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Abstract� In the �eld of intelligent transportation, transfer
learning (TL) is often used to recognize EEG-based drowsy
driving for a new subject with few subject-speci�c calibration
data. However, most of existing TL-based models are of�ine,
non-transparent, and in which features are only represented from
one view (usually only one algorithm is used to extract features).
In this paper, we consider an online multi-view regression model
with high interpretability. By taking the 1-order TSK fuzzy
system as the basic regression component and injecting the nature
of the multi-view settings into the existing transfer learning
framework and enforcing the consistencies across different views,
we propose an online multi-view & transfer TSK fuzzy system for
driver drowsiness estimation. In this novel model, features in both
the source domain and the target domain are represented from
multi-view perspectives such that more pattern information can
be utilized during model training. Also, comparing with of�ine
training, the proposed online fuzzy system meets the practical
requirements more competently. An experiment on a driving
dataset demonstrates that the proposed fuzzy system has smaller
drowsiness estimation errors and higher interpretability than
introduced benchmarking models.

Index Terms� Transfer learning, multi-view learning, TSK
fuzzy systems, EEG.

I. INTRODUCTION

TRAFFIC accidents are one of the serious social problems
facing the world at present. They have been recognized

as the first public hazard that threatens the safety of human life
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in the world today. At least 500,000 people die each year due
to traffic accidents [48]. In the statistics of the causes of traffic
accidents in various countries, drowsy driving all occupies
a large proportion [1]. According to the statistics from the
Ministry of Transport of China in 2001 that about 48% of
highway traffic accidents were caused by drowsy driving [48].
In the United States, 4,121 people were killed in road traf-
fic accidents caused by drowsy driving between 2011 and
2015 [45]. In addition, the National Sleep Foundation poll
reported that 4% of drivers admitted that they had an accident
or near-accident because they were dozing off or too tired
to drive [46]. Some researchers estimated by modeling that
15%-33% fatal accidents might involve drowsy drivers [47].

As a result, how to recognize drivers’ drowsiness levels by
computational intelligent technologies and initiate interference
measures so as to avoid accidents has become an active
research topic in automotive safety engineering. As summa-
rized in [2], there are two types of approaches for drowsiness
level recognition. One is computer vision-based, which uses
cameras with different functions to capture the characteris-
tics of PERCLOS (percentage eye closure), the mouth state,
the pupil size and/or nodding activities and then deduce a
driver’s drowsiness level. Although this type of approaches can
work in an effective manner, it is susceptible to light. The other
one is physiological signal monitoring-based, which uses, e.g.,
a brain-computer interference (BCI) system, to capture and
analyze scalp EEG signals to estimate the response time,
i.e., the time interval between the onset of lane deviation
and the driver’s first response, which is an indicator of a
driver’s drowsiness level. In this paper, our approach belongs
to the second category.

Drowsiness recognition has been studied for serval
years [49]–[51]. In [3], Khushaba et al. proposed an approach
for driver drowsiness estimation (classification) by introducing
an FWP-based (fuzzy wavelet packet) feature extraction algo-
rithm. In [4], based on enhanced batch-mode active learning,
Wu et al. proposed an EEG-based model for driver drowsiness
estimation. Other relevant studies can be found in [39]–[42].
However, these are offline studies which do not meet the
practical requirements that drowsiness level of a driver should
be identified online, in real-time. Additionally, due to the dif-
ferences between individuals, it is very challenging to design a
drowsiness estimation model that fits all individuals. Some of
subject-specific calibration data are usually needed to adjust
the model for a new individual (an individual is also termed
as a subject in the following sections). In order to improve
the efficiency of the BCI system, we have to reduce the
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amount of such calibration data. To this end, transfer learning
(TL) [5]–[7] can be adopted for driver drowsiness estimation
since it is able to take full advantage of knowledge/data from
other existing subjects. To our best knowledge, there have
been only three studies on driver drowsiness estimation by
using TL. Wei et al. [8] proposed a selective TL framework,
where TL can be selectively turned on or off based on the
power of session generalizability. Their experimental results
showed that selective TL performs better than classical TL
on driver drowsiness estimation. In [9], a transfer model
termed as DAMF (domain adaptation with model fusion) is
proposed by Wu et al. [9] for driver drowsiness estimation.
In DAMF, very little knowledge is required such that its
real-world applicability is significantly increased. Furthermore,
in [10], Wu et al. also proposed a transfer regression model
for driver drowsiness estimation based on weighting adaptation
regularization. This model not only needs very little calibration
data, but also can select a subset of useful source domains to
reduce the computational cost.

