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Abstract—One big challenge that hinders the transition of
brain–computer interfaces (BCIs) from laboratory settings to
real-life applications is the availability of high-performance and
robust learning algorithms that can effectively handle individual
differences, i.e., algorithms that can be applied to a new subject
with zero or very little subject-specific calibration data. Transfer
learning and domain adaptation have been extensively used for this
purpose. However, most previous works focused on classification
problems. This paper considers an important regression problem
in BCI, namely, online driver drowsiness estimation from EEG sig-
nals. By integrating fuzzy sets with domain adaptation, we propose
a novel online weighted adaptation regularization for regression
(OwARR) algorithm to reduce the amount of subject-specific cali-
bration data, and also a source domain selection (SDS) approach to
save about half of the computational cost of OwARR. Using a sim-
ulated driving dataset with 15 subjects, we show that OwARR and
OwARR-SDS can achieve significantly smaller estimation errors
than several other approaches. We also provide comprehensive
analyses on the robustness of OwARR and OwARR-SDS.

Index Terms—Brain–computer interface, domain adaptation
(DA), EEG, ensemble learning, fuzzy sets (FSs), transfer
learning (TL).

I. INTRODUCTION

BRAIN–COMPUTER interfaces (BCIs) [18], [28], [32],
[45], [53] have attracted rapidly increasing research
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interest in the last decade, thanks to recent advances in
neurosciences, wearable/mobile biosensors, and analytics.
However, there are still many challenges in their transition
from laboratory settings to real-life applications, including the
reliability and convenience of the sensing hardware [21], and
the availability of high-performance and robust algorithms for
signal analysis and interpretation that can effectively handle
individual differences and nonstationarity [12], [25], [28], [50].
This paper focuses on the last challenge, more specifically, how
to generalize a BCI algorithm to a new subject, with zero or
very little subject-specific calibration data.

Transfer learning (TL) [34], which improves learning in a
new task by leveraging data or knowledge from other relevant
tasks, represents a promising solution to the above challenge.
Many TL approaches have been proposed for BCI applications
[50], including the following.

1) Feature representation transfer [7], [13], [39], [41]: It
encodes the knowledge across different tasks as features.

2) Instance transfer [19], [20], [56], [63]: It uses certain parts
of the data from other tasks to help the learning for the
current task.

3) Classifier transfer: It includes domain adaptation (DA)
[1], [41], [47], ensemble learning [42], [43], and their
combinations [54], [60], [61].

However, most of the above TL approaches consider only
BCI classification problems. Reducing the calibration data re-
quirement in BCI regression problems has been largely under-
studied. One example is online driver drowsiness estimation
from EEG signals, which will be investigated in this paper.
This is a very important problem because drowsy driving is
among the most important causes of road crashes, following
only to alcohol, speeding, and inattention [38]. According to
the National Highway Traffic Safety Administration [44], 2.5%
of fatal motor vehicle crashes (on average 886/year in the U.S.)
and 2.5% of fatalities (on average 1004/year in the U.S.) be-
tween 2005 and 2009 involved drowsy driving. However, to
our best knowledge, there have been only two works [51], [54]
on TL for drowsiness estimation. Wei et al. [51] showed that
selective TL, which selectively turns TL on or off based the
level of session generalizability, can achieve better estimation
performance than approaches that always turn TL on or off.
Wu et al. [54] proposed a DA with model fusion (DAMF) ap-
proach for drowsiness estimation. By making use of data from

1063-6706 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7153-9703


WU et al.: DRIVER DROWSINESS ESTIMATION FROM EEG SIGNALS USING ONLINE WEIGHTED ADAPTATION REGULARIZATION 1523

other subjects in a DA framework, DAMF requires very little
subject-specific calibration data, which significantly increases
its real-world applicability.

In this paper, by making use of fuzzy sets (FSs) [67], we
extend our earlier work on online weighted adaptation regular-
ization (OwAR) [60] from classification to regression to esti-
mate driver drowsiness online from EEG signals. We show that
the two proposed algorithms can achieve significantly better es-
timation performance than the DAMF and two other baseline
approaches.

The remainder of the paper is organized as follows.
Section II introduces the details of the proposed online weighted
adaptation regularization for regression (OwARR) algorithm.
Section III further introduces a source domain selection (SDS)
approach to save the computational cost of OwARR. Section IV
presents experimental results and performance comparisons of
OwARR and OwARR-SDS with three other approaches. Fi-
nally, Section V draws conclusions and points out future re-
search directions.

II. ONLINE WEIGHTED ADAPTATION REGULARIZATION

FOR REGRESSION

In [60], we have defined two types of calibration in BCI.
1) Offline calibration, in which a pool of unlabeled EEG

epochs have been obtained a priori, and a subject or an
oracle is queried to label some of these epochs, which are
then used to train a model to label the remaining epochs
in the pool.

2) Online calibration, in which some labeled EEG epochs
are obtained on-the-fly, and then a model is trained from
them for future (unseen) EEG epochs.

The major different between them is that, for offline calibra-
tion, the unlabeled EEG epochs can be used to help design the
model (e.g., semisupervised learning), whereas in online cal-
ibration there are no unlabeled EEG epochs. Additionally, in
offline calibration we can query any epoch in the pool for the la-
bel, but in online calibration usually the sequence of the epochs
is predetermined and the subject or oracle has little control on
which epochs to see next.

