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Abstract— Drowsy driving is pervasive, and also a major
cause of traffic accidents. Estimating a driver’s drowsiness
level by monitoring the electroencephalogram (EEG) signal
and taking preventative actions accordingly may improve
driving safety. However, individual differences among dif-
ferent drivers make this task very challenging. A calibration
session is usually required to collect some subject-specific
data and tune the model parameters before applying it to
a new subject, which is very inconvenient and not user-
friendly. Many approaches have been proposed to reduce
the calibration effort, but few can completely eliminate it.
This paper proposes a novel approach, feature weighted
episodic training (FWET), to completely eliminate the cal-
ibration requirement. It integrates two techniques: feature
weighting to learn the importance of different features, and
episodic training for domain generalization. Experiments
on EEG-based driver drowsiness estimation demonstrated
that both feature weighting and episodic training are effec-
tive, and their integration can further improve the gener-
alization performance. FWET does not need any labelled
or unlabelled calibration data from the new subject, and
hence could be very useful in plug-and-play brain-computer
interfaces.

Index Terms— Drowsy driving, domain generalization,
EEG, episodic training, feature weighting.

I. INTRODUCTION

Driving safety is very important to our everyday life.
However, according to the World Health Organization1

“Global Status Report on Road Safety 2018”, “the number
of road traffic deaths continues to rise steadily, reaching
1.35 million in 2016. . . . Road traffic injuries are the eighth
leading cause of death for all age groups. More people now
die as a result of road traffic injuries than from HIV/AIDS,
tuberculosis or diarrhoeal diseases. Road traffic injuries are
currently the leading cause of death for children and young
adults aged 5–29 years.”
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In addition to the reliability of the vehicle and the driver’s
experience, driving safety is also strongly related to the driver’s
alertness (or, drowsiness). Drowsy driving is the fourth major
contributor to road crashes, following only to alcohol, speed-
ing, and inattention [1]. Drowsiness impacts the driver’s ability
to quickly and appropriately respond to road emergencies, and
hence may lead to accidents [2]. Therefore, accurate estimation
of the driver’s drowsiness level is very important in preventing
road accidents.

Many approaches have been reported [3]–[7], which can be
roughly categorized into two directions: contactless detections
and wearable sensor based detections. The former use cameras
and/or other sensors, which are not attached to the driver’s
body, to monitor the driver’s facial activities and/or driving
patterns to estimate the drowsiness level [6], [8], [9]. The latter
use wearable sensors to measure the driver’s physiological
signals, e.g., electroencephalogram (EEG) [10], electrocardio-
graphy (ECG) [10], [11], electromyography (EMG) [12], [13],
etc, and then perform drowsiness estimation. The heart
rate and heart rate variability can be easily obtained from
ECG signals. They both vary significantly between alertness
and drowsiness, and hence can be indicators of drowsiness
[14], [15]. EMG signal is usually combined with other signals
to determine the drowsiness level. For instance, Lee et al. [16]
proposed a driver fatigue detection approach using EMG and
galvanic skin responses. Fu et al. [17] proposed to use EEG,
EMG and respiration signals to dynamically detect driver
fatigue. In this paper, we focus on using only EEG signals
for driver drowsiness estimation.

Since EEG directly measures the brain states, it is very
suitable for human psychophysiological state evaluation [18].
The power spectrum of EEG has been used to estimate driver
drowsiness level [19]–[22], especially the theta (4-7Hz) and
alpha (8-12Hz) bands [18], [23], [24]. Additionally, different
brain regions have different abilities in assessing the driver’s
drowsiness level. Previous studies have shown that theta and
alpha band activities in the central and occipital regions are
more correlated to fatigue [25]–[27]. These results indicate that
it may be beneficial to give different brain regions different
weights in drowsiness estimation.

