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Abstract—Interval type-2 fuzzy logic systems (IT2 FLSs)
have become increasingly popular in the last decade, and have
demonstrated superior performance in a number of applications.
However, the computations in an IT2 FLS are more complex than
those in a type-1 FLS, and there are many choices to be made
in designing an IT2 FLS, including the shape of membership
functions (Gaussian or trapezoidal), number of membership func-
tions, type of fuzzifier (singleton or non-singleton), kind of rules
(Mamdani or Takagi-Sugeno-Kang), type of t-norm (minimum or
product), method to compute the output (type-reduction or not),
and methods for tuning the parameters (gradient-based methods
or evolutionary computation algorithms; one-step or two-step).
While these choices give an experienced IT2 FLS researcher
extensive freedom to design the optimal IT2 FLS, they may look
overwhelming and confusing to IT2 beginners. Such a beginner
may make an inappropriate choice, obtain unexpected results,
and lose interest, which will hinder the wider applications of IT2
FLSs. In this paper we try to help IT2 beginners navigate through
the maze by recommending some representative choices for an
IT2 FLS design. We also clarify two myths about IT2 FLSs. This
paper will make IT2 FLSs more accessible to IT2 beginners.

Keywords—Interval type-2 fuzzy set, interval type-2 fuzzy logic
system

I. INTRODUCTION

Type-2 fuzzy sets (FSs) were introduced by Zadeh in 1975
[37] but have only become popular during the last decade.
Fig. 1 shows the number of publications per year, when
searched in Google Scholar using the exact phrase “type 2
fuzzy” excluding citations and patents1. Observe that the trend
is almost exponential. Another perspective to evaluate the
popularity of type-2 fuzzy logic is to look at the awarded
Outstanding Papers of the IEEE Transactions on Fuzzy Sys-
tems2, the flagship journal on fuzzy logic. It has awarded 14
outstanding papers since 2001, and five of them were on type-
2 fuzzy logic. Remarkably, all last three outstanding papers
were on type-2 fuzzy logic.

Interval type-2 fuzzy logic systems (IT2 FLSs) have dom-
inated the research and applications of type-2 FLSs so far
due to their simpler structure and reduced computational cost.
However, although IT2 FLSs are simpler than (general) type-2
FLSs, they are still more complex than type-1 (T1) FLSs.

There are many choices to be made in designing an IT2
FLS, including the number of membership functions (MFs),

1We did not count the number of publications about interval-valued fuzzy
sets and systems here. The numbers would be larger if we did that.

2http://cis.ieee.org/award-recipients.html#TFSOutstandingPaperAward
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Fig. 1. Number of Google Scholar items on type-2 fuzzy logic.

shape of MFs (Gaussian or trapezoidal), type of fuzzifier (sin-
gleton or non-singleton), kind of rules (Mamdani or Takagi-
Sugeno-Kang, TSK), type of t-norm (minimum or product),
method to compute the output (type-reduction or not), and
method for optimizations (gradient-based methods or evo-
lutionary computation algorithms; one-step or two-step). Of
these the most difficult one is to select the method to compute
the output. In [28] we have presented six methods to compute
exact type-reduction outputs as well as 11 alternatives. While
these many choices give an experienced IT2 FLS researcher
extensive freedom to design an optimal IT2 FLS, they may
look overwhelming and confusing to IT2 beginners. Such a
beginner may make an inappropriate choice, obtain unexpected
results, and lose interest, which will hinder the wider ap-
plications of IT2 FLSs. In this paper we try to reduce the
learning barrier for an IT2 beginner by recommending some
representative choices for an IT2 FLS design.

The remainder of this paper is organized as follows:
Because the design of IT2 FLS builds upon the experience
of designing a T1 FLS, Section 1 introduces considerations
on practical T1 FLS design, and illustrates our recommended
choices with an example; Section 2 does the same for IT2
FLSs; Section 3 clarifies two myths about IT2 FLSs; and,
Section 4 draws conclusions. We assume the readers have
some familiarity with both T1 and IT2 FSs and FLSs, so we
will not explain basic concepts like MFs, upper MFs (UMFs),
lower MFs (LMFs), and footprint of uncertainty (FOU). These
definitions can be found in [16] and [17].