In the above transfer models, subjects are described from
only one perspective (view), e.g., the theta band power in [9]
or the dBs in [4]. Wu et al. in [4] indicated that the theta
band powers are highly relative to the dBs, and both of them
have strong correlations with the drowsiness index. Therefore,
if we can design a collaborative learning mechanism which can
not only learn pattern information from each individual view,
but also leverage the potential supplementary information
across multiple views, then promising drowsiness estimation
performance is anticipated. To this end, multi-view learning
is often employed, and extensive prior studies [11]–[17] have
demonstrated that leveraging the supplementary information
across multiple views can indeed enhance the learning per-
formance. For instance, in [11], the authors trained a within-
view classifier from each individual view and then regularized
the consistencies across different views. Moreover, the authors
demonstrated that with the across-view consistency regulariza-
tion, the Rademacher complexity of the function class can
also be significantly reduced. The across-view consistency
regularization was further studied in [13], in which it was inte-
grated with multi-view semi-supervised learning, and helped
the classifier achieve a substantial classification performance
improvement. In [16], a similar idea was introduced to local
learning, and a novel approach was designed to define the
graph Laplacian. However, most existing multi-view learning
models are designed for single-domain settings.

This paper proposes an online multi-view transfer Takagi-
Sugeno-Kang (TSK) fuzzy system O-MV-T-TSK-FS for
driver drowsiness estimation, which combines online learn-
ing, transfer learning and multi-view learning together.
O-MV-T-TSK-FS is not a model which heuristically combines
multi-view learning and transfer learning; instead, it injects
the nature of the multi-view settings into the transfer learning
framework and enforces the consistencies across different
views, which restricts the capacity of the hypothesis output
implicitly. Furthermore, it also emphasizes the data distribution
difference between the source domain and the target domain,
employing weighted labeled data to transfer knowledge from
the source domain to set up an estimation model for the

target domain. The main contributions of this study can be
summarized as follows.

(1) An online multi-view & transfer learning framework
is proposed. The framework has three merits: it can enforce
the consistencies across different views; it emphasizes the
data distribution difference between the source domain and
the target domain; it can avoid the output being (nearly) a
constant.

(2) The framework is applied to estimate drivers’ drowsiness
by EEG signals, where the theta band power and dBs extracted
from EEG are considered as two views.

The remainder of this paper is organized as follows.
Section II introduces the drivers’ scalp EEG data and the
classic TSK fuzzy system. Section III constructs an online
multi-view & transfer learning framework and proposes our
regression model. Section IV reports the experimental results.
Section V draws conclusions.

II. BACKGROUND

This section first briefly introduces the drivers’ scalp EEG
data including signal collection, preprocessing and feature
extraction, then briefly presents the classic TSK fuzzy system
which is considered as the basic regression component in this
study.

A. Drivers� Scalp EEG Data
The original drivers’ scalp EEG data are provided and

authorized by the Institutional Review Board of the Taipei
Veterans General Hospital. They are collected by the following
procedures.

The Taipei Veterans General Hospital recruited 16 volun-
teers (subjects) with normal or corrected to normal vision
from the community to participate in a sustained-attention
driving experiment. Before the experiment began, all of the
volunteers were informed to read and sign a consent form.
The experimental installation consisted of a real vehicle that
is mounted on a motion platform with 6 degrees of freedom
immersed in a 360-degree virtual-reality (VR) scene. All
experiments were conducted in the afternoon because at this
time the circadian rhythm of sleep reached its peak, and the
experimental results were recorded for about 60-90 minutes.
In order to create drowsiness during driving, our VR devices
simulated monotonous driving at a fixed speed of 100 km/h
on a straight and empty highway. During the experiment,
our virtual device randomly generated lane departure events
every 5-10 seconds, and the drivers were instructed to adjust
their vehicles as soon as possible to correct such simula-
tion perturbations. All volunteers’ driving performance and
cognitive states were monitored via a vehicle trajectory
record system and a surveillance video camera throughout
the whole experiment. For each perturbation, the response
time from each volunteer was recorded and finally con-
verted to the drowsiness index indicating drowsiness driving.
At the same time, volunteers’ scalp EEG signals were also
recorded via a 32-channel 500 Hz Neuroscan NuAmps Express
system provided by Compumedics Ltd., VIC, Australia.
The 32-channel contains 30-channel EEGs and 2-channel
earlobes.
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Fig. 1. EEG data after preprocessing.

B. Signal Preprocessing and Feature Extraction
Generally speaking, the raw EEG data cannot be

directly used for model training since they often contain
high-frequency muscle artifacts, line-noise contaminations,
and DC drift. Therefore, they should be preprocessed before
being used. The open source EEGLAB toolbox [18] is often
employed for raw EEG data preprocessing. In our experiments,
we used a 1-50 Hz bandpass filter to filter out line-noise
contaminations, DC drift, and high-frequency muscle artifacts
contained in the raw EEG data. Then, we down-sampled
them from 500 Hz to 250 Hz and re-referenced to averaged
earlobes. Fig.1 shows the EEG data (first 4 channels from 1 to
1000 seconds) of one subject after preprocessing.

For the EEG data after preprocessing, we still need feature
extraction algorithms to extract different kinds of features
to represent EEG data from different views. Generally,
there can be three types of features: the time-domain fea-
tures [21], [23], the frequency-domain features [19], [20],
and the time-frequency features [19], [21], [22]. Once the
features are obtained, we can then build a regression model
for drowsiness estimation.

