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Abstract—Drowsy driving is one of the major contributors
to traffic accidents. Continuously detecting the driver’s drowsi-
ness and taking actions accordingly may be one solution to
improving driving safety. Electroencephalogram (EEG) signals
contain information of the brain state, and hence can be utilized
to estimate the driver’s drowsiness level. A challenge in EEG-
based drowsiness estimation is that when directly applied to a
new subject without any calibration, the system’s performance
usually degrades significantly. Many efforts have been devoted
to reducing the calibration data requirement, but there are
still very few approaches that can completely eliminate the
calibration process. This paper proposes a self-paced learning
approach, which also takes the label diversity into consideration.
The model learns from the easiest samples when the training
first starts, and then more difficult ones are gradually added
to the training process. This training strategy improves the
generalization performance of the model on a new subject.
Experiments on a simulated driving dataset with 15 subjects
demonstrated that the proposed approach can better reduce the
estimation error than several other approaches.

Keywords—Drowsy driving; self-paced learning; EEG; brain-
computer interface

I. INTRODUCTION

Drowsy driving is one of the major contributors to road

crashes. The Traffic Injury Research Foundation conducted a

public opinion poll in 2007 [1] on 750 drivers. The results

suggested that a majority of drivers (58.6%) had drowsy

driving experience. 14.5% of drivers admitted that they had

fallen asleep or “nodded off” while driving during the past

year. Nearly 2% of the surveyed drivers had experienced a

crash caused by drowsy driving in the past year. There are

other surveys or polls [2], [3] reporting similar findings that a

great proportion of drivers had the experience of driving while

being fatigued or drowsy.

Monitoring the driver’s drowsiness state and taking pre-

ventive actions accordingly may be one feasible solution to

improving the driving safety. Commonly used approaches

can be roughly divided into two categories: contactless de-

tections and wearable sensor based detections. Contactless

approaches [4], [5] are often computer vision based, and detect

the drowsiness from the driver’s eye, face and/or nodding ac-

tivities. Wearable sensor based approaches collect and decode

the driver’s physiological signals, e.g., electroencephalogram

(EEG) [6], electrocardiography (ECG) [7], electromyography

(EMG) [8], etc., to estimate the drowsiness. We focus on the

latter, especially, EEG-based drowsiness estimation, in this

paper. Two commonly used features for EEG-based drowsiness

estimation are the alpha (8-12Hz) and theta (4-7Hz) band

powers [9]–[12]. Generally, as the drowsiness level increases,

the alpha band power decreases, whereas the theta band power

increases.

EEG signals contain information of the brain state, but are

usually noisy and non-stationary [13]. Moreover, EEG signals

also demonstrate strong individual differences, which may

cause a model well-trained on data from existing subjects to

perform poorly on a new subject. Subject-specific calibration

is usually required when applying a brain-computer interface

(BCI) to an unseen new subject. However, the calibration

process is time-consuming and not user-friendly. Many efforts

have been made to reduce or eliminate this calibration process

for new subjects. Transfer learning [14], [15], which utilizes

data from auxiliary subjects or sessions to facilitate the learn-

ing for a new subject, has been widely used in BCIs. Wei

et al. [16] proposed to selectively exploit only the auxiliary

data with relatively high transferability and achieved better

performance than using all the data. Zanini et al. [17] proposed

a covariance matrices alignment approach that centers the

data of every session/subject with respect to the reference

covariance matrix at the resting state in the Riemannian

space. This approach can be used as a data preprocessing

step. Wu et al. [11] proposed an online weighted adaptation

regularization approach for regression problems, which can

train the regression model with only a few amounts of calibra-

tion data. Although these approaches can significantly reduce

the calibration effort, they cannot eliminate the calibration

completely.

A plug-and-play BCI has no access to the subject-specific

calibration data at all. We consider such a scenario in this

paper. To train a subject-independent model, we should pay

special attention to its generalization performance. Instead of

transferring information from the auxiliary subjects, this paper

adopts another strategy called curriculum learning [18], or self-

paced learning (SPL) [19], which helps avoid local minima and

hence improves the generalization performance.