II. CONSIDERATIONS FOR PRACTICAL T1 FLS DESIGNS

A diagram of a T1 FLS is shown in Fig. 2. It consists
of four components: fuzzifier, rulebase, inference engine, and
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defuzzifier. There are many choices to be made in a practical
T1 FLS design. The most important ones are described next.
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Fig. 2. A T1 FLS.

A. Input MF Shapes: Gaussian or Trapezoidal

The two most commonly used MF shapes for T1 FLSs
are Gaussian and trapezoidal. A Gaussian T1 FS is shown in
Fig. 3(a), and is described by

µ(x) = e−
(x−m)2

2σ2 (1)

where m determines the center and σ determines the spread.

A trapezoidal T1 FS is shown in Fig. 3(b). It is determined
by four parameters (a, b, c, d). Note that triangular T1 FSs are
special cases of trapezoidal T1 FSs when b = c.
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Fig. 3. Examples of T1 FSs. (a) Gaussian; (b) trapezoidal.

Performance is the most important consideration in choos-
ing between Gaussian and trapezoidal MFs in a T1 FLS, and
different applications of T1 FLSs have different definitions
of performance. The most popular application is fuzzy logic
control. There are many studies on comparing the control per-
formance of Gaussian and trapezoidal MFs in T1 fuzzy logic
controllers [9], [20]; however, it seems that the conclusion is
highly problem dependent, and it is difficult to conclude which
MF shape is always better for control performance. We expect
the conclusion will be the same for other applications of T1
FLSs, including classification, regression, etc. So, we do not
have a preference on the shape of MFs in a T1 FLS in terms
of performance. However, we need to point out that the input-
output mapping of a T1 FLS may have discontinuities if the
input MFs do not cover each input domain completely [31].
This is an advantage of Gaussian MFs over trapezoidal MFs
because the former always spread out over the entire input
domains.

B. Number of MFs in Each Input Domain

Theoretically, there is no constraint on the number of MFs
one should use in each input domain; however, in practice
some considerations may prevent one from using too many
MFs. First, because the number of rules is an exponential
function of the number of MFs in each input domain (e.g.,
for a 2-input FLS, if each input domain consists of 3 MFs,
then the total number of rules is 32 = 9; however, if each
input domain consists of 9 MFs, then the total number of rules

becomes 92 = 81), the computational cost increases rapidly
with the number of MFs. Second, people may prefer FLSs
to other black-box controllers, e.g., neural networks, because
FLSs can be understood by looking at the rules; however, this
advantage diminishes as the number of rules increases.

It is well-known in psychology that the number of objects
an average human can hold in working memory is 7± 2 [19].
We also suggest ≤ 7 MFs in each input domain to reduce
computational cost and to facilitate understanding.

C. Fuzzifier: Singleton or Non-Singleton

The fuzzifier maps an input vector x = (x′
1, ..., x

′
p)

T into
p fuzzy sets Xi, i = 1, 2, ..., p. There are two categories of
fuzzifiers [16]: singleton and non-singleton. For a singleton
fuzzifier, µXi

(xi) = 1 at xi = x′
i and µXi

(xi) = 0 everywhere
else, as shown in Fig. 4(a). For a non-singleton fuzzifier,
µXi

(xi) = 1 at xi = x′
i and µXi

(xi) decreases from unity as
xi moves away from x′

i, as shown in Fig. 4(b). Conceptually,
the non-singleton fuzzifier implies that the given input value
x′
i is the most likely value to be the correct one from all the

values in its immediate neighborhood; however, because the
input is corrupted by noise, neighboring points are also likely
to be the correct value, but to a lesser degree [16]. Usually non-
singleton µXi

(xi) is symmetric about x′
i because the effect of

noise is most likely to be equivalent on all points.
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Fig. 4. Examples of (a) a singleton FS, and (b) a non-singleton FS.

Although non-singleton fuzzifiers have demonstrated better
performance than singleton fuzzifiers in several applications
[3], [16], singleton fuzzifiers are much more popular in practice
due to their simplicity. We recommend singleton T1 FLSs, and
will only consider singleton T1 FLSs in the sequel.

D. Rules: Mamdani or TSK

There are two kinds of rules: Mamdani [13], where the rule
consequents are FSs, and TSK [23], where the rule consequents
are crisp functions of the inputs. For example, for a 2-input
FLS, a Mamdani rule is of the form

IF x1 is X1 and x2 isX2, THEN y is Y
where Y is a T1 FS, whereas a TSK rule is of the form

IF x1 is X1 and x2 is X2, THEN y = a · x1 + b · x2 + c
where a, b, and c are crisp coefficients.