C. TSK Fuzzy System
Among the existing regression models, most of them work

in a black-box manner, e.g., the support vector regression
model [24]. In this study, to avoid the proposed model work-
ing in a black-box manner, we select a TSK fuzzy system
as the basic regression component due to its good balance
between high interpretability and promising approximation
ability. Here, we first introduce the classic one-order TSK
fuzzy system (1-TSK-FS), then in the next section, we further
extend it to online multi-view & transfer learning.

In 1-TSK-FS, the kth fuzzy rule in the feature space can be
expressed as

If xi1 is Ak
1 � xi2 is Ak

2 � . . . � xid is Ak
d ,

then f k(xi ) = pk
0 + pk

1xi1 + ... + pk
d xid , k = 1, 2, . . . , K .

(1)

where Ak
j is a fuzzy set subscribed by the input feature xi j for

the kth fuzzy rule, � is a operator for fuzzy conjunction and K
is the number of fuzzy rules. Each fuzzy rule is premised on
the feature space (xi = [xi1, xi2, . . . , xid ]T � Rd ) and maps
the fuzzy sets in the feature space into a varying singleton

represented by f k(xi ). After inference and defuzzification,
the output of 1-TSK-FS can be formulated as

yo(xi ) =
K�

k=1

µk(xi )
K�

k�=1
µk�(xi )

f k(xi) =
K�

k=1

�µ(xi ) f k(xi ), (2)

where

µk(xi ) =
d�

j=1

µAk
j
(xi j ). (3)

When the Gaussian function being adopted as the fuzzy
membership function, µAk

j
(xi j ) is formulated as

µAk
j
(xi j ) = exp(

�(xi j � ck
j )

2

2(�k
j )2

), (4)

where ck
j and �k

j denote the kernel center and kernel width,
respectively.

From the above equations, we see that ck
j and �k

j in the
antecedents and pk = [pk

0, pk
1, . . . , pk

d ]T in the consequents
are two sets of parameters needed to learn in the training
procedure of 1-TSK-FS. In generally, parameters in antecedent
and parameters in consequent are learned independently. Para-
meters in the antecedents are often obtained by clustering.
For example, if fuzzy c-means (FCM) clutering [25], [26] is
employed, ck

j and �k
j can be estimated by

ck
j =

N�

i=1

µik xi j

N�

i=1

µik , (5)

�k
j = h

N�

i=1

uik(xi j � ck
j )

2
N�

i=1

uik , (6)

where µik represents the fuzzy membership degree of xi
belonging to cluster k. The parameter h is a regularized
constant that is often set to 0.5 empirically or determined by
cross-validation. For consequent learning, suppose parameters
in the antecedent are determined, let

xe = (1, (xi)T )T , (7.a)
�xk

i = �µk(xi )xe, (7.b)
xgi = ((�x1

i )
T , (�x2

i )
T , . . . , (�xK

i )T )T , (7.c)
pk = (pk

0, pk
1, . . . , pk

d)T , (7.d)
pg = ((p1)T , (p2)T , . . . , (pK )T )T , (7.e)

then the decision result of 1-TSK-FS can be rewritten as

yo(xi ) = pT
g xgi . (8)

Observing from (8), we see that solving pg is obviously
a linear regression problem [27]–[30]. Therefore, different
criteria can generate different solutions. According to [31],
pg can be solved from the following objective function,

J1�T S K�F S(pg) =
1
2
(pg,c)T pg,c +

�
2

N�

i=1

���(pg)T xgi � yi

���
2
,

(9)
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Algorithm 1 The 1-TSK-FS Algorithm
Input: Training set X = {xi , yi }N

i=1 with N labeled
examples;
Number of fuzzy rules K ;
Parameters �, h.

Output: The 1-TSK-FS model.
Use the FCM (the number of clusters is set to K )
clustering algorithm to obtain the kernel centers and
widthes for the fuzzy memebership fucntions by (5) and
(6);
Use (7.a)�(7.c) to map the input vector xi in the training
set;
Compute pg by (10).
Return pg and hence f (x) = pT

g xg for prediction.

Fig. 2. Two kinds of calibration in BCI.

where 1
2 (pg)T pg is a regularization term that can improve

the generalization ability of 1-TSK-FS for regression.
xgi denotes the input vector mapped from xi through (7.c).
N�

i=1

��(pg)T xg � yi
��2 is the error term, and � > 0 is used

to control the the tolerance of errors and the complexity of
1-TSK-FS. By setting � J1�T S K�F S(pg)/�pg to 0, the optimal
pg can be analytically solved as

pg =

�

Ik(d+1)×k(d+1) +
N�

i=1

xgi(xgi)T

��1

×

�

�
N�

i=1

xgi yi

�

.

(10)

The pseudocode for the complete 1-TSK-FS algorithm is
described in Algorithm 1.