We only consider online calibration in this paper. This section
introduces the OwARR algorithm, which extends the OwAR
algorithm [60] from classification to regression, by making use
of FSs.

A. Problem Definition

A domain [23], [34] D in TL consists of a d-dimensional
feature space X and a marginal probability distribution P (x),
i.e., D = {X , P (x)}, where x ∈ X . Two domains Dz and Dt

are different if X z �= X t , and/or Pz (x) �= P t(x).
A task [23], [34] T in TL consists of an output space Y and a

conditional probability distribution Q(y|x). Two tasks T z and
T t are different if Yz �= Y t , or Qz (y|x) �= Qt(y|x).

Given the zth source domain Dz with nz samples (xz
i , y

z
i ),

i = 1, . . . , nz , and a target domain Dt with m calibration sam-
ples (xt

j , y
t
j ), j = 1, . . . ,m, DA aims to learn a target prediction

function f(x) : x �→ y with low expected error on Dt , under

the assumptions that X z = X t , Yz = Y t , Pz (x) �= P t(x), and
Qz (y|x) �= Qt(y|x).

In driver drowsiness estimation from EEG signals, EEG sig-
nals from a new subject are in the target domain, while EEG
signals from the zth existing subject are in the zth source do-
main. A single data sample consists of the feature vector for a
single EEG epoch in either domain. Although the features in
source and target domains are extracted in the same way, gen-
erally their marginal and conditional probability distributions
are different, i.e., Pz (x) �= P t(x) and Qz (y|x) �= Qt(y|x), be-
cause different subjects usually have similar but distinct drowsy
neural responses. As a result, data from a source domain cannot
represent data in the target domain accurately, and must be inte-
grated with some target domain data to induce the target domain
regression function.

B. Learning Framework

Because

f(x) = Q(y|x) =
P (x, y)
P (x)

=
Q(x|y)P (y)

P (x)
(1)

to use the data in the zth source domain in the target domain,
we need to minimize the distance between the marginal and
conditional probability distributions in the two domains by en-
suring that1 Pz (x) is close to P t(x), and Qz (x|y) is also close
to Qt(x|y).

Assume both the output and each dimension of the input
vector have zero mean. Then, the regression function can be
written as

f(x) = αT x (2)

where α is the regression parameter vector to be found. The
learning framework of OwARR is then formulated as

f = arg min
f

n∑

i=1

(yi − f(xi))2 + wt
n+m∑

i=n+1

(yi − f(xi))2

+ λ[d(Pz , P t) + d(Qz ,Qt)] − γr̃2(y, f(x)) (3)

where λ and γ are nonnegative regularization parameters, and
wt is the overall weight for target domain samples, which should
be larger than 1 so that more emphasis is given to target domain
samples than source domain samples.

Briefly speaking, the first two terms in (3) minimize the sum
of squared errors in the source domain and target domain, re-
spectively. The third term minimizes the distance between the
marginal and conditional probability distributions in the two
domains. The last term maximizes the approximate sample
Pearson’s correlation coefficient between y and f(x), which
helps avoid the undesirable situation that the regression output
is (nearly) a constant.

In the following sections, we will explain how to compute the
individual terms in (3).

1Strictly speaking, we should also make sure P z (y) is close to P t (y). In this
paper, we assume P z (y) and P t (y) are close. Our future research will consider
the general case that P z (y) and P t (y) are different.
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C. Sum of Squared Error Minimization

Let

X = [x1 , . . . ,xn+m ]T (4)

y = [y1 , . . . , yn+m ]T (5)

where the first n xi and yi are the column input vectors and the
corresponding outputs in the source domain, the next m xi and
yi are the column input vectors and the corresponding outputs
in the target domain, and T is the matrix transpose operation.

Define E ∈ R(n+m )×(n+m ) as a diagonal matrix with

Eii =

{
1, 1 ≤ i ≤ n

wt, n + 1 ≤ i ≤ n + m.
(6)

Then, the first two terms in (3) can be rewritten as

n∑

i=1

(yi − f(xi))2 + wt
n+m∑

i=n+1

(yi − f(xi))2

=
n+m∑

i=1

Eii(yi − αT xi)2

= (yT − αT XT )E(y − Xα). (7)

The optimal selection of wt is very important to the perfor-
mance of the OwARR algorithm. In this paper, we use

wt = max(2, σ · n/m) (8)

where σ is a positive adjustable parameter, based on the follow-
ing heuristics.

1) When m is small, each target domain sample should have a
large weight so that the target domain is not overwhelmed
by the source domain.

2) As m increases, the weight on the target domain samples
should decrease gradually so that the source domain is not
overwhelmed by the target domain.

3) The target domain samples should always have larger
weights than the source domain samples because even-
tually the regression model will be applied to the target
domain.

D. Marginal Probability Distribution Adaptation

As in [23], [36], [60], and [61], we compute d(Pz , P t) using
the maximum mean discrepancy (MMD):

d(Pz , P t) =

[
1
n

n∑

i=1

f(xi) −
1
m

n+m∑

i=n+1

f(xi)

]2

= αT XMP Xα (9)

where MP ∈ R(n+m )×(n+m ) is the MMD matrix given as

(MP )ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n2 , 1 ≤ i ≤ n, 1 ≤ j ≤ n

1
m2 , n + 1 ≤ i ≤ n + m,

n + 1 ≤ j ≤ n + m

−1
nm

, otherwise

. (10)

E. Conditional Probability Distribution Adaptation

In [23], [60], and [61], a classification problem is considered,
and it is more straightforward to perform conditional probability
distribution adaptation. In this section, we first briefly introduce
the technique used there, and then describe in detail how we
can perform conditional probability distribution adaptation in
regression in a similar way, with the help of FSs [16], [67],
which have been widely used in EEG feature extraction [5],
[15], [24] and pattern recognition [11], [22], [33].