A major challenge in EEG-based driver drowsiness estima-
tion is that, due to individual differences, it is very difficult to
develop a generic estimator, whose parameters are fixed and
optimal for all subjects. Hence, a subject-specific calibration
session is usually required to tune the estimator, which is
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time-consuming and not user-friendly. Lots of efforts have
been made to reduce or eliminate this calibration. One of the
most frequently used approach is transfer learning [28], [29],
which uses data from other subjects/sessions (called source
domains) to facilitate the learning for a new subject (called
target domain). For instance, Lin and Jung [30] proposed a
conditional transfer learning framework to promote positive
transfer for each individual. It first assesses an individual’s
transferability for positive transfer, and then selectively lever-
ages the data from others with comparable feature spaces. This
approach has demonstrated promising performance in EEG-
based emotion classification. Zanini et al. [31] proposed a
Riemannian space transfer learning framework, which uses
a reference covariance matrix at the resting state to align
data from different domains, before applying a Riemannian
space classifier. He and Wu [32] proposed a similar EEG data
alignment approach in the Euclidean space, which is more
efficient than the Riemannian space data alignment approach,
and can be used as a pre-processing step before any Euclidean
space classifier. However, all these approaches considered
only classification problems, and all required some labeled
or unlabeled data from the target subject for calibration. So,
they cannot be used in true plug-and-play brain-computer
interfaces.

This paper considers a much more realistic, also more
challenging, scenario: there are no calibration data (either
labeled or unlabeled) from the target subject at all; we want to
build a model from the auxiliary subjects and apply it directly
to the target subject. Each auxiliary subject can be viewed
as an independent source domain, and this problem setting is
called domain generalization in computer vision.

Many neural network based approaches have been proposed
in recent years for domain generalization [33]–[38], which can
be summarized into two categories:

1) Train a robust cross-domain model using a specially
designed neural network architecture to reduce the
domain shift. For instance, Ghifary et al. [33] proposed
multi-task auto-encoder, which learns to transform the
image in one domain into analogs in multiple related
domains. These features, which are robust to varia-
tions across domains, are then fed into a classifier.
Li et al. [35] proposed a low-rank parameterized convo-
lutional neural network to compensate the domain shift.
Li et al. [34] used adversarial auto-encoders to align
the distributions among different domains by minimizing
the maximum mean discrepancy (MMD), and matched
the aligned distribution to an arbitrary prior distribution
via adversarial feature learning. The first step ensures
the learned feature representation is universal to the
known source domains, and the second step ensures
the features can generalize well to the unseen target
domain.

2) Train models with regularization or meta-
learning scheme regardless of the model structure.
Balaji et al. [38] proposed a meta-regularization
approach for domain generalization, which encodes
domain generalization using a novel regularization
function that makes the model trained in one domain

to perform well in another domain. The regularization
function was found in a learning-to-learn (or meta-
learning) framework. Li et al. [37] proposed a model
agnostic training procedure for domain generalization.
Their algorithm simulated the shift between source
and target domains during training by synthesizing
virtual target domains within each mini-batch. The
meta-optimization objective ensures performance
improvements in both domains. Li et al. [36] further
proposed an episodic training (ET) procedure that trains
a single deep network while exposing it to the domain
shift that characterises a novel domain at runtime.
Specifically, it decomposes a deep network into two
components: feature extractor and classifier, and then
trains each component by simulating it interacting with
a partner which may not be well tuned for the current
domain.

This paper extends ET from classification to regression,
and applies it to EEG-based driver drowsiness estimation. Our
main contributions are:

1) We propose a feature weighting (FW) scheme that
automatically assigns each feature a weight, by taking
different importance of different brain regions into con-
sideration.

2) We extend ET in [36] from classification to regression,
and simplify it so that the computational cost is reduced
without sacrificing the generalization performance.

3) We integrate FW and ET into a single learning
framework, feature weighted episodic training (FWET),
to achieve better generalization performance than each
individual module.

The remainder of this paper is organized as follows:
Section II introduces our dataset, feature extraction method,
and the proposed FWET approach. Section III evaluates the
performance of FWET in EEG-based driver drowsiness esti-
mation. Section IV draws conclusion.

II. FEATURE WEIGHTED EPISODIC TRAINING (FWET)

This section introduces the dataset for EEG-based driver
drowsiness estimation, and our proposed FWET approach,
whose overall flowchart is shown in Fig. 1, along with several
other variants.

A. Dataset

The data were collected in a simulated driving experiment,
which was identical to that used in [19], [21], [39], [40].
Sixteen healthy subjects (age 24.2 ± 3.7, ten males, six
females) with normal or corrected to normal vision were
recruited to participate in a sustained-attention driving experi-
ment [39], [40], which consisted of a real vehicle mounted on
a motion platform with six degrees of freedom immersed in
a 360-degree virtual reality scene. The experiment simulated
driving on an empty highway at 100km/h. Every 5-10 seconds,
a random lane-departure event was activated, which caused
the car to drift from the center of the lane. The partici-
pants were asked to steer the car back to the center of the
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Fig. 1. AGG, FW-AGG, ET and FWET for EEG-based driver drowsiness estimation.