III. O-MV-T-TSK-FS FOR EEG-BASED DRIVER
DROWSINESS ESTIMATION

In [9], two scenarios of calibration in BCIs were defined,
i.e., offline calibration and online calibration. Next, we briefly
review the differences between them.

Fig.2 illustrates the two calibration scenarios. In Fig.2(a),
i.e., offline calibration, a pool of unlabeled EEG epochs has
been obtained. Experts are employed to label part of them
manually. Then, the labeled EEG epochs are used to train
a machine learning model to predict the labels of unlabeled
epochs in the pool. Fig.2(b) illustrates the online calibration,
where a regression model is trained by the labeled EEG epochs
which are obtained on-the-fly.

Obviously, there are two main differences between offline
calibration and online calibration. First, with regards to offline
calibration, we can make use of labeled EEG epochs associ-
ating with unlabeled EEG epochs (semi-supervised learning)
to train a machine learning model. However, as for online
calibration, there are no unlabeled EEG epochs being used.
Second, as for offline calibration, we can retrieval any EEG
epoch in the pool for its label. However, as for online calibra-
tion, the sequence of the EEG epochs is often determined in
advance and the experts have little control on which epochs
to see next.

In this study, we only consider online calibration since
that it meets the practical requirements of driver drowsiness
estimation. Next, we first introduce the problem statement
of this study, then present the online multi-view & trans-
fer learning framework. Lastly, we design the corresponding
objective function, give its optimization strategy, and describe
the detailed algorithm steps.

A. Notations and Problem Statement for Driver Drowsiness
Estimation

Suppose a domain in multi-view & transfer learning can
be defined as D = {�(m), P(x(m))}M

m=1, where �(m) and
P(x(m)) represent a feature space and a marginal probability
distribution of the m-th view, respectively, M is the number
of views, and x(m) � �(m). Two domains Ds and Dt derived
from D are considered as being different if �(m)

t �= �(m)
s ,

and/or Pt (x(m)) �= Ps(x(m)) in each view.
Suppose a task in multi-view & transfer learning can be

defined as T = {�, P(y|x(m))}M
m=1, where � and P(y|x(m))

represent an output feature space and a conditional probability
distribution of the m-th view, respectively, and y � � . Two
tasks Ts and Tt derived from T are considered as being
different if �t �= �s , or Pt (y|x(m)) �= Ps(y|x(m)) in each
view.

With the s-th source domain Ds containing Ns samples
represented by {x(m)

i , yi }Ns
i=1 and a target domain Dt con-

taining C calibration data (labeled samples) represented by
{x(m)

j , y j }C
j=1, where 1 � m � M , multi-view & transfer

learning expects to learn a regression function f (x) : x �	 y
with the low expected error on the target domain Dt , under the
assumption that �(m)

t = �(m)
s , �t = �s , Pt (x(m)) = Ps(x(m))

and Pt (y|x(m)) = Ps(y|x(m)).
When we estimate driver drowsiness, EEG epochs from a

new subject are consdered as being in Dt , while EEG epochs
from the s-th existing subject are considered as being in the
s-th source domain. In Dt and Ds , although the features
in the corresponding views are extracted in the same way,
i.e., �(m)

t = �(m)
s , m = 1, 2, .., M , generally speaking,

the corresponding marginal probability distribution and con-
ditional probability distribution of each view are different,
i.e., Pt (x(m)) �= Ps(x(m)) and Pt (y|x(m)) �= Ps(y|x(m)) since
different subjects have similar but non-identical drowsy neural
responses. Therefore, samples from Ds cannot accurately
represent samples in Dt , and must be integrated with some
labeled samples from Dt to induce the regression function
for Dt .
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Fig. 3. Framework of online multi-view & transfer learning.

B. Framework of Multi-View & Transfer Learning
In order to combine multi-view learning and transfer learn-

ing, hence enforce the consistencies across different views and
use the data from the source domains in the target domain,
we design a new multi-view & transfer learning framework
which takes 1-TSK-FS as the basic component, as shown
in Fig.3.

In order to make use of the data from the s-th source domain
in the target domain, based on the Bayesian principle that

f (x(m)) = P(y|x(m)) =
P(x(m), y)

P(x(m))
=

P(x(m)|y)P(y)
P(x(m))

, (11)

the dissimilarity between the marginal probability distributions
of each view in the two domains d(Pt (x(m)), Ps(x(m))) and the
dissimilarity between the conditional probability distributions
of each view in two domains d(Pt (x(m)|y), Ps(x(m)|y)) should
be minimized to guarantee that Pt (x(m)) is similar to Ps(x(m)),
and Pt (x(m)|y) is similar to Ps(x(m)|y).

Additionally, for multi-view learning, it is expected that
the distribution of y under x(m), i.e., the output of x(m)

in the m-th view is infinitely close to those in other
views. Therefore, in order to enforce the consistencies
across different views, we should minimize v(Ps (y|x(m)), 1

M�1
M�

l=1,l �=m
�Ps(y|x(m))) in the source domain and v(Pt (y|x(m)),

1
M�1

M�

l=1,l �=m
�Pt (y|x(m))) in the target domain, respectively.

