distribution florale,” Bulletin

de la Societe de Vaud des Sciences Naturelles, vol. 44, p. 223, 1908.
[4] N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy set,”

Information Sciences, vol. 132, pp. 195–220, 2001.

[5] B. Kosko, “Fuzziness vs. probability,” International Journal of General

Systems, vol. 17, pp. 211–240, 1990.

[6] C.-T. Lin, “Adaptive subsethood for neural fuzzy control,” Interna-

tional Journal of Systems Science, vol. 27, no. 10, pp. 937–955, 1996.

[7] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduc-

tion and New Directions. Upper Saddle River, NJ: Prentice-Hall,
2001.

[8] J. M. Mendel, R. I. John, and F. Liu, “Interval type-2 fuzzy logic
systems made simple,” IEEE Trans. on Fuzzy Systems, vol. 14, no. 6,
pp. 808–821, 2006.

[9] J. M. Mendel and D. Wu, Perceptual Computing: Aiding People in

Making Subjective Judgments. Hoboken, NJ: Wiley-IEEE Press, 2010.

[10] F. Morabito and M. Versaci, “On the use of fuzzy subsethood and su-
persethood for the plasma classification problem in tokamak reactors,”
in Proc. 2nd Int’l Conf. on Neural Networks and Artificial Intelligence,
Minsk, Belarus, October 2001.

[11] H. T. Nguyen and V. Kreinovich, “Computing degrees of subsethood
and similarity for interval-valued fuzzy sets: Fast algorithms,” in Proc.

9th Int’l Conf. on Intelligent Technologies, Samui, Thailand, October
2008, pp. 47–55.

[12] J. C. Platt, “Fast training of support vector machines using sequential
minimal optimization,” in Advances in kernel methods: Support vector

machines, B. Scholkopf, C. Burges, and A. Smola, Eds. Cambridge,
MA: MIT Press, 1999, pp. 185–208.

[13] S. Raha, N. Pal, and K. Ray, “Similarity-based approximate reasoning:
Methodology and application,” IEEE Trans. on Systems, Man, and

Cybernetics–A, vol. 32, no. 4, pp. 541– 547, 2002.

[14] K. Rasmani and Q. Shen, “Subsethood-based fuzzy rule models and
their application to student performance classification,” in Proc. IEEE

Int’l Conf. on Fuzzy Systems, Reno, NV, May 2005, pp. 755–760.

[15] J. T. Rickard, J. Aisbett, G. Gibbon, and D. Morgenthaler, “Fuzzy
subsethood for type-n fuzzy sets,” in Proc. Annual Meeting of the

North American Fuzzy Information Processing Society, New York,
May 2008.

[16] J. T. Rickard, J. Aisbett, and G. Gibbon, “Fuzzy subsethood for fuzzy
sets of type-2 and generalized type-n,” IEEE Trans. on Fuzzy Systems,
vol. 17, no. 1, pp. 50–60, 2009.

[17] K. Saastamoinen and J. Ketola, “Medical data classification using
logical similarity based measures,” in Proc. IEEE Int’l Conf. on

Cybernetics and Intelligent Systems, Bangkok, Thailand, June 2006,
pp. 1–5.

[18] V. Vapnik, The Nature of Statistical Learning Theory. Berlin:
Springer-Verlag, 1995.

[19] I. Vlachos and G. Sergiadis, “Subsethood, entropy, and cardinality for
interval-valued fuzzy sets – an algebraic derivation,” Fuzzy Sets and

Systems, vol. 158, pp. 1384–1396, 2007.

[20] D. Wu and J. M. Mendel, “Cardinality, fuzziness, variance and
skewness of interval type-2 fuzzy sets,” in Proc. 1st IEEE Symposium

on Foundations of Computational Intelligence, Honolulu, HI, April
2007, pp. 375–382.

[21] ——, “Enhanced Karnik-Mendel Algorithms for interval type-2 fuzzy
sets and systems,” in Proc. Annual Meeting of the North American

Fuzzy Information Processing Society, San Diego, CA, June 2007, pp.
184–189.