Fig. 2. Illustration of the way the reaction time was computed.

lane immediately. The reaction time was calculated as the time
difference between the drift and the moment the subject started
to act, as shown in Fig. 2. If the participant did not respond to
the lane-departure event, such as falling asleep, the vehicle
would hit the boundary of the road and continue moving
forward along the boundary. The next lane-departure event
happened after the response offset. Each participant performed
the experiment for 60-90 minutes in the afternoon when the
circadian rhythm of sleepiness reached its peak [41].

The Institutional Review Board of the Taipei Veterans
General Hospital approved the experimental protocol. Each
participant read and signed an informed consent form before
the experiment began.

The reaction time τ was later converted into a drowsiness
index (DI) [21], [22], [42]–[44],

DI = max

(
0,

1 − e−(τ−τ0)

1 + e−(τ−τ0)

)
, (1)

where τ0 was set to 1 in our work. The DIs were then smoothed
by a 90s moving-average window. (1) maps the reaction time
to [0, 1] and overcomes its long-tail effect (very large reaction
time was rare, but it did exist; such extreme values would
significantly deteriorate the overall estimation). The fatigue
level has been demonstrated to have a strong correlation with
the reaction time [45]. Since the DI is positively correlated
with the reaction time, DI is also an indicator of the fatigue
level.

Note that the value of τ0 could also be set individually
for each subject. For instance, in [42], τ0 was set to the 5
percentile value of the reaction time in each session.

However, in a real-world online plug-and-play brain-computer-
interface system, we do not have training data from the
target subject, thus setting τ0 individually is not possible.
Nevertheless, to demonstrate the robustness of our proposed
approach, we also compare the performances using τ0 = 1 and
individualized τ0 in Section III-F, which is possible in offline
driver drowsiness estimation.

During the experiment, EEG signals were recorded using a
500Hz 32-channel Neuroscan system (30-channel EEGs plus
2-channel earlobes). Since data from one subject were not
recorded correctly, we only used 15 subjects in our paper.
To ensure a fair comparison, we used the first 3,600 seconds
data from each subject.

B. Preprocessing and Feature Extraction

We used EEGLAB [46] for data preprocessing. We first
performed 1-50Hz band-pass filtering to remove artifacts and
noise, and then down-sampled the data from 500Hz to 250Hz
and re-referenced them to the averaged earlobes.

We tried to predict the DI for each subject every
3 seconds, using 30-second EEG signal before each sam-
ple point. We computed the average power spectral density
(PSD; their absolute values, instead of relative values, were
used) in theta and alpha bands using Welch’s method [47],
with Hamming window, 1024 points fast Fourier transform,
and 50% overlapping. The PSDs were then converted into
dBs and used as our features. Each feature vector had
30 × 2 = 60 dimensions. All algorithms in our experiments
used the same PSD features described above.

Each 30-second EEG signal may include brain activities,
e.g., visual stimulus of the lane departure event and the wheel
steering intention, and interferences from the wheel steering
motor execution and other body movements. These brain
activities and interferences are inevitably happening in real-
world driving scenarios, and a good drowsiness estimation
algorithm should be able to cope with them. Moreover, there
are some other activities that are normal in realistic driving
situations but were not considered in our experiments, e.g.,
the motor executions of acceleration and braking, talking, etc.
These should be considered in the future improved experiment
design.
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C. Problem Setting

Assume Subject s has Ns labeled EEG trials
Ds = {xs

i , ys
i }Ns

i=1, where xs
i ∈ R

d×1 is a d-dimension
feature vector extracted from the i -th EEG trial of Subject s,
and ys

i is the corresponding DI. Assume also that we have S
subjects in our training set, and we want to predict the DI for
Dt = {xt

i }Nt
i=1 from an unseen target subject t .

Our model contains two components: Fθ , the feature trans-
formation network, and Fψ , the regression network. Hence the
prediction for xt

i is ŷt
i = Fψ (Fθ (xt

i )).

D. Aggregation Training (AGG)

The simplest domain generalization approach is to combine
all source subjects’ data to train one single model, which
is usually a very strong baseline. This method is called
aggregation training (AGG) in [36].