Here, 1
M�1

M�

l=1,l �=m
�Ps(y|x(m)) is the mean of the prior dis-

tribution of y under x(m) of all views except the m-th view in

the source domain. Homoplastically, 1
M�1

M�

l=1,l �=m
�Pt (y|x(m))

is the mean of the prior distribution of y under x(m) of all
views except the m-th view in the target domain, and v a sum
of squared errors (SSE) function.

Therefore, the multi-view & transfer learning framework
can be formulated as

f = arg min
f

M�

m=1

�(�s , Ps(y|x(m))) + �t

M�

m=1

�(�t , Pt (y|x(m)))

+ 	1

�

					



M�

m=1

v(Ps(y|x(m)),
1

M � 1

M�

l=1,l �=m

�Ps(y|x(m)))

+ �t

M�

m=1

v(Pt (y|x(m)),
1

M � 1

M�

l=1,l �=m

�Pt (y|x(m)))

�

�����



+ 	2

M�

m=1

�
d(Pt (x(m)), Ps (x(m)))

+ d(Pt (x(m)|y), Ps(x(m)|y))
�

� 	3

M�

m=1

�r2(�, P(y|x(m))), (12)

where 	1, 	2, and 	3 are three positive regularization para-
meters, and �t is a positive overall weighting parameter used
to control the contribution of calibration data in the target
domain.

In (12), the first two terms are used to minimize the
sum of squared errors in the source domain and the target
domain, respectively. Here, � is an SSE function (such as
the hinge loss [32]). The third term is used to enforce the
consistencies across different views in the two domains. The
fourth term is used to minimize the dissimilarity between
the marginal probability distributions of each view and the
dissimilarity between the conditional probability distributions
of each view in the two domains. The last term in (12) is used
to maximize the approximate sample Pearson’s correlation
coefficient between outputs and input vectors in each view,
which can avoid the prediction being (nearly) a constant.

Next, each term in (12) will be explained and computed in
detail.

1) Sum of Squared Error Minimization: With regards to the
problem stated in Section III.A, the first two terms in (12) can
be re-written as

M�

m=1

Ns�

i=1

���yi � f (x(m)
i )

���
2
+ �t

M�

m=1

C�

j=1

���y j � f (x(m)
j )
���

2
(13)

In (13), f (•) is the regression function which can be
expressed as f (x(m)

i ) = (p(m)
g )T x(m)

gi in the basic regression
component 1-TSK-FS, where x(m)

gi is the input vector mapped
from x(m)

i in the m-th view through (7.c). p(m)
g is the regression

parameter, i.e., the consequent parameter which needs to be
found.

For easy minimization, let

X(m) = [x(m)
g1 , . . . , x(m)

gNs
, . . . , x(m)

g(Ns+C)]
T (14)

and

y = [y1, . . . , yNs , . . . , yNs +C ]T , (15)

where the first Ns elements in X(m) and y denote the column
inputs and the corresponding outputs of the m-th view in
the source domain, the next C elements denote the column
inputs and the corresponding outputs of the m-th view in the
target domain. Additionally, we define a Ns + Nc diagonal
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matrix � as

�(i, i) =

�
1 1 � i � Ns

�t Ns + 1 � i � Ns + C.
(16)

As a result, (13) can be simplified into

M�

m=1

�


(
Ns�

i=1

���yi � (p(m)
g )T x(m)

gi

���
2
)

+ �t (
Nc�

j=1

���y j � (p(m)
g )T x(m)

g j

���
2
)

�




= =
M�

m=1

�Ns +C�

i=1

�(i, i)
���yi � (p(m)

g )T x(m)
gi

���
2
�

=
M�

m=1

�
(yT � (p(m)

g )T (X(m))T )�(y � (X(m))p(m)
g )
�

(17)

We find that �t plays an important role to the regression
accuracy. In our model, the setting of �t obeys the following
guideline,

�t = max(2, � • C/Ns ). (18)

where � is a positive adjustable parameter. This guideline is
deduced from the following three heuristics.

1) When the size of the target domain (C) is small, all
samples in the target domain should be assigned a large weight
so as to avoid being overwhelmed by samples in the source
domain.

2) As the size of the target domain increases, the weight
assigned to samples in the target domain should decrease
gradually so as to avoid samples in the source domain being
not overwhelmed by samples in the target domain.

3) Samples in the target domain should always be assigned
larger weights than samples in the source domain due to that
our proposed regression model will be eventually used for the
target domain prediction.