1) Conditional Probability Distribution Adaptation for
Classification: Let Dz

c = {xi |xi ∈ Dz ∧ yi = c} be the set of
samples in Class c (c = 1, . . . , C) of the zth source domain,
Dt

c = {xi |xi ∈ Dt ∧ yi = c} be the set of samples in Class c
of the target domains, nc = |Dz

c | and mc = |Dt
c |. Then, the dis-

tance between the conditional probability distributions in source
and target domains is computed as the sum of the Euclidian dis-
tances between the class means in the two domains [23], [60],
[61], i.e.,

d(Qz ,Qt) =
C∑

c=1

⎡

⎣ 1
nc

∑

x i ∈Dz
c

f(xi) −
1

mc

∑

x i ∈Dt
c

f(xi)

⎤

⎦
2

.

(11)
2) Conditional Probability Distribution Adaptation for

Regression: With the help of FSs (background materials are
given in the Appendix), we can transform the regression prob-
lem into a “classification” problem and hence perform condi-
tional probability distribution adaptation using (11). First, for
the nz outputs, {yz

i }i=1,...,n , in the zth source domain, we find
their 5, 50, and 95 percentile2 values, pz

5 , pz
50 and pz

95 , respec-
tively, and define three triangular FSs3, Smallz , Mediumz , and
Largez , based on them, as shown in Fig. 1(a). In this way, we
can “classify” the outputs in the zth source domain into three
fuzzy classes, Smallz , Mediumz , and Largez , corresponding to
the different classes in a traditional crisp classification problem.
However, note that in the traditional crisp classification problem
a sample can only belong to one class. For the fuzzy classes here,

2There is a popular regression analysis method called quantile regression [17]
in statistics and econometrics, which estimates either the conditional median
or other quantiles of the response variable. The percentiles used in this paper
are found directly from the data, and they should not be confused with quantile
regression.

3There can be other ways to define these FSs, e.g., we could use Gaussian FSs
instead of triangular FSs, use pz

10 , pz
50 , and pz

90 instead of pz
5 , pz

50 , and pz
95 , use

other than three FSs in each domain, or use type-2 FSs [30] instead of type-1.
Three type-1 triangular FSs are used here for simplicity. More discussions on
the sensitivity of the OwARR algorithm to the number of type-1 triangular FSs
are given in Section IV-H.
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Fig. 1. Three FSs in the (a) zth source domain, and (b) target domain.

a sample can belong to more than one class simultaneously, at
different degrees.

Denote Class Smallz as Class 1, Class Mediumz as Class 2,
Class Largez as Class 3, and the membership degree of yz

i in
Class c as μz

ic . We then normalize each μz
ic according to its class,

i.e.,

μ̄z
ic =

μz
ic∑n

i=1 μz
ic

, i = 1, . . . , n; c = 1, 2, 3. (12)

Similarly, we also find pt
5 , pt

50 , and pt
95 from the m target

domain outputs {yt
i}i=n+1,...,n+m , define three FSs, Smallt ,

Mediumt , and Larget , as shown in Fig. 1(b), and compute
the corresponding normalized μ̄t

ic , i = n + 1, . . . , n + m, c =
1, 2, 3.

Finally, similar to (11), the distance between the conditional
probability distributions in the target domain and the zth source
domain is computed as

d(Qz ,Qt) =
3∑

c=1

⎡

⎣
∑

x i ∈Dz

μ̄z
icf(xi) −

∑

x i ∈Dt

μ̄t
icf(xi)

⎤

⎦
2

. (13)

Substituting (2) into (13), it follows that

d(Qz ,Qt) =
3∑

c=1

⎡

⎣
∑

x i ∈Dz

μ̄z
icα

T xi −
∑

x i ∈Dt

μ̄t
icα

T xi

⎤

⎦
2

=
3∑

c=1

αT XMcXα = αT XMQXα (14)

where

MQ = M1 + M2 + M3 (15)

in which M1 , M2 , and M3 are MMD matrices computed as

(Mc)ij =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

μ̄z
ic μ̄

z
jc , xi , xj ∈ Dz

c

μ̄t
ic μ̄

t
jc , xi , xj ∈ Dt

c

−μ̄z
ic μ̄

t
jc , xi ∈ Dz

c , xj ∈ Dt
c

−μ̄t
ic μ̄

z
jc , xi ∈ Dt

c , xj ∈ Dz
c

0, otherwise

. (16)

F. Maximize the Approximate Sample Pearson Correlation
Coefficient

The sample Pearson correlation coefficient r(y, f(x)) is de-
fined as [48]

r(y, f(x)) =
yT Xα

‖ y ‖ · ‖ Xα ‖

=
yT Xα√

yT y ·
√

αT XT Xα
(17)

and hence

r2(y, f(x)) =
αT XT yyT Xα

yT y · αT XT Xα
. (18)

Note that r2(y, f(x)) has α in the denominator, so it is very
challenging to find a closed-form solution to maximize it. How-
ever, observe that r2(y, f(x)) increases as αT XT yyT Xα in-
creases, and decreases as αT XT Xα increases. So, instead of
maximizing r2(y, f(x)) directly, in this paper we try to maxi-
mize the following function:

r̃2(y, f(x)) =
αT XT yyT Xα − αT XT Xα

yT y

=
αT XT (yyT − I)Xα

yT y
(19)

where I ∈ R(n+m )×(n+m ) is an identity matrix. r̃2(y, f(x))
has the same property as r2(y, f(x)), i.e., r̃2(y, f(x)) increases
as αT XT yyT Xα increases, and decreases as αT XT Xα in-
creases.