In this paper, we perform AGG using a multi-layer percep-
tron (MLP) neural network with one hidden layer and ReLU
activation function. The loss function is:

LAGG =
S∑

s=1

Ns∑
i=1

�(ys
i , Fψ (Fθ (xs

i ))), (2)

where � is the squared error in regression. The parameters ψ
and θ are learned through gradient descent optimization.

E. Feature Weighting (FW)

Previous studies [25]–[27] have shown that EEG features
(channel-wise PSD features in this paper) in different brain
regions have different correlations to the drowsiness. Thus,
we use the following FW scheme to assign different weights
to different EEG channels:

ŵl = ewl /

d∑
j=1

ew j , l = 1, . . . , d (3)

x̂s
i = ŵ ◦ xs

i , s = 1, . . . , S (4)

where w = [w1, . . . , wd ]T ∈ R
d×1 and ŵ =

[ŵ1, . . . , ŵd ]T ∈ R
d×1 are the original and transformed

weight vectors, respectively, and ◦ denotes element-wise prod-
uct. We do not use the weight w directly in (4); instead,
we use its so f tmax version ŵ, to make sure the weights are
non-negative and sum up to 1.

F. Episodic Training (ET)

ET for domain generalization was recently proposed by
Li et al. [36] for image recognition. We simplify their algo-
rithm and integrate it with FW. The original ET algorithm
in [36] contains three regularization terms. In our work,
we only adopt the first loss term (described as epif in
Section III-D) for simplicity and speed. As it will be shown
in Section III-G, our simplification greatly reduces the com-
putational cost of the original ET, without sacrificing its
generalization performance.

A common approach in transfer learning to learn domain-
invariant features is to train a feature extractor Fθ that makes
the marginal distribution P(Fθ (xs)) consistent for different

source domains, s = 1, . . . , S. However, since the DIs of dif-
ferent subjects vary due to individualized differences, i.e., the
conditional distributions P(ys |Fθ (xs)) are different for differ-
ent subjects, aligning the marginal distributions only may not
lead to satisfactory generalization performance. ET considers
the conditional distributions P(ys |Fθ (xs)) directly, and trains
an Fθ that aligns P(ys |Fθ (xs)) in all source domains, which
usually generalizes well to the unseen target domain Dt .

We first establish a subject-specific feature transforma-
tion (FT) model Fθ s and a subject-specific regression model
Fψ s

for each source subject to learn the domain-specific
information. We also want to train an FT model Fθ that makes
the transformed features from Subject s still perform well
when applied to a regressor Fψ j

trained on Subject j ( j �= s).
Hence, the following loss function is used:

Ls, j
FT =

Ns∑
i=1

�(ys
i , Fψ j

(Fθ (xs
i ))), (5)

where Fψ j
means that Fψ j

is not updated during back
propagation.

The overall loss function of ET, when Subject s’s data are
fed into Subject j ’s regressor, is:

Ls, j
ET = Ls

AGG + λ · Ls, j
FT . (6)

where

Ls
AGG =

Ns∑
i=1

�(ys
i , Fψ (Fθ (xs

i ))). (7)

λ = 0.1 was used in our experiments.
Note that since there is a (purposeful) mismatch between

Fψ and Fθ in Ls, j
FT , the gradient ∂Ls, j

FT /∂ Fθ may be unstable
and sometimes have gradient explosion. Therefore, we clipped
the gradient ∂Ls, j

FT /∂ Fθ to [−10, 10].

G. FWET

Our proposed algorithm, FWET, which integrates FW and
ET, is shown in Algorithm 1. It learns w in FW and θ and ψ
in ET simultaneously through gradient descent optimization.

All θ , ψ , θ s and ψ s , s = 1, . . . , S, are uniformly initialized.
Take θ as an example. Let M be the number of features in
each layer. Then, each element of θ is initialized as a uniformly
distributed random variable in [−√

1/M,
√

1/M].

III. EXPERIMENTAL RESULTS

This section studies the performance of FWET in EEG-
based driver drowsiness estimation.

A. Evaluation Method and Performance Measures

We used leave-one-subject-out cross-validation to validate
the performance of our model. Since this was a regression
problem, we used two metrics to evaluate the prediction
results: root mean squared error (RMSE) and Pearson cor-
relation coefficient (CC), which respectively measure the
error and the correlation between the predicted DIs and the
groundtruth DIs.
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Algorithm 1: Pseudocode of FWET

Input: Training subject data {xs
i , ys

i }Ns
i=1, s = 1, . . . , S;

ET weight λ;
Batch size N ;
Learning rate α.