2) Multi-View Collaborative Learning: For an unseen sam-
ple in a domain, it is expected that its prediction result in
each view should be consistent as far as possible. To this end,
the third term in (12) can be further expanded as,

M�

m=1

Ns�

i=1

������
f (x(m)

i ) �
1

M � 1

M�

l=1,l �=m

�f (x(l)
i )

������

2

+ �t

M�

m=1

C�

j=1

������
f (x(m)

j ) �
1

M � 1

M�

l=1,l �=m

�f (x(l)
j )

������

2

, (19)

which measures the sum of output squared errors between
the current view and the remnant views both in the source
domain and the target domain, respectively. Here, please note
that �f (x(l)

i ) can be computed by �pT
g x(l)

gi based on (8), where �pT
g

is considered as the prior knowledge which can be obtained
before the beginning of multi-view learning in l-th view. With
the diagonal matrix � defined in (16), (19) can be simplified

into

M�

m=1

�

					



((p(m)
g )T (X(m))T �

1
M � 1

M�

l=1,l �=m

( �p(l)
g )T (X(l))T )

× �(X(m)p(m)
g �

1
M � 1

M�

l=1,l �=m

X(l) �p(l)
g )

�

�����



.

(20)

By minimizing (20), multi-view collaborative learning can
be achieved such that the consistent prediction results of all
views are able to be expected.

3) Probability Distribution Adaptation-Based Transfer
Learning: With the maximum mean discrepancy (MMD)
used in [33], [34], d(Pt (x(m)), Ps(x(m)) in the fourth term
in (12) can be calculated by

d(Pt (x(m)), Ps(x(m))

= [
1

Ns

Ns�

i=1

f (x(m)
i ) �

1
C

Nc�

j=1

f (x(m)
j )]2.

= (p(m)
g )T X(m)�X(m)(p(m)

g ), (21)

where � is the MMD matrix defined as

� =

�
��

��

1/N2
s , 1 � i � Ns , 1 � j � Ns

1/C2, Ns + 1 � i, j � Ns + C
�1/NsC otherwise.

(22)

In [10], Wu et al., transform the conditional probability
distribution adaptation for classification tasks into regression
tasks based on fuzzy set theory [43]. As a result, based on [9],
the dissimilarity d(Pt (x(m)|y), Ps(x(m)|y)) can be solved by

d(Pt (x(m)|y), Ps(x(m)|y))

=
3�

c=1

[
�

x(m)
i �Ds

flµ(m)
ic.s f (x(m)

i ) �
�

x(m)
j �Dt

flµ(m)
ic.t f (x(m)

j )]2

=
3�

c=1

(p(m)
g )T X(m)M(m)

c X(m)(p(m)
g )

= (p(m)
g )T X(m)�(m)X(m)(p(m)

g ), (23)

where �(m) =
3�

c=1
�(m)

c in which �(m)
c is the MMD matrix

defined as

�(m)
c (i, j) =

�
�������

�������

flµ(m)
ic.s flµ(m)

j c.s x(m)
i , x(m)

j � Ds,c

flµ(m)
ic.t flµ(m)

j c.t x(m)
i , x(m)

j � Dt,c

� flµ(m)
ic.s flµ(m)

j c.t x(m)
i � Ds,c, x(m)

j � Dt,c

� flµ(m)
ic.t flµ(m)

j c.s x(m)
i � Dt,c, x(m)

j � Ds,c

0 otherwise

(24)

In (24), Ds,c and Dt,c are derived from Ds and Dt based on the
fuzzy theory, where c = 1, 2, 3. Here, c represents one of three
classes corresponding to three triangular fuzzy sets, Smalls ,

Mediums , and Larges we defined. flµ(m)
ic.s = µ(m)

ic.s/
Ns�

i=1
µ(m)

ic.s

where µ(m)
ic.s represents the fuzzy membership degree of the

output of x(m)
i from the s-th source domain in Class c.
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4) Maximize the Pearson Correlation Coef�cient: Based
on [44], the classic Pearson correlation coefficient (PCC)
r(�, P(y|x(m))) of each view is defined as the following form,

r(�, P(y|x(m)))

=
yX(m)p(m)

g


y
 •
���X(m)p(m)

g

���

=
yX(m)p(m)

g
�

yT y •
�

(p(m)
g )T (X(m))T X(m)p(m)

g

, (25)

and hence,

r2(�, P(y|x(m))) =
(p(m)

g )T (X(m))T yyT X(m)p(m)
g

(yT y) • (p(m)
g )T (X(m))T X(m)p(m)

g
. (26)

In (26), since the classic r2(�, P(y|x(m))) has p(m)
g in

the denominator, it is almost impossible for us to find a
closed-form solution to maximize it. Fortunately, we observe
that r2(�, P(y|x(m))) increases as the numerator increase, and
decreases as (p(m)

g )T (X(m))T X(m)p(m)
g increases. Therefore,

it is expected to maximize �r2(�, P(y|x(m))) instead of maxi-
mizing r2(�, P(y|x(m))) to obtain a closed-form solution,

�r2(�, P(y|x(m)))

=
(p(m)

g )T (X(m))T yyT X(m)p(m)
g � (p(m)

g )T (X(m))T X(m)p(m)
g

yT y

=
(p(m)

g )T (X(m))T (yyT � I)X(m)p(m)
g

yT y
, (27)

where I is a (Ns + C) by (Ns + C) identity matrix. We see
that �r2(�, P(y|x(m))) in (27) follows the same property
r2(�, P(y|x(m))) has.