[22] ——, “Uncertainty measures for interval type-2 fuzzy sets,” Informa-

tion Sciences, vol. 177, no. 23, pp. 5378–5393, 2007.

[23] ——, “A comparative study of ranking methods, similarity measures
and uncertainty measures for interval type-2 fuzzy sets,” Information

Sciences, vol. 179, no. 8, pp. 1169–1192, 2009.

[24] ——, “Enhanced Karnik-Mendel Algorithms,” IEEE Trans. on Fuzzy

Systems, vol. 17, no. 4, pp. 923–934, 2009.

[25] ——, “Perceptual reasoning for perceptual computing: A similarity-
based approach,” IEEE Trans. on Fuzzy Systems, vol. 17, no. 6, pp.
1397–1411, 2009.

∑

i∈I5∪I′6\I
′

5
µ
Ã
(xi) +

∑

i∈I6∪I′5\I
′

6
µ
B̃
(xi) + a

∑

i∈I5∪I′6\I
′

5
µ
Ã
(xi) +

∑

i∈I6∪I′5\I
′

6
µÃ(xi) + b

=

∑

i∈I5
µ
Ã
(xi) +

∑

i∈I6
µ
B̃
(xi) + a+

∑

i∈I′5

[

µ
B̃
(xi)− µ

Ã
(xi)

]

+
∑

i∈I′6

[

µ
Ã
(xi)− µ

B̃
(xi)

]

∑

i∈I5
µ
Ã
(xi) +

∑

i∈I6
µÃ(xi) + b+

∑

i∈I′5

[

µÃ(xi)− µ
Ã
(xi)

]

+
∑

i∈I′6

[

µ
Ã
(xi)− µÃ(xi)

]

=
y(I5, I6)

[

∑

i∈I5
µ
Ã
(xi) +

∑

i∈I6
µÃ(xi) + b

]

+
∑

i∈I′5

[

µ
B̃
(xi)− µ

Ã
(xi)

]

+
∑

i∈I′6

[

µ
Ã
(xi)− µ

B̃
(xi)

]

∑

i∈I5
µ
Ã
(xi) +

∑

i∈I6
µÃ(xi) + b+

∑

i∈I′5

[

µÃ(xi)− µ
Ã
(xi)

]

+
∑

i∈I′6

[

µ
Ã
(xi)− µÃ(xi)

]

>

y(I5, I6)
[

∑

i∈I5
µ
Ã
(xi) +

∑

i∈I6
µÃ(xi) + b

]

+ y(I5, I6)
∑

i∈I′5

[

µÃ(xi)− µ
Ã
(xi)

]

+ y(I5, I6)
∑

i∈I′6

[

µ
Ã
(xi)− µÃ(xi)

]

∑

i∈I5
µ
Ã
(xi) +

∑

i∈I6
µÃ(xi) + b+

∑

i∈I′5

[

µÃ(xi)− µ
Ã
(xi)

]

+
∑

i∈I′6

[

µ
Ã
(xi)− µÃ(xi)

]

=y(I5, I6). (56)

[26] ——, “Similarity-based perceptual reasoning for perceptual comput-
ing,” in Proc. IEEE Int’l Conf. on Fuzzy Systems, Jeju Island, South
Korea, August 2009, pp. 700–705.

[27] ——, “Interval type-2 fuzzy set subsethood measures as a decoder
for perceptual reasoning,” Signal and Image Processing Institute,
University of Southern California, Los Angeles, CA, Tech. Rep. USC-
SIPI Report 398, 2010.

[28] M.-S. Yang and D.-C. Lin, “On similarity and inclusion measures be-
tween type-2 fuzzy sets with an application to clustering,” Computers

and Mathematics with Applications, vol. 57, pp. 896–907, 2009.
[29] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338–

353, 1965.
[30] ——, “Similarity relations and fuzzy orderings,” Information Sciences,

vol. 3, pp. 177–200, 1971.
[31] R. Zwick, E. Carlstein, and D. Budescu, “Measures of similarity

among fuzzy concepts: A comparative analysis,” International Journal

of Approximate Reasoning, vol. 1, pp. 221–242, 1987.