G. Closed-Form Solution

Substituting (7), (9), (14), and (19) into (3), we can rewrite
it as

α = arg min
α

(yT − αT XT )E(y − Xα)

+ λαT XT (MP + MQ )Xα

+ γ
αT XT (I − yyT )Xα

yT y
. (20)

Setting the derivative of the objective function above to 0
leads to

α =
[
XT

(
E + λMP + λMQ + γ

I − yyT

yT y

)
X

]−1

XT Ey.

(21)

H. Complete OwARR Algorithm

The pseudocode for the complete OwARR algorithm is de-
scribed in Algorithm 1. We first perform OwARR for each
source domain separately, and then construct the final regres-
sion model as a weighted average of these base models, where
the weight is the inverse of the training accuracy of the corre-
sponding base model. The final regression model will then be
applied to future unlabeled data.
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III. ONLINE WEIGHTED ADAPTATION REGULARIZATION FOR

REGRESSION SOURCE DOMAIN SELECTION

An SDS procedure for online classification problems has been
proposed in [60]. In this paper, it is extended to regression
problems by using the fuzzy classes again defined in Fig. 1.
The primary goal of SDS is to reduce the computational cost
of OwARR, because when there is a large number of source
domains, performing OwARR for each source domain and then
aggregating the base models would be very time consuming.

Assume there are Z different source domains. For the zth
source domain, we first compute mz

c (c = 1, 2, 3), the mean
vector of each fuzzy class. Then, we also compute mt

c , the
mean vector of each fuzzy class in the target domain, from the
m labeled samples. The distance between the two domains is

d(z, t) =
3∑

c=1

||mz
c − mt

c ||. (22)

We next cluster the Z numbers, {d(z, t)}z=1,...,Z , by k-means
clustering, and finally choose the cluster that has the smallest
centroid, i.e., the source domains that are closest to the target do-
main. In this way, on average we only need to perform OwARR
for Z/k source domains. We used k = 2 in this paper.

The pseudocode for the complete OwARR-SDS algorithm
is described in Algorithm 2. We first use SDS to select the
Z ′ closest source domains, and then perform DA for each se-
lected source domain separately. The final regression model is
a weighted average of these base models, with the weight being
the inverse of the training accuracy of the corresponding base
model.

IV. EXPERIMENTS AND DISCUSSIONS

Experimental results on driver drowsiness estimation from
EEG signals are presented in this section to demonstrate the
performance of OwARR and OwARR-SDS.

A. Experiment Setup

We reused the experiment setup and data mentioned in [54].
Sixteen healthy subjects with normal or corrected to normal vi-
sion were recruited to participate in a sustained-attention driving
experiment [3], [4], which consisted of a real vehicle mounted
on a motion platform with 6 degrees of freedom immersed in
a 360◦ virtual reality scene. Each participant read and signed
an informed consent form before the experiment began. Each
experiment lasted for about 60–90 min and was conducted in
the afternoon when the circadian rhythm of sleepiness reached
its peak. To induce drowsiness during driving, the virtual reality
scenes simulated monotonous driving at a fixed 100 km/h speed
on a straight and empty highway. During the experiment, lane-
departure events were randomly applied every 5–10 s, and par-
ticipants were instructed to steer the vehicle to compensate for
these perturbations as quickly as possible. Subjects’ cognitive
states and driving performance were monitored via a surveil-
lance video camera and the vehicle trajectory throughout the
experiment. The response time in response to the perturbation
was recorded and later converted to drowsiness index. Mean-
while, participants’ scalp EEG signals were recorded using a
32-channel (30-channel EEGs plus 2-channel earlobes) 500 Hz
Neuroscan NuAmps Express system (Compumedics Ltd., VIC,
Australia).
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The Institutional Review Board of the Taipei Veterans General
Hospital approved the experimental protocol.

B. Evaluation Process and Performance Measures

The complete procedure for the application of OwARR for
driver drowsiness estimation is given in Algorithm 3. Compared
with Algorithm 1 on OwARR for a generic application, here we
also include detailed EEG data preprocessing and feature extrac-
tion steps. Observe that although the feature extraction methods
for different auxiliary subjects have the same steps, their pa-
rameters (channels removed, principal components (PCs) used,
ranges used in normalization) may be different, so we need to
record them for each auxiliary subject so that the features in the
individual regression models can be computed correctly.