C. Solution to O-MV-T-TSK-FS
By substituting (17), (20), (21), (23) and (27) into (12),

we can obtain the objective function of O-MV-T-TSK-FS,

J (p(m)
g )

= arg min
p(m)

g

×

�
������������������������

������������������������

M�

m=1

�
(yT � (p(m)

g )T (X(m))T )�(y � (X(m))p(m)
g )
�

+ 	1

M�

m=1

�

							



((p(m)
g )T (X(m))T

�
1

M � 1

M�

l=1,l �=m

( �p(l)
g )T (X(l))T )

×�(X(m)p(m)
g �

1
M � 1

M�

l=1,l �=m

X(l) �p(l)
g )

�

�������



.

+ 	2

M�

m=1

�
(p(m)

g )T X(m)�X(m)(p(m)
g )

+(p(m)
g )T X(m)�(m)X(m)(p(m)

g )

�

� 	3

M�

m=1

(p(m)
g )T (X(m))T (yyT � I)X(m)p(m)

g

yT y

�
������������������������

������������������������

(28)

By setting � J (p(m)
g )/�p(m)

g = 0, the solution in terms of
p(m)

g to O-MV-T-TSK-FS appears, i.e.,

p(m)
g

=
�
(X(m))T

�
2� + 	2� + 	2�(m) + 	3

I � yyT

yT y

�
X(m)

��1

×

 

!X(m)�y + X(m)�
1

M � 1

M�

l=1,l �=m

X(l) �p(l)
g

"

# (29)

We use p(m)
g to estimate all training samples in m-th view

and record the corresponding RMSE as 
(m). Then a global
regression function is constructed as a weighted average of the
functions for all views, i.e.,

f (x) =
M�

m=1

(1/
(m))(p(m)
g )T x(m)

g /
M�

m=1

(1/
(m)). (30)

D. Algorithm of O-MV-T-TSK-FS
Firstly, O-MV-T-TSK-FS is separately trained on each

source domain so as to generate S models. Secondly, each
model is taken as a basic component to construct the final
regression model by weighting strategy. The weight assigned
to each basic component is set to the reciprocal of the training
regression accuracy of the corresponding basic component.
The obtained final regression model is used to predict the
unlabeled EEG epochs. The pseudocode of O-MV-T-TSK-FS
is given in Algorithm 2.

IV. EXPERIMENTAL RESULTS

In this section, extensive experimental results about drowsi-
ness estimation are reported to demonstrate the performance
and interpretability of the proposed online multi-view &
transfer fuzzy system O-MV-T-TSK-FS.

A. Setup
The experiment setup basically followed our previous work

in [10]. The data collected from the 16 individuals had
different sizes since the lane-departure events were presented
very 5-10s randomly. In the following experiments, we used
data from 15 subjects and discarded one subject whose data
were recorded incorrectly. Although all data were collected
offline and the corresponding drowsiness indices (labels) of all
EEG epochs were known, we used the following steps (shown
in Fig.4) to simulate an incremental online calibration scenario
to evaluate the proposed fuzzy system. For simplicity, we do
not illustrate the multi-view learning in Fig.4.

1) We labeled all EEG epochs from 14 subjects and took
each subject as a source domain.

2) We iteratively and sequentially generated C labeled
samples from the 15-th subject as the labeled subject-specific
samples and gradually added them to the target domain on-the-
fly. To be more specific, for fair studies, a random integer m0
belonging to [1, C] was first generated to denote the starting
position. Then, we gradually added labeled epochs m0, m0 +
1, . . . , m0+C�1 which were taken as subject-specific samples
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Fig. 4. Online calibration scenario.

Algorithm 2 The O-MV-T-TSK-FS Algorithm
Input: S source domains, and the s-th (s = 1, 2, . . . , S)

source domain contains Ns samples {xi , yi }Ns
i=1,

and each sample xi can be represented from M
views, i.e., {x(m)

i }M
m=1;

C target domain samples and each sample can
also be represented from M views.
Parameters 	1, 	2, 	3 in (12) and in � (17).

Output: The regression function in O-MV-T-TSK-FS.
For s = 1 to S

Use Algorithm 1 to compute the prior knowledge
�p(m)

g of each view.
For m = 1 to M

Construct X(m) in (14), y in (15), � in (16), � in
(22), �(m) in (24);
Compute p(m)

g by (29);
End For
Use (30) to estimate the outputs denoted as fs(x) for
the Ns + C samples from S source domains and the
target domain, and record RMSE as �s ;
Assign �s = 1/�s as the weight to the s-th regression
model;

End

Return f (x) =

S�

s=1
�s fs(x)

S�

s=1
�s

for prediction.

to the training set for O-MV-T-TSK-FS training in the first
iteration, and hence we obtained different trained regression
models. Finally, O-MV-T-TSK-FS testing on the remaining
Ns=15�C epochs was carried out. During the second iteration,
subject-specific samples m0 +C, m0 +C +1, . . . , m0 +2C �1
were added to the training set to train different regression
models, then their performance was verified on the remaining
Ns=15 � 2C epochs. The iterations did not stop until the
iteration number reached its maximum. In order to make
the performance being statistically meaningful, we repeated
the process 10 times, each time with a random starting
position m0.