Output: FWET model parameters w, θ and ψ .
for s = 1 : S do

Initialize domain-specific FW vector ws = 1;
Randomly initialize domain-specific model parameters
θ s and ψs ;

end
Initialize w = 1 in FWET;
Randomly initialize θ and ψ in FWET;
// Warm up
for s = 1 : S do

Train the domain-specific model parameters ws , θ s

and ψs for one epoch, using only data from Subject s;
end
while training do

for s = 1 : S do
Sample a batch {xs

i , ys
i }N

i=1 from Subject s;
Compute x̂s

i using (4), i = 1, . . . , N ;
Compute the sum of squared loss for the
domain-specific model
LDS = ∑N

i=1 �(yi , Fψ s
(Fθ s (x̂

s
i )));

ws = ws − α∇wsLDS;
θ s = θ s − α∇θ sLDS;
ψs = ψs − α∇ψ s

LDS;
end
for s = 1 : S do

for j = 1 : S and j �= s do
Sample a batch {xs

i , ys
i }N

i=1 from Subject s;
Compute the loss Ls, j

ET in (6) on the batch;

w = w − α∇wLs, j
ET ;

θ = θ − α∇θLs, j
ET ;

ψ = ψ − α∇ψLs, j
ET ;

end
end

end

We compared six different algorithms:
• kNN, which was a k-nearest neighbors regressor with

k = 5. The prediction was the average of the five nearest
neighbors.

• RR, which was ridge regression with L2 regularization
coefficient α = 0.1.

• AGG, which was an MLP neural network with only one
hidden layer, trained using the loss function in (2). The
number of hidden layer units was 40.

• FW-AGG, which performed FW before AGG.
• ET, which trained an AGG model and S domain-specific

models together using ET. Each such model has the same
structure as AGG above, i.e., a 3-layer MLP. The first
layer was treated as Fθ . The other two layers were treated
as Fψ .

• FWET, which performed FW before ET.

The first two algorithms are commonly used baselines
for regression problems. The last four are AGG based.
We compare them to analyze the individual contributions of
FW and ET in FWET. The last four models were trained
using mini-batch gradient descent with momentum, with batch
size 32, learning rate 0.001, momentum 0.9, and weight
decay 0.00005. We sampled 10% data from each training
subject as the validation set in early-stopping to reduce
overfitting. The maximum number of training epochs was
set to 500, and early-stopping patience was 10 epochs.
One epoch means one training iteration in Algorithm 1.
We repeated all algorithms five times and report the average
performance.

B. Experimental Results

The regression performance for each subject, averaged over
five repeats, is shown in Fig. 3. FW-AGG, ET and FWET
outperformed kNN, RR and AGG for most subjects. One
exception is Subject 10, on which FW-AGG and FWET gave
negative CCs.

To explore why FW-AGG and FWET gave weird CCs on
Subject 10, we plot the feature distributions of Subject 10,
along with those from the other 14 subjects, in Fig. 4. We first
plot the 10 and 90 percentile of PSD features from each subject
in Fig. 4(a) and a t-SNE visualization in Fig. 4(b) to see if
there are differences on feature distribution between subjects.
Clearly, the distributions of the 51st and 52nd features of
Subject 10 are dramatically different from those of other
subjects, which may be due to outliers. We can also see
that there are some data points from Subject 10 that are not
consistent with the data from other subjects. The unsatisfactory
performance of FW-AGG and FWET on Subject 10 suggests
that maybe FW is sensitive to outliers.

In offline applications, we know the features from the target
subject. So, preprocessing may be used to remove the outlier
features. For example, when the 51st and 52nd outlier features
of Subject 10 were removed, the corresponding boxplots of the
RMSEs and CCs of FW-AGG and FWET are shown in Fig. 5.
They were considerably improved over the RMSEs and CCs
in Fig. 3.