From the experiments, we already knew the drowsiness in-
dices for all ∼1200 epochs. To evaluate the performances of
different algorithms, for each subject, we used up to 100 epochs
in a randomly chosen continuous block for calibration, and the
rest ∼1100 epochs for testing. Every time when five epochs
were acquired, we computed the testing performance to show
how the performance of the regression models changed over
time. We ran this evaluation process 30 times, each time with
a randomly chosen 100-epoch calibration block, to obtain sta-
tistically meaningful results. Finally, we repeated this entire
process 15 times so that each subject had a chance to be the
“15th” subject.

The primary performance measured used in this paper is
the root-mean-squared error (RMSE) between the ∼1100 true
drowsiness indices and the corresponding estimates for the test-
ing epochs, which is optimized in the object functions of all
algorithms. The secondary performance measure is the correla-
tion coefficient (CC) between the true drowsiness indices and
the estimates.

C. Preprocessing and Feature Extraction

The 16 subjects had different lengths of experiment, because
the disturbances were presented randomly every 5–10 s. Data
from one subject were not correctly recorded, so we used only
15 subjects. To ensure fair comparison, we used only the first
3600 s data for each subject.

We defined a function [51], [54] to map the response time τ
to a drowsiness index y ∈ [0, 1]:

y = max
{

0,
1 − e−(τ−τ0 )

1 + e−(τ−τ0 )

}
, (23)

τ0 = 1 was used in this paper, as in [54]. The drowsiness indices
were then smoothed using a 90-s square moving-average win-
dow to reduce variations. This does not reduce the sensitivity of
the drowsiness index because the cycle lengths of drowsiness
fluctuations are longer than 4 min [26]. The smoothed drowsi-
ness indices for the 15 subjects are shown in Fig. 2. Observe
that each subject had some drowsiness indices at or close to 1,
indicating drowsy driving.

We used EEGLAB [6] for EEG signal preprocessing. A band-
pass filter (1–50 Hz) was applied to remove high-frequency
muscle artifacts, line-noise contamination and dc drift. Next,

the EEG data were downsampled from 500 to 250 Hz and reref-
erenced to averaged earlobes.

We tried to predict the drowsiness index for each subject
every 3 s. All 30 EEG channels were used in feature extraction.
We epoched 30-s EEG signals right before each sample point,
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Fig. 2. Drowsiness indices of the 15 subjects.

Fig. 3. EEG features and the corresponding drowsiness indices for Subject 1.
(a) Theta band powers for three selected channels and (b) top three PC features.

and computed the average power spectral density (PSD) in the
theta band (4–7.5 Hz) for each channel using Welch’s method
[52], as research [27] has shown that theta band spectrum is a
strong indicator of drowsiness. The theta band powers for three
selected channels and the corresponding drowsiness index for
Subject 1 are shown in Fig. 3(a). Observe that drowsiness index
has strong correlations with the theta band powers.

Next, we converted the 30 theta band powers to dBs. To
remove noises or bad channel readings, we removed channels
whose maximum dBs were larger than 20. We then normalized
the dBs of each remaining channel to mean zero and standard
deviation one, and extracted a few (usually around 10) leading
PC, which accounted for 95% of the variance. The projections
of the theta band powers onto these PCs were then normalized
to [0, 1] and used as our features. Three such features for Subject
1 are shown in Fig. 3(b). Observe that the score on the first PC
has obvious correlation with the drowsiness index, suggesting
that estimating the drowsiness index from the scores on the PCs
is possible.

D. Algorithms

We compared the performances of OwARR and OwARR-
SDS with three other algorithms introduced in [54].

1) Baseline 1 (BL1), which combines data from all 14 ex-
isting subjects, builds a ridge regression model [10], and
applies it to the new subject. That is, BL1 tries to build
a subject-independent regression model and ignores data
from the new subject completely.

Fig. 4. Average performances of the five algorithms across the 15 subjects.
(a) RMSE and (b) CC.

2) Baseline 2 (BL2), which builds a ridge regression model
using only subject-specific calibration samples from the
new subject. That is, BL2 ignores data from existing sub-
jects completely.

3) DAMF, which builds 14 ridge regression models by
combining data from each auxiliary subject with data
from the new subject, respectively, and then uses a
weighted average to obtain the final regression model.
The weights are also the inverse of the training RMSEs,
as in Algorithms 1 and 2.

The ridge parameter σ = 0.01 was used in the above three
algorithms, as in [54]. For OwARR and OwARR-SDS, we used
σ = 0.2, λ = 10, and γ = 0.5. However, as will be shown in
Section IV-H, OwARR and OwARR-SDS are robust to these
three parameters.

E. Regression Performance Comparison

The average RMSEs and CCs for the 5 algorithms across the
15 subjects are shown in Fig. 4, and the RMSEs and CCs for the
individual subjects are shown in Fig. 5. Observe that DAMF,
OwARR, and OwARR-SDS had very similar CCs, and all of
them were better than the CCs of BL1 and BL2. Additionally,
they exhibited the following characteristics.

1) Except for BL1, whose model does not depend on m,
all the other four algorithms gave smaller RMSEs as m
increased, which is intuitive.

2) BL1 had the smallest RMSE when m = 0. However, as
m increased, DAMF, OwARR, and OwARR-SDS quickly
outperformed BL1. This suggests that there is large indi-
vidual difference among the subjects, and hence a subject-
independent model is not desirable.

3) Because BL2 used only subject-specific calibration data,
it cannot build a model when m = 0, i.e., when there was
no subject-specific calibration data at all. However, all the
other four methods can, because they can make use of data
from other subjects. BL2’s performance was the worst,
because it cannot get enough training when there is only
a small number of subject-specific calibration samples.