To make sure each subject had a chance to become the
“15-th” subject, the whole process shown in Fig.4 was repeated
15 times.

Fig. 5. Drowsiness index for each subject.

B. Performance Evaluation
In our experiments, we adopted the RMSE between the true

drowsiness indices and the corresponding estimated values to
evaluate all regression models, including the baselines.

The drowsiness index y for performance evaluation in our
experiments can be defined as a function with regards to the
response time to an event:

y = max

�

0,
1 � e�(
�
0)

1 + e�(
�
0)

$

, (31)

where according to [8], 
0 was set to 1. We employ a
90-s square moving-average window to smooth the drowsiness
indices and hence reduce the variations. The smoothing did not
reduce the sensitivity of the drowsiness index since the cycle
lengths of drowsiness fluctuations are longer than 4 min [35].
Fig.5 illustrates the smoothed drowsiness fluctuations for
the 15 subjects. From Fig.5, we observe that there are some
drowsiness indices in each subject at or close to 1, which
indicates drowsy driving.

C. Multi-View Scenario
In [4] and [9], Wu et al. respectively extracted the theta band

powers and principal component features from EEG signals for
driver drowsiness estimation since both kinds of features have
strong correlations with the drowsiness index. Here, in our
experiments, we united the two kinds of features to train
O-MV-T-TSK-FS synergistically.

To be specific, we first epoched 30-s EEG signals right
before each sample point, and employed Welch’s method [36]
to calculate the average power spectral density (PSD) in the
theta band (4-7.5 Hz) for each channel. We considered the
30 theta band powers as one view in our experiments. Then,
the 30 theta band powers were converted to dBs, which were
considered as the second view. During the conversion, some
channels whose maximum dBs were larger than 20 were
removed in order to filter bad channel readings and noise.
The dBs of each channel were then normalized to mean zero
and standard deviation one.
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TABLE I
PARAMETER SETTINGS OF ALL BECHMARKING MODELS

D. Baseline Models

Four baseline regression models were introduced for com-
parative studies to highlight the characteristics of the proposed
fuzzy system O-MV-T-TSK-FS.

1) Baseline 1 (BL1), which was a 1-order TSK fuzzy
system trained on 14 existing subjects, and then tested on the
new subject. That’s, BL1 was taken as a subject-independent
regression model which ignored subject-specific samples from
the new subject completely.

2) Baseline 2 (BL2), which was also a 1-order TSK fuzzy
system but trained only on subject-specific samples from the
new subject and then tested on the remaining samples from
the new subject. That’s, BL2 did not depend on any existing
subjects.

3) DAMF [9], which trained 14 1-order TSK fuzzy systems
as basic component (ridge regression models in the original
reference [9]) by making use of data from each existing subject
associating with data from the new subject, respectively, and
then the final DAMF is constructed as a weighted average
of all basic components. The weights assigned to the basic
components are set as the same as the proposed model.

4) MV-TSK-FS [37], which combined data from all
14 existing subjects, trained a multi-view TSK fuzzy system,
and applied it to the new subject.

All parameters in the baseline models were determined by
5-fold cross-validation. Searching ranges of all parameters are
given in Table I.

E. Performance Discussion

Since BL1, BL2 and DAMF are three single-view regression
models, we trained them on each view, respectively, and then
report the average performance on two views. Fig.6 shows
the average performance in terms of RMSE of all regression
models across 15 subjects, and Fig.7 the RMSE of each sub-
ject. Overall, O-MV-T-TSK-FS achieved the best performance
among all models. In more details,

1) Among all baseline models, BL2 performed the worst,
because it cannot learn enough pattern information by using
a small size of subject-specific samples. Moreover, we should
note that, when there are no subject-specific samples at all,
BL2 can no longer be trained, whereas other models can be
trained by using data from other subjects.

Fig. 6. Average performance in terms of RMSE of all regression models
across 15 subjects.

Fig. 7. RMSE of each subject.

2) Since MV-TSK-FS and BL1 built their models without
subject-specific samples, their performances were not depen-
dent on C . As for DAMF and O-MV-TSK-FS, it is intuitive
that when C increased, the RMSE decreased.

3) MV-TSK-FS outperformed BL1, and O-MV-TSK-FS
always had smaller RMSE than DAMF. This indicates that
there existed correlations between the theta band powers
and the principal component features, and hence multi-view
learning across the two views is desirable, which can capture
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