The last group in each subfigure of Fig. 3 also shows the
average performance across the 15 subjects, whose values
are given in Table I. AGG is a nonlinear model with more
parameters than kNN and RR. Theoretically, it should outper-
form kNN and RR if well-trained. However, Table I shows
that this was not the case. AGG had slightly worse average
RMSE than kNN, and slightly worse average CC than RR.
There may be two reasons: 1) there were not enough training
data to tune AGG well; and, 2) AGG was over-fitted on the
training data, so it did not generalize well to a new subject.
After introducing FW and ET, both training performance and
generalization ability were improved, and both FW-AGG and
FWET outperformed the three baselines (kNN, RR, and AGG).
More specifically, ET outperformed AGG, improving 4.9%
and 0.2% on the RMSE and the CC, respectively. After adding
FW to AGG, FW-AGG further outperformed ET by 4.5% on
the RMSE and 4.3% on the CC. FWET achieved the best
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Fig. 3. (a) RMSEs and (b) CCs in leave-one-subject-out cross-validation. The experiments were repeated five times, and the averages are shown.

Fig. 4. (a) 90 and 10 percentiles of features from Subject 10, w.r.t. the
corresponding feature percentiles (90: solid curves; 10: dashed curves)
from the other 14 subjects; (b) t-SNE visualization of the features from
different subjects.

Fig. 5. Boxplots of (a) RMSEs and (b) CCs of FW-AGG and FWET,
when Subject 10 was the target (test) subject, and the 51st and 52nd
outlier features were removed.

performance, and further improved the RMSE and the CC by
6.9% and 5.7%, respectively, over FW-AGG.

To determine if the differences between different algo-
rithms were statistically significant, we also performed non-
parametric multiple comparison tests on the RMSEs and CCs
using Dunn’s procedure [48], with a p-value correction using
the False Discovery Rate method [49]. The results are shown
in Table II, where the statistically significant ones are marked
in bold. FWET statistically significantly outperformed kNN,

TABLE I
AVERAGE RMSES AND CCS ACROSS THE

15 SUBJECTS AND FIVE RUNS

TABLE II
p-VALUES OF NON-PARAMETRIC MULTIPLE

COMPARISONS ON THE RMSES AND CCS

RR and AGG on the RMSE, and also kNN and RR on the CC.
Though the performance improvements of FWET over FW-
AGG and ET were not statistically significant, we have seen
from Fig. 3 and Table I that on average FWET still slightly
outperformed them.

In summary, we have shown that it is always preferable to
use FWET over the other five algorithms.

C. Effects of FW

The four AGG based algorithms have randomness involved,
e.g., initialization, batch selection, etc. It’s interesting to study
their stability. Recall that we had 15 subjects, and each
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Fig. 6. Boxplots of the average (a) RMSEs and (b) CCs of the six
algorithms.

algorithm was run five times when each subject was used
as the target subject. The final results were assembled into
a 15 × 5 RMSE matrix and a 15 × 5 CC matrix. We could
plot a boxplot for each subject to show the stability of different
algorithms, but that would take too much space, and is difficult
to see the forest for the trees. So, we first computed the average
performance of each algorithm over the 15 subjects, i.e., we
took the average of the RMSE (CC) matrix along the columns
to obtain a 1 ×5 row vector, and then plotted the box-plots of
the five average RMSEs (CCs) in Fig. 6. The RMSEs and CCs
of kNN and RR did not have uncertainty, because there was no
randomness in these algorithms. Among the four AGG based
algorithms, AGG and ET had large variations, and FW-AGG
and FWET had very small variations, suggesting one more
advantage of introducing FW to AGG, beyond better RMSE
and CC.

Fig. 6 shows that generally FW helped reduce the variation
from different runs. It’s interesting to study why. Several stud-
ies had analyzed the relationship between the generalization
performance and sharp minima [50], [51]. It is believed that
sharp minima may lead to bad generalization performance.
ET tends to have flatter minima, which had already been
demonstrated in [36]. We want to investigate if FW has
a similar effect. We added random Gaussian noise to the
learned parameters and checked how quickly the performance
degraded. A rapid decrease indicates that the model is at a
sharp minimum, which is bad for generalization.

As shown in Fig. 7, FW-AGG was more robust to the
perturbations than AGG, and FWET was also more robust
than ET. These observations demonstrated that FW led the
model to flatter minima in the parameter space, which helped
improve its generalization ability.

We also visualize the importance of different regions in each
power band, determined by w in FW. Fig. 8(a) shows the

Fig. 7. (a) RMSE and (b) CC when Gaussian noise was added to the
learned parameters of different algorithms. The models were trained on
Subjects 1, 3-15 and tested on Subject 2.