4) OwARR and OwARR-SDS had almost identical average
RMSEs, which were smaller than those of BL1, BL2, and
DAMF. More importantly, the RMSEs of OwARR and
OwARR-SDS almost converged as soon as the first batch
of subject-specific samples were added, suggesting that
they only need very few subject-specific samples to train,
which is very desirable in practical calibration.
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Fig. 5. Average performances of the five algorithms for each individual subject. Horizontal axis: m, the number of subject-specific calibration samples.
(a) RMSE and (b) CC.

In summary, the three DA-based approaches generally had
better performance than BL1, which does not use subject-
specific data at all, and also BL2, which does not use auxiliary
data at all. This suggests that DA is indeed beneficial. More-
over, our proposed OwARR and OwARR-SDS achieved the
best overall performances among the five algorithms.

We also performed two-way Analysis of Variance (ANOVA)
for each m to check if the RMSE differences among the five
algorithms were statistically significant, by setting the sub-
jects as a random effect. Two-way ANOVA showed statisti-
cally significant differences among them (p < 0.01) for all m.
Then, nonparametric multiple comparison tests using Dunn’s
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TABLE I
p-VALUES OF NONPARAMETRIC MULTIPLE COMPARISONS

OwARR OwARR OwARR OwARR-SDS OwARR-SDS OwARR-SDS OwARR-SDS
m versus BL1 versus BL2 versus DAMF versus BL1 versus BL2 versus DAMF versus OwARR

0 .0007 N/A .4073 .0011 N/A .5091 .5000
5 .0000 .0000 .0000 .0000 .0000 .0000 .4813
10 .0000 .0000 .0000 .0000 .0000 .0000 .3888
15 .0000 .0000 .0000 .0000 .0000 .0000 .4075
20 .0000 .0000 .0000 .0000 .0000 .0000 .4795
25 .0000 .0000 .0000 .0000 .0000 .0000 .4658
30 .0000 .0000 .0000 .0000 .0000 .0000 .4153
35 .0000 .0000 .0001 .0000 .0000 .0001 .4364
40 .0000 .0000 .0002 .0000 .0000 .0004 .3956
45 .0000 .0000 .0004 .0000 .0000 .0006 .4378
50 .0000 .0000 .0005 .0000 .0000 .0013 .3766
55 .0000 .0000 .0007 .0000 .0000 .0035 .2898
60 .0000 .0000 .0011 .0000 .0000 .0108 .2132
65 .0000 .0000 .0015 .0000 .0000 .0097 .2573
70 .0000 .0000 .0024 .0000 .0000 .0143 .2527
75 .0000 .0000 .0038 .0000 .0000 .0133 .3122
80 .0000 .0000 .0047 .0000 .0000 .0294 .2304
85 .0000 .0000 .0058 .0000 .0000 .0513 .1785
90 .0000 .0000 .0071 .0000 .0000 .0383 .2387
95 .0000 .0000 .0086 .0000 .0000 .1091 .1205
100 .0000 .0000 .0117 .0000 .0000 .1179 .1352

Fig. 6. Average number of similar subjects selected by SDS.

procedure [8], [9] were used to determine if the difference be-
tween any pair of algorithms was statistically significant, with a
p-value correction using the false discovery rate method [2]. The
p-values are given in Table I, where the statistically significant
ones are marked in bold. Observe that the differences between
OwARR and the other three algorithms (BL1, BL2, and DAMF)
were always statistically significant when m > 0, so were the
differences between OwARR-SDS and the two baseline algo-
rithms. The difference between OwARR-SDS and DAMF was
statistically significant for m ∈ [5, 75]. There was no statis-
tically significant difference between OwARR and OwARR-
SDS.

Finally, we can conclude that given the same amount of
subject-specific calibration data, OwARR and OwARR-SDS
can achieve significantly better estimation performance than
the other three approaches. Or, in other words, given a desired
RMSE, OwARR, and OwARR-SDS require significantly less
subject-specific calibration data than the other three approaches.
For example, in Fig. 4(a), the average RMSE for BL2 when
m = 100 was 0.2988, whereas OwARR and OwARR-SDS
can achieve even smaller RMSEs without using any subject-
specific calibration samples. The average RMSEs for OwARR
and OwARR-SDS when m = 5 were 0.2347 and 0.2348, re-
spectively, whereas DAMF needed at least 45 subject-specific

Fig. 7. Average training time of the five algorithms. Note that BL1 overlaps
with DAMF.

samples to achieve these RMSEs, and BL2 needed at least 100
samples.

F. Computational Cost

In this section, we compare the computational cost of the five
algorithms, particularly, OwARR and OwARR-SDS, because
the primary goal of SDS is to downselect the number of auxiliary
subjects and hence to reduce the computational cost of OwARR.

Fig. 6 shows the average number of similar subjects selected
by SDS for the 15 subjects. Observe that most of the time fewer
than seven subjects (half of the number of auxiliary subjects)
were selected.