Curriculum learning was proposed by Bengio et al. [18]
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Selected samples Unselected samples Regression model Label clusters

Fig. 1. Illustration of the learning process in SPLLD. Assume each sample has only one feature and one label, and we aim to build a regression model. In each
subfigure, the red (blue) points are the samples involved (not involved) in current training epoch, and the black solid curve is the regression model updated
on the red points. The dashed green rectangles represent different clusters according to the label. In the first subfigure, the model is randomly initialized. The
other subfigures demonstrate the change of the model in training. An increasing number of samples from different label clusters are involved in training until
the entire training set is used. The final model is shown in the last subfigure.

in 2009. It was inspired by the human learning process: we

start from very basic concepts, and then advance to more

difficult ones gradually. A child will get frustrated and unable

to learn well if the difficulty level of a task is too high at the

early stage of learning. Similarly, a machine learning model

may be confused if the training samples are very difficult at

the beginning. The key in curriculum learning is to design a

curriculum, i.e., the order of samples to be fed into the model,

according to their difficulty. The curriculums in different tasks

are generally different.

Kumar et al. [19] proposed SPL, which automatically

constructs the curriculum by explicitly defining the difficulty

levels of the samples. The model can selectively learn from

a subset of the training data according to its current perfor-

mance. The loss function of SPL includes a regularization term

on the weights of the samples, which can be applied to various

tasks with different loss functions.

SPL has demonstrated promising performance in multiple

applications [20]–[22]. However, SPL only considers the dif-

ficulty levels of the samples, but ignores their diversity. Thus,

the easy samples selected by SPL may be redundant, which

is not good for model training. To fix this deficiency, Jiang et

al. [23] proposed self-paced learning with diversity (SPLD),

which takes both the difficulty level and the diversity of

the samples into consideration. SPLD has been empirically

demonstrated to improve the generalization performance of

the model.

This paper extends SPLD from classification to regression.

We propose self-paced learning with label diversity (SPLLD),

which considers the label diversity instead of the feature

diversity, as illustrated in Fig. 1. We applied SPLLD to EEG-

based driver drowsiness estimation and validated its improved

performance.

The remainder of this paper is organized as follows: Sec-

tion II introduces the proposed SPLLD algorithm. Section III

compares SPLLD with a few other approaches in EEG-based

driver drowsiness estimation. Section IV draws conclusions.

II. SELF-PACED LEARNING WITH LABEL DIVERSITY

(SPLLD)

This section introduces SPL, SPLD, and our proposed

SPLLD.

A. Self-Paced Learning (SPL)

Let the training set be D = {(x1, y1), ..., (xn, yn)}, where

xi ∈ R
d×1 denotes the feature vector of the ith sample, and yi

the corresponding label. Let f(x; θ) be a decision model on x,

parameterized by θ, and L(yi, f(xi; θ)) be the loss function

in evaluating the performance of f(x; θ). The loss can assume

different forms, and the mean squared error loss is used in this

paper.

The loss function of SPL is a weighted sum of

L(yi, f(xi; θ)) and a regularization term on the sample

weights v ∈ {0, 1}n:

min
θ,v

E(θ,v) =
1

n

n
∑

i=1

viL(yi, f(xi; θ))− λ‖v‖1, (1)

where λ is a parameter indicating the learning pace, which

can be viewed as the age of the model. The sample weight,

vi, is either 1 or 0, meaning the sample is either selected or

not selected in the current iteration. Note that the l1-norm

regularizer can also take other forms [20], [24].

Parameters θ and v are optimized alternatively. When v is

fixed, gradient descent can be used to optimize θ. When θ is

fixed, the optimal v can be calculated by:

vi =

{

1, L(yi, f(xi; θ)) < λ

0, otherwise
, (2)

i.e., only samples with loss smaller than the threshold λ are

involved in the next round update of θ.

At the end of each training iteration, λ is multiplied by

a constant step size µ (µ>1) to ensure that more difficult

examples will be added to the training set in the next iteration.

When λ is large enough, all samples are used in training, and

the regularization term in (1) can be ignored. This ensures that

the performance of SPL would not be worse than a traditional

370

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on July 06,2020 at 15:20:02 UTC from IEEE Xplore.  Restrictions apply. 



training approach, i.e., using all training samples from the

beginning.

It is very important to note that when optimizing θ in a

new iteration, it is initialized as the optimal θ in the previous

iteration. If θ in a new iteration is initialized randomly, then

there is no benefit to train the model iterative, and it is

equivalent to training the model using all samples directly.

Theoretically, both SPL and traditional learning have the same

global optimum, but it is not easy to reach in practice. SPL,

which starts with easier samples, may be less easily to be

trapped in a local minimum.