Fig. 8. EEG channel importance in theta and alpha bands, converted
from softmax(�) in (a) FW-AGG and (b) FWET.

topoplots of w in theta and alpha bands after the so f tmax
function in FW-AGG, when the last 14 subjects were used in
training. For the theta band, the central brain region had the
maximum weights, i.e., it contributed the most to drowsiness
estimation. For the alpha band in FW-AGG, both the central
and the occipital brain regions contributed more to drowsiness
estimation than other regions. These were partially consistent
with the findings in [26], where Zhao et al. studied mental
fatigue in 90-minute continuous simulated driving, and found
that the frontal, central and occipital regions in the theta band,
and the central, parietal, occipital and temporal regions in the
alpha band, all had significant difference at the beginning and
the end of the driving.

Fig. 8(b) shows the topoplots of w in theta and alpha
bands after the sof tmax function in FWET, when the last
14 subjects were used in training. We can observe roughly
the same patterns as in Fig. 8(a) for FW-AGG. However, note
that the magnitude ranges in Fig. 8(b) were much smaller than
those in Fig. 8(a), i.e., w in FWET had smaller variance than
that in FW-AGG.

We also computed the average PSD values for alert and
drowsy states over the 15 subjects. We considered the subject
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Fig. 9. (a) the differences between the topoplots of the drowsy and alert
states. (b) the Pearson correlation coefficient between each PSD feature
and the DI.

be alert (drowsy) when his/her DI was lower (higher) than the
15 (85) percentile of the DIs over the entire session. Fig. 9(a)
shows the differences between the topoplots of the drowsy and
alert states, and Fig. 9(b) the Pearson correlation coefficient
between each PSD feature and the DI. Interestingly, Figs. 8(b)
and 9(b) are not similar, i.e., though the channel weights w
helped improve the drowsiness estimation performance, they
were different from the correlation coefficients between the
corresponding features and the DI.

Finally, although FW looks similar to the attention mech-
anism [52], which is being widely used in computer vision
and natural language processing, they are different. The atten-
tion mechanism assigns dynamic weights to the neighboring
locations, which change as the input varies. FW uses a fixed
weight for each EEG channel, as the contributions of different
brain regions usually do not change much in the same mental
task.

D. Effects of ET

This subsection first presents two experiments to understand
how ET helped extract more generalizable features from
different subjects, and then studies the effect of adding more
regularization terms in ET and FWET.

We used data from all 15 subjects to train AGG, ET, FW and
FWET, which had different feature extractor Fθ . To compare
these two Fθ , we input Subject s’s data to each Fθ , and used
Subject j ’s ( j �= s) regressor Fψ j

(which was trained on data
from Subject j only) for regression. For AGG and ET, the final
regression model was Fψ j

(Fθ (xs)). For FW-AGG and FWET,
the final regression model was Fψ j

(Fθ (ŵ ◦ xs)). We tried
all j �= s for each s, i.e., 14 different Fψ j

, and computed
the average performance for each s. The smaller (larger) the
RMSE (CC) is, the better the generalization performance is.

Fig. 10. Average RMSEs (a) and CCs (b) when Subject j’s regression
network Fψ j was applied to data from Subject s (s �= j). The feature
transformation was Fθ (x) for both AGG and ET. The feature transforma-
tion was Fθ (�̂ ◦ x) for both FW-AGG and FWET.

The results are shown in Fig. 10, where the subject index
means that subject’s data were used as input (Subject s in the
above description). ET always achieved a smaller RMSE and
a larger CC, suggesting that ET extracted more generalizable
features. FWET had comparable RMSEs as FW-AGG, but
generally larger CCs than FW-AGG, suggesting again that ET
extracted more generalizable features.

Three different regularizations were used in ET in [36] for
classification problems:

1) epif (short for episodic feature), which requires the
trained feature extractor to work well with all domain-
specific classifiers.

2) epic (short for episodic classifier), which requires the
trained classifier to work well with all domain-specific
feature extractors.

3) epir (short for episodic random), which requires the fea-
ture extractor to work well with a randomly initialized
classifier (representing a completely new domain).

We only adopted epif in our ET, because it was much easier
and faster to optimize. The average training time per iteration,
when different regularization terms were used in ET and
FWET, are shown in Table III. Intuitively, the computational
cost increased when more regularization terms were used.

Table III also shows the RMSEs and CCs when more
regularizations were used. The weights for the three regular-
ization terms were all set to 0.1. For both ET and FWET,
using epif only achieved comparable performance with models
using more regularization terms, and sometimes even slightly
better. For the same type of regularization, FWET always
outperformed ET, suggesting again the benefit of FW.