Mamdani rules were the earliest rules proposed, but TSK
rules are much more popular in practice due to their simplicity
and flexibility. In many applications people set a = b = 0 and
each TSK rule consequent is simply represented by a number.
As will be shown later in this section, under certain popular
defuzzification methods Mamdani rules are equivalent to TSK
rules; so, we suggest starting from TSK rules directly.
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E. t-Norm: Minimum or Product

t-norms are used by the inference engine to combine
the firing levels from multiple antecedents. The two most
popular t-norms are the minimum and the product. Assume
a rule has two antecedents, and their firing levels are µ(x′

1)
and µ(x′

2), respectively. Then, the firing level of the rule is
min[µ(x′

1), µ(x
′
2)] for the minimum t-norm, and µ(x′

1) ·µ(x
′
2)

for the product t-norm.

Both t-norms have been extensively used, and there is no
evidence that one t-norm is better than the other. So, one can
choose either without worrying about performance.

F. Computing the Output

How to compute the output of a T1 FLS depends heavily
on the kind of rules used. For TSK rules, the computation is
straightforward: the output is a weighted average of the crisp
rule consequents, where the weights are the firing levels of the
rules.

There are several different methods for computing the
output of a Mamdani FLS. In the height defuzzifier or the
center-of-sets defuzzifier, each rule consequent is first replaced
by a crisp number, and then a weighted average is used to
combine these numbers. In these cases a Mamdani FLS can
be viewed as a TSK FLS in which the rule consequents are
constants (a = b = 0). Another defuzzifier used in the early
days of Mamdani FLSs is the centroid defuzzifier, which first
combines the output T1 FSs using union and then finds the
centroid of this set. Its complexity has significantly limited its
adoption.

For simplicity and flexibility, we suggest using TSK rules
and weighted average to compute the output of a T1 FLS.

G. Summary

In summary, we recommend singleton TSK T1 FLSs, with
≤ 7 Gaussian MFs in each input domain, either product or
minimum t-norm, and weighted average defuzzification.

H. Example

The following T1 proportional-integral (PI) fuzzy logic
controller (FLC), adapted from [29], is used to illustrate the
computations, following our above recommendations.

The MFs of the T1 PI FLC are shown in Fig. 5 as the bold
dashed lines, where the standard deviation of all Gaussian MFs
is 0.6. Its four rules are:

R1 : IF ė is X ė
1 and e is Xe

1 , THEN u̇ is y1.

R2 : IF ė is X ė
1 and e is Xe

2 , THEN u̇ is y2.

R3 : IF ė is X ė
2 and e is Xe

1 , THEN u̇ is y3.

R4 : IF ė is X ė
2 and e is Xe

2 , THEN u̇ is y4.

where u̇ is the change of the control signal, e is the feedback
error, and ė is the change of error. y1−y4 are given in Table I.

Consider an input vector x′ = (ė′, e′) = (−0.3,−0.6), as
shown in Fig. 5. The firing levels of the four T1 FSs are:

µX ė
1
(ė′) = 0.5063, µX ė

2
(ė′) = 0.0956

TABLE I. THE RULE CONSEQUENTS OF THE T1 AND IT2 FLCS

Xe
1 (X̃e

1 ) Xe
2 (X̃e

2 )

X ė
1 (X̃ ė

1 ) y1 = −1 y2 = −0.5

X ė
2 (X̃ ė

2 ) y3 = .5 y4 = 1
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ė

1
X̃

ė
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ė

2

µ
X

ė
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Fig. 5. Firing levels of the T1 FLC, and firing intervals of the IT2 FLC,
when x′ = (ė′, e′) = (−0.3,−0.6). (a) MFs for ė, and (b) MFs for e.

µXe
1
(e′) = 0.8007, µXe

2
(e′) = 0.0286

The firing levels of its four rules are shown in Table II. The
output of the T1 FLS is

u̇ =
f1y1 + f2y2 + f3y3 + f4y4

f1 + f2 + f3 + f4
= −0.3886.