Finally, if the loss function is convex and has a closed-form

solution, then there is no benefit to use SPL, because the global

optimum can always be reached.

B. Self-Paced Learning with Diversity (SPLD)

SPL has demonstrated promising performance. However, it

does not take the diversity of the samples into account, and

hence the selected samples may be very similar, and hence be

redundant. Jiang et al. [23] proposed SPLD to improve SPL.

It first divides the training set into several groups. Samples in

the same group are more similar than those from a different

group.

Let the training samples, x ∈ R
d×n, be divided into b

groups and denoted as x
(1), ...,x(b), where x

(j) ∈ R
d×nj

represents the jth group with nj samples and
∑b

j=1 nj = n.

To be consistent, the weight vector is denoted as v =
[v(1), ...,v(b)]. The diversity of the samples is reflected in the

scatter of non-zero elements in different v(j). The loss function

of SPLD is:

min
θ,v

E(θ,v) =
1

n

n
∑

i=1

viL(yi, f(xi; θ))− λ‖v‖1 − γ‖v‖2,1

(3)

where λ and γ are the parameters that weight the importance

of the difficulty level and the diversity respectively. The l2,1-

norm is introduced to obtain group-sparse v.

The optimization of SPLD is the same as SPL. θ and v

are updated alternatively. When v is fixed, θ, initialized from

the previous iteration, can be optimized by gradient descent.

When θ is fixed, the optimal v(j) in v is computed by:

v
(j)
i =

{

1, L(y
(j)
i , f(x

(j)
i ; θ)) < λ+ γ√

i+
√
i−1

0, otherwise
, (4)

where i is the sample’s rank after all the samples in the jth

group are sorted in the ascending order according to their loss

L. As in SPL, v in SPLD is still determined by a threshold.

The difference is that the threshold has an additional term
γ√

i+
√
i−1

, which penalizes samples selected from the same

group.

At the end of each training iteration, both λ and γ are

multiplied by a constant step size so that eventually all samples

are used in training. Note that (3) degrades to (1) when only

one group is used, or the group number equals the number of

training samples.

Algorithm 1: SPLLD for regression problems.

Input: Training set D;

Step size µ;

Number of groups b;

Output: Regression model parameter θ.

Cluster the training samples into b groups

{x(1), ...,x(b)}, according to their labels;

Randomly initialize the regression model parameters θ;

Compute L(y
(j)
i , f(x

(j)
i ; θ)) for each xi in each group;

Set λ and γ to half the median of all samples’ loss

values;

while training do

for j = 1 : b do

Sort the samples in x
(j) as (x

(j)
1 , ...,x

(j)
nj ), in

ascending order of their loss value L;

for i = 1 : nj do

Compute the weight v
(j)
i of the sample x

(j)
i

using (4);

end

end

Update θ = argmin
θ

E(θ,v) in (3) using gradient

descent, where θ is initialized as the optimal θ from

the previous iteration;

λ = µ · λ;

γ = µ · γ;

end

C. Self-Paced Learning with Label Diversity (SPLLD)

The groups in SPLD are obtained by clustering the samples

in the feature space so that the feature diversity is taken

into consideration. We hypothesize that the label diversity is

important as well. Thus, in SPLLD we cluster the samples

according to their labels. The remaining procedure is the same

as SPLD.

The pseudocode of SPLLD is shown in Algorithm 1. For

simplicity, we set λ and γ to be equal, i.e., the importance

of the difficulty level and the diversity are the same. More

specifically, we set λ and γ to be half the median of all

samples’ initial losses to ensure that around half of the samples

are included in the first training iteration.

III. EXPERIMENTS AND DISCUSSION

This section compares the performance of SPLLD with a

few other approaches.

A. Dataset and Feature Extraction

The dataset used in this study was identical to that used

in [10], [11]. Sixteen healthy subjects with normal or corrected

to normal vision participated in a sustained-attention driving

experiment [25], [26], using a real vehicle mounted on a

motion platform with 6 degrees of freedom immersed in a 360-

degree virtual-reality scene. The experiment simulated driving

on an empty highway at 100km/h, with lane-departure events
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Fig. 2. Histogram of the drowsiness index from all 15 subjects.

randomly activated every 5-10 seconds. The subjects needed

to steer the car back to the center of the lane as quickly as

possible.