In summary, we have shown that our proposed ET and
FWET are efficient and effective, and their extracted features
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TABLE III
AVERAGE RMSES, CCS AND TRAINING TIME (S) WHEN DIFFERENT

REGULARIZATION TERMS WERE USED IN ET AND FWET

Fig. 11. Validation and test RMSEs of the four AGG-based algorithms.
A smaller gap between the validation RMSE and the test RMSE indicates
better generalizability.

have comparable (or even slightly better) generalization per-
formance with those with more regularization terms.

E. Performance Gap between Validation and Test

Early stopping on a validation set is frequently used in
machine learning to reduce overfitting, and was also the
case in this paper. However, the validation performance is
usually more optimistic than the test performance. A model
with stronger generalization ability should have a smaller
performance gap between the validation performance and the
test performance.

Fig. 11 shows the validation and test RMSEs of the
four AGG-based algorithms. Although AGG had the smallest
validation RMSE, its test RMSE was the largest, i.e., the
performance gap between the validation and test RMSEs
were the largest, suggesting poor generalization ability. The
validation-test RMSE gaps of FW-AGG, ET and FWET
were considerably reduced. Particulary, FWET had the small-
est gap, and the best test RMSE, suggesting its strong
generalizability.

F. Individualized τ0

τ0 = 1 in (1) was used in all above experiments. This is
because we considered the most challenging case in brain-
computer interfaces, i.e., we do not have any labeled data
from the new subject. However, if we have some labeled data
from the new subject, or some prior knowledge about the
reaction time of the new subject, then it is possible to set
τ0 individually. This subsection demonstrates the performance
of FWET in this case.

Following the practice in [42], we set τ0 in (1) to be
5 percentile value of the reaction time of the corresponding

Fig. 12. (a) RMSEs and (b) CCs in leave-one-subject-out cross-
validation of FWET, using τ0 = 1 and individualized τ0.

subject, and repeated the experiments. The performances of
FWET for constant and individualized τ0 are shown in Fig. 12.
Using individualized τ0 reduced the RMSE for almost every
subject (except Subject 4), although the CCs were roughly
the same. This demonstrates that more information about the
new subject can generally improve the drowsiness estimation
performance.

G. Discussion

This paper extends domain generalization, a concept mostly
used in computer vision, to brain-computer interfaces. There
are some important differences between these two appli-
cation areas, which should be paid attention to in future
research:

1) The number of source domains. In computer vision
applications, the number of domains is usually small,
e.g., PACS2 has four domains, IXMAS3 has five
domains, and MNIST4 usually has seven rotated
domains. Scalability is usually ignored in such appli-
cations. However, in brain-computer interfaces, more
and more datasets with a large number of subjects are
collected, and the scalability with respect to the number
of domains can no longer be ignored.

2) The variation of the label distribution in differ-
ent domains. Most existing domain generalization
approaches only focus on learning a feature trans-
formation T that makes all source domains to have
roughly the same marginal distribution P(T (X)), with-
out considering the label distribution P(Y ). In EEG-
based driver drowsiness estimation, the distribution of
DIs varies significantly among different subjects. This
makes generalization across different subjects difficult
in brain-computer interfaces.

2https://domaingeneralization.github.io/
3http://4drepository.inrialpes.fr/pages/home
4http://yann.lecun.com/exdb/mnist/
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IV. CONCLUSION

EEG-based driver drowsiness estimation could be very
important in improving driving safety. Unfortunately, individ-
ual differences among different drivers make it very difficult
to design a generic estimation algorithm, whose parame-
ters are fixed and optimal for all subjects. Usually some
subject-specific calibration data are needed to tune the model
parameters before applying it to a new subject, which is
very inconvenient and not user-friendly. Many approaches
have been proposed to reduce this calibration effort, but
few can completely eliminate it. This paper has proposed
an FWET approach to completely eliminate the calibration
requirement. It integrates two techniques: FW to learn the
importance of different features, and ET for domain gener-
alization. Experiments demonstrated that both FW and ET
are effective, and their integration can further improve the
generalization performance. FWET does not need any labelled
or unlabelled calibration data from the new subject at all, and
hence could be very useful in plug-and-play brain-computer
interfaces. Our future research will apply FWET to more such
applications.
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