To quantify the computational cost of the five algorithms, we
show in Fig. 7 the training times for different m, averaged over
10 runs and across the 15 subjects. The platform was a Dell
XPS 13 notebook, with Intel Core i7-5500M CPU@2.40 GHz,
8 GB memory, and 256 GB solid-state drive. The software was
MATLAB R2015b running in 64-bit Windows 10 Pro. Each
algorithm was optimized to the best ability of the authors.
Observe that the training time of BL1, BL2, and DAMF was
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Fig. 8. Scalability of OwARR with respect to (a) number of source domains
(each domain had about 1,200 samples) and (b) number of samples in each
source domain (14 source domains were used).

almost constant, whereas the training time of OwARR increased
monotonically as m increased. Interestingly, the training time of
OwARR-SDS decreased slightly as m increased, because Fig. 6
shows that generally the average number of similar subjects
selected by SDS decreased as m increased.

The computational costs of OwARR and OwARR-SDS were
much higher than DAMF, because they used more sophisti-
cated DA approaches. However, except for m = 0, at which
point OwARR and OwARR-SDS had identical training time,
the training time of OwARR-SDS was on average only about
49% of OwARR. This 51% computation time saving is very
worthwhile when the number of source domains is very large
and hence computing OwARR for all the source domains is too
slow.

We also investigated the scalability of OwARR with respect
to Z the number of source domains, and n the number of sam-
ples in each source domain. Because we only had 14 source
domains in this dataset, we bootstrapped them to create addi-
tional domains when Z ≥ 14. The results are shown in Fig. 8.
Observe from Fig. 8(a) that the computational cost of OwARR
increased linearly with the number of source domains, which is
intuitive, because OwARR performs DA for each source domain
separately and then aggregates the results. However, Fig. 8(b)
shows that the computational cost of OwARR increased su-
perlinearly with the number of samples in the source domains.
Least-squares curve fitting found that the computation time was
about 0.0000021 · n1.8 + 0.035 s, i.e., the computational cost is
O(n1.8) for 14 source domains.

Finally, it is important to note that the above analyses are only
for the training of the algorithms. Once the training is done, the
resulting OwARR and OwARR-SDS models can be executed
much faster.

G. Robustness to Noises

It is also important to study the robustness of the five algo-
rithms to noises. According to Zhu and Wu [68], there are two
types of noises: class noise, which is the noise on the model
outputs, and attribute noise, which is the noise on the model
inputs. In this section we focus on the attribute noise.

As mentioned in [68], for each model input, we randomly
replaced q% (q = 0, 10, . . . , 50) of all epochs from the new
subject with a uniform noise between its minimum and max-
imum values. After this was done for both the training and

Fig. 9. Average RMSEs of the five algorithms with respect to different
attribute noise levels.

testing data, we trained the five algorithms on the corrupted
training data and then tested their performances on the corrupted
testing data. The RMSEs for three different m (the number of
labeled subject-specific samples), averaged across 15 subjects
with 5 runs per subject, are shown in Fig. 9. Observe that as
the noise level q increased, generally all algorithms had worse
RMSEs. OwARR and OwARR-SDS still had the smallest RM-
SEs among the five when q was small. However, when q in-
creased, DAMF became the best. This suggests that OwARR
and OwARR-SDS may not be as robust as DAMF with re-
spect to attribute noises, but when the noise level is low, the
performance improvement achieved from the sophisticated op-
timizations in OwARR and OwARR-SDS dominates, and hence
they are still the best algorithms among the five. When the noise
level is high, we may need some noise handling approaches,
e.g., noise correction [68], before applying OwARR and
OwARR-SDS.

H. Parameter Sensitivity Analysis

The OwARR algorithm has three adjustable parameters: σ,
which determines the weight wt for the target domain samples;
λ, which is a regularization parameter minimizing the distances
between the marginal and conditional probability distributions
in the source and target domains; and γ, which maximizes the
approximate Pearson correlation coefficient between the true
and estimated outputs. It is interesting to study whether all of
them are necessary.

For this purpose, we constructed three modified versions of
the OwARR algorithms by setting σ, λ, and γ to zero, respec-
tively, and compared their average RMSEs with that of the orig-
inal OwARR. The results are shown in Fig. 10. Observe that the
original OwARR had better performance than all three modi-
fied versions, suggesting that all three parameters in OwARR
contributed to its superior performance.

Next, we studied the sensitivity of OwARR to the three
adjustable parameters, σ, λ, and γ. The results are shown in
Fig. 11(a)–(c). Observe that OwARR is robust to σ in the range
of [0.1, 0.4], to λ in the range of [1, 20], and to γ in the range of
[0.01, 1].
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Fig. 10. Average RMSEs of OwARR when different regularization terms are
removed.

Fig. 11. Average RMSEs of OwARR across the 15 subjects for different
parameter values. (a) σ in wt ; (b) λ; (c) γ ; (d) number of FSs in conditional
probability distribution adaptation.

Additionally, three type-1 triangular FSs have been used in
conditional probability distribution adaptation (see Section II-E)
in this paper for simplicity. It is also interesting to study the
sensitivity of the OwARR algorithm to the number of FSs.
The results are shown in Fig. 11(d). Observe that OwARR gives
the optimal performance when the number of FSs is between
2 and 5, but its performance gradually deteriorates when the
number of FSs further increases. This is intuitive, because the
target domain has a limited number of labeled training samples,
so as the number of FSs increases, the number of target domain
samples that fall into each fuzzy class decreases, and hence the
computed fuzzy class means are less reliable. As a result, the
distance between the conditional probability distributions [see
(14)] cannot be reliably computed.