The time between the lane-departure event onset and the

driver reaction onset was recorded and later converted to a

drowsiness index (DI) [16],

DI = max

(

0,
1− e−(τ−τ0)

1 + e−(τ−τ0)

)

, (5)

where τ0 was set to 1 in our work, as in [10], [11]. The

DIs were then smoothed by a 90s moving-average window

to reduce variations.

Each experiment lasted for about 60-90 minutes and was

conducted in the afternoon when people tend to feel sleepy.

Participants’ scalp EEG signals were recorded during the

experiment using a 32-channel Neuroscan system (30-channel

EEGs plus 2-channel earlobes). Data from one subject was

not recorded correctly, so we only used data from the other

15 subjects. To ensure the fairness of comparison, we used the

first 3,600 seconds data from each subject. The histogram of

all drowsiness index values from the 15 subjects is shown in

Fig. 2.

We used EEGLAB [27] for signal preprocessing. A band-

pass filter (1-50 Hz) was first applied to reduce the artifacts,

noise and DC drift. Then, the EEG data were downsampled

from 500 Hz to 250 Hz and re-referenced to averaged earlobes.

We used 30-second EEG signal before each sample point to

predict the DI for each subject every 3 seconds. The average

power spectral density (PSD) in theta and alpha bands were

then computed using Welch’s method [28] for each channel.

The PSDs were then converted into dBs and used as the

features in our experiment. There were 30 × 2 = 60 features

for each sample.

B. Experimental Setting and Performance Measures

We compared the performances of the following approaches

using leave-one-subject-out cross-validation:

1) Baseline: All data from 14 subjects were combined

to train a neural network regression model for the

remaining subject.

TABLE I
AVERAGE RMSES AND CCS OF THE 15 SUBJECTS.

Baseline SPL SPLD SPLLD

RMSE 0.3061 0.2938 0.2881 0.2774

CC 0.4680 0.5076 0.5022 0.5234

2) SPL, which has been introduced in Section II-A. λ was

set to the median of the initial losses of all samples.

The step size µ was set to 1.2, a little smaller than that

in [19].

3) SPLD, which has been introduced in Section II-B. λ

and γ were set to half the median of all samples’ initial

losses. The step size µ was set to 1.2, and the number

of clusters was 32.

4) SPLLD, which has been introduced in Section II-C. Its

parameters were the same as those in SPLD.

A neural network using one 40-node hidden layer and

ReLU activation function was trained in all four approaches

for regression. It was optimized using stochastic gradient

descent with momentum 0.9, batch size 32, learning rate

0.001, and weight decay 0.00005. We mixed all data from

the remaining 14 subjects, reserved 10% for validation in

early-stopping, using a patience of 10 epochs. Except for

the baseline that used early-stopping directly, the other three

approaches activated early-stopping only when all samples

were involved in training. The maximum number of training

epochs was 500. We repeated each approach five times and

report the average results.

Root mean squared error (RMSE) and the Pearson correla-

tion coefficient (CC) were used as our performance measures.

C. Experiment Results

The RMSEs and CCs for each subject, averaged across five

runs, are shown in Fig. 3. The average RMSEs and CCs of

all 15 subjects are shown in Table I. The performances of the

three SPL-based approaches on the individual subjects were

all better than or comparable with the baseline. Especially, for

Subjects 11 and 15, on which the baseline performed poorly,

the three SPL-based approaches performed much better. On

average, the three SPL-based approaches all outperformed the

baseline.

Among the three SPL-based approaches, both SPLD and

SPLLD outperformed the SPL, suggesting that the diversity

did matter. Although the proposed SPLLD achieved the best

average performance, it was only slightly better than SPLD,

because both the features and the label contain useful infor-

mation about the diversity. However, clustering the labels is

much faster than clustering the features, because of its low

dimensionality. So, SPLLD is more efficient than SPLD.

D. Parameter Sensitivity Study

The hyper-parameters in SPLLD include: b, the number of

clusters; the initial weights of the two regularization terms

in (3); λ and γ, and their step size µ. Experiments were

performed to find out the sensitivity of SPLLD to them.
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Fig. 3. (a) RMSEs and (b) CCs in leave-one-subject-out cross-validation. The experiments were repeated five times on each subject, and the averages are
shown.

TABLE II
AVERAGE RMSES AND CCS FOR DIFFERENT NUMBER OF CLUSTERS.

Number of Clusters 16 32 64

RMSE 0.2789 0.2735 0.3090

CC 0.5281 0.5351 0.5008

1) b, the Number of Clusters: In [24], the number of groups

b was selected from {32, 64, 128, 256}. In our experiments,

there were 14 auxiliary subjects and one testing subject in

each run. Each subject had around one thousand samples. The

histogram in Fig. 2 shows that the drowsiness index labels

biased towards 0 and 1, but the distributions in-between did

not vary much. So, we may not need too many clusters. We

performed experiments on b ∈ {16, 32, 64} and show the

results in Table II. All other parameters were the same as

those in Section III-B. Intuitively, b should not be too small or

too big, because when b equals one or the number of training

samples, SPLLD degrades to SPL, and hence the diversity

information is not used at all. Table II confirms this.

2) µ, the Step Size of the Regularization Weights: In our

experiment, we simply set the initial λ and γ to be the same,

and their step size µ = 1.2. µ = 1.3 was used in [19].

In [23], the loss function was convex, and the final results

was irrelevant to µ. Our loss function is non-convex, so it

may be influenced by the self-paced step size µ. The average

RMSEs and CCs for µ ∈ {1.05, 1.2, 1.5, 1.8} are shown in

Table III.

It can be seen that the results obtained from a small or

TABLE III
AVERAGE RMSES AND CCS FOR DIFFERENT STEP SIZE.

Step Size 1.05 1.2 1.5 1.8

RMSE 0.2872 0.2735 0.2868 0.2914

CC 0.5097 0.5351 0.4972 0.4903

large step size were a little worse than that from a moderate

step size. The loss of samples tends to decrease as the

training proceeds and the number of the samples incorporated

into training would increase automatically even if the two

thresholds stay constant. Therefore, it is not necessary to set

the step size too large, or the model would learn at a too fast

pace. When the step size becomes extremely large, there would

be no difference between training with and without SPLLD.

On the other hand, when the step size is too small, the model is

likely to repeatedly learn from almost the same set of samples,

resulting in bad generalization.

3) The Initial Value of λ and γ: In the SPL [19], the initial

λ was set such that more than half of the samples were selected

for training. In [23], a number of randomly selected samples

were used in the first training iteration and after that λ and γ

were used to select the training samples. They tuned λ and γ

on the validation set through a linear search strategy.

For simplicity, we set the initial λ and γ to half of the

median of all samples’ losses in previous comparisons to

ensure that at least around half of the training set were involved

in the first training epoch. To study how initial λ and γ

affect the performance, we tried to set the sum of them to
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TABLE IV
AVERAGE RMSES AND CCS WITH DIFFERENT INITIALIZATIONS OF λ

AND γ .

Percentile 35 50 65

RMSE 0.2902 0.2735 0.3047

CC 0.5193 0.5351 0.4926

different percentiles of all samples’ initial losses. The results

are shown in Table IV. Except for the initial λ and γ, all other

parameters were the same as those in section III-B. The results

demonstrate that too many samples being added to training

at first may introduce noisy samples, which may confuse the

model. On the other hand, a small sample set may result in

overfitting. Therefore, half of the number of samples seems

to be reasonable and suitable for the model to learn at the

beginning.

E. Discussion

As mentioned in [23], SPL based approaches usually have

the limitation that being unstable to random starting values.

Since we evaluate the easiness of the samples referring to

their loss values with the randomly initialized model and

generate the training set for the next training epoch, the final

model much depends on the initialization. If the samples used

in the first training iteration can be properly selected, SPL

approaches are more likely to obtain better performance.

There are many parameters requiring pre-definition in the

algorithm. The initial values of λ and γ and the step size do

not need much tuning and can be set referring to the previous

work. The number of clusters can be chosen according to the

distribution of the data.

IV. CONCLUSION

Drowsy driving is pervasive among drivers, and is one of the

major contributors to vehicle accidents. Detecting the driver’s

drowsiness level in real-time and taking preventive actions

accordingly may help improve driving safety. EEG signals can

be used to estimate the driver’s drowsiness level. However,

individual differences make it challenging to apply a model

trained on existing subjects to a new subject, without tuning

its parameters on some subject-specific calibration data. This

paper proposed an SPLLD approach that exploits the label

diversity in self-paced learning to train a more robust nonlinear

regression model that generalizes better to new subjects in

EEG-based driver drowsiness estimation.
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