Another interesting questions is that what would be the per-
formance of OwARR if no FSs are used at all, i.e., conditional
probability distribution adaptation is disabled? This is corre-
sponding to the left-most slice in Fig. 11(d), where the number
of FSs is zero. Observe that this results in worse RMSEs than
the case that two to five FSs are used in conditional probability
distribution adaptation, suggesting the FS approach is beneficial.

I. Effectiveness of the Ensemble Fusion Strategy

From Algorithm 1 (Algorithm 2) it is clear that the final
step of OwARR (OwARR-SDS) uses ensemble learning: the

Fig. 12. Performances of the 14 base DA models (solid curves) and the final
regression model (dashed blue curve) for a typical subject.

base DA models are aggregated using a weighted average to
obtain the final regression model, and the weight is inversely
proportional to the training RMSE of the corresponding base
DA model. In this section, we study whether this fusion strategy
is effective. The performances of the 14 base DA models and
the final aggregation model for a typical subject are shown
in Fig. 12. Observe that the aggregated model is better than
most base DA models, and is also close to the best base DA
model (which is unknown in practice), suggesting that the fusion
strategy is effective. However, it may be possible that a better
fusion strategy can make the final model outperform all base
DA models. This will be one of our future research directions.

V. CONCLUSION AND FUTURE RESEARCH

TL, which improves learning performance in a new task by
leveraging data or knowledge from other relevant tasks, repre-
sents a promising solution for handling individual differences in
BCI. Previously we have proposed a wAR algorithm [59], [61]
for offline BCI classification problems, an OwAR algorithm [60]
for online BCI classification problems, and an SDS approach
[60], [61] to reduce the computational cost of wAR and OwAR.
In this paper, we have proposed an OwARR algorithm to ex-
tend the OwAR algorithm from classification to regression, and
validated its performance on online estimation of driver drowsi-
ness from EEG signals. Meanwhile, we have also extended the
SDS algorithm for classification mentioned in [60] to regression
problems, and verified that OwARR-SDS can achieve similar
performance to OwARR, but save about half of the computation
time. Both OwARR and OwARR-SDS use FSs to perform part
of the adaptation regularization, and OwARR-SDS also uses
FSs to select the closest source domains.

Although OwARR and OwARR-SDS have demonstrated out-
standing performance, they can be enhanced in a number of
ways, which will be considered in our future research. First,
Fig. 5(a) shows that OwARR and OwARR-SDS had worse
RMSEs than BL1 for some subjects. This indicates that they
still have room for improvement: we could develop a mecha-
nism to switch between BL1 and OwARR (OwARR-SDS) so
that a more appropriate method is chosen according to the char-
acteristics of the new subject, similar to the idea of selective
TL [51]. Second, we will extend OwARR and OwARR-SDS
to offline calibration, where the goal is to automatically label
some initially unlabeled subject-specific samples with a small
number of queries [61]. Semisupervised learning can be used
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here to enhance the learning performance. Third, in this paper
we combine the base learners using a simple weighted average,
where the weights of the base learners are inversely proportional
to their corresponding training RMSEs. This may not be optimal
because what really matter here are the testing RMSEs. In online
calibration, it is not easy to estimate the testing RMSEs because
we do not know what samples will be encountered in the future;
however, in offline calibration, we can better estimate the testing
performances of the base learners using a spectral meta-learner
approach [58], and hence a better model fusion strategy could
be developed. Fourth, similar to offline classification problems
[29], [55], [59], in offline regression problems, we can also
integrate DA with active learning [40], [57] to further reduce
the offline calibration effort. Finally, we will apply the online
and offline DA algorithms to other regression problems in BCI
and beyond to cope with individual differences, e.g., estimating
the continuous values of arousal, valence, and dominance from
speech signals [64] in affective computing.
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APPENDIX

FUZZY SETS

FS theory was first introduced by Zadeh [67] in 1965 and
has been successfully used in many areas, including modeling
and control [49], [65], data mining [35], [62], [66], time-series
prediction [14], [46], decision making [30], [31], [37], etc.

An FS X is comprised of a universe of discourse DX of
real numbers together with a membership function μ

X
: DX →

[0, 1], i.e.,

X =
∫

DX

μ
X

(x)/x. (24)

where
∫

denotes the collection of all points x ∈ DX with
associated membership degree μ

X
(x). An example of an FS

is shown in Fig. 13. The membership degrees are μX (1) =
0, μX (3) = 0.5, μX (5) = 1, μX (6) = 0.8, and μX (10) = 0.
Observe that this is different from traditional (binary) sets,
where each element can only belong to a set completely (i.e.,
with membership degree 1), or does not belong to it at all
(i.e., with membership degree 0); there is nothing in between
(i.e., with membership degree 0.5).

FSs are frequently used in modeling concepts in natural lan-
guage, which may not have clear boundary. For example, we
may define a hot day as temperature equal to or above 30 ◦C,
but is 29 ◦C hot? If we represent hot as a binary set {x|x ≥ 30},
then 29 ◦C is not hot, because it does not belong to the binary
set hot. However, this does not completely agree with people’s
intuition: 29 ◦C is very close to 30 ◦C, and hence it is somewhat
hot. If we represent hot as an FS, we may say 29 ◦C is hot with
a membership degree of 0.9, which sounds more reasonable.

Fig. 13. Example of an FS.
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