III. CONSIDERATIONS FOR PRACTICAL IT2 FLS DESIGNS

The diagram of an IT2 FLS is shown in Fig. 6. Its rules
use IT2 FSs instead of T1 FSs; as a result, it needs an extra
step called type-reduction before the defuzzifier to reduce IT2
FSs into T1 FSs. Because an IT2 FLS is more complex than
a T1 FLS, there are more choices to be made in practical IT2
FLS designs. Next we will describe the most important ones,
which will be helpful especially to IT2 beginners.

Fuzzifier

Inference

Engine

Rulebase Defuzzifier

Type-reducer

Crisp

inputs

Crisp

output

IT2 FSs IT2 FSs

T1 FS

Fig. 6. An IT2 FLS.

A. Input FOUs: Gaussian or Trapezoidal

The FOUs in an IT2 FLS also have two main categories
of shapes: Gaussian and trapezoidal. A Gaussian IT2 FS is
usually obtained by blurring the mean or standard deviation
of a baseline Gaussian T1 FS [34], as shown in Fig. 7. In
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TABLE II. FIRING LEVELS OF THE FOUR RULES OF THE T1 FLC

Rule No.: Firing Level → Rule Consequent

R1 : f1 = µ
Xė

1
(ė′) · µXe

1
(e′) = 0.5063 × 0.8007 = 0.4054 → y1 = −1

R2 : f2 = µ
Xė

1
(ė′) · µXe

2
(e′) = 0.5063 × 0.0286 = 0.0484 → y2 = −0.5

R3 : f3 = µ
Xė

2
(ė′) · µXe

1
(e′) = 0.0956 × 0.8007 = 0.0766 → y3 = 0.5

R4 : f4 = µ
Xė

2
(ė′) · µXe

2
(e′) = 0.0956 × 0.0286 = 0.0027 → y4 = 1

either case, only three parameters [(m1,m2, σ) or (m,σ1, σ2)]
are needed to define a Gaussian IT2 FS. Of course, one can
also blur both the mean and the standard deviation to obtain a
more general Gaussian FOU, but this approach is rarely used
in practice.

1
X̃

X

X

X

mm1 m2 x

µ

(a)

1
X̃

X

X

X

m x

µ

(b)

Fig. 7. Gaussian T1 and IT2 FSs. (a) A Gaussian T1 FS (thick dashed curve)
and a Gaussian IT2 FS obtained from blurring the mean of the T1 FS; (b) a
Gaussian T1 FS (thick dashed curve) and a Gaussian IT2 FS obtained from
blurring the standard deviation of the T1 FS.

A trapezoidal IT2 FS can also be obtained by blurring a
baseline trapezoidal T1 FS [35], as shown in Fig. 8. Generally,
nine parameters are needed to represent a trapezoidal IT2 FS,
(a, b, c, d, e, f, g, i, h) shown in Fig. 8, where (a, b, c, d)
determines the UMF and (e, f, g, i, h) determines the sub-
normal LMF.

x

µ

1

a′ b c de f g i

h

X%
X

X

a b′ c′ d ′

X

Fig. 8. A trapezoidal T1 FS (thick dashed curve) and a trapezoidal IT2 FS,
represented by nine parameters.

From the above description we can conclude that generally
it is simpler to represent a Gaussian IT2 FS because it only
needs three or four parameters, whereas a trapezoidal IT2 FS
needs nine parameters.

In [27] we presented 12 considerations about choosing
between Gaussian and trapezoidal FOUs for an IT2 FLS,
including representation, construction, optimization, adaptive-
ness, novelty, analytical structure, continuity, monotonicity,
stability, robustness, computational cost, and control perfor-
mance. Each MF type has its own advantages: Gaussian IT2
FLSs are simpler in design because they are easier to represent
and optimize, always continuous, and faster to compute for
small rulebases, whereas trapezoidal IT2 FLSs are easier to
analyze, although the analysis is still very complex.

Here we focus only on continuity [31] because it was
widely ignored before. The following example illustrates the
input-output mappings of three 2-input IT2 FLSs using the
popular Karnik-Mendel type-reducer3 [12], [15]. Fig. 9(a)
shows the three MFs in each input domain, and Fig. 9(b)
shows the corresponding input-output mappings. The FOUs
for x1 are the same in all the cases, where the FOUs for x2

are not. Observe that:

1) When the input UMFs and LMFs for both x1 and
x2 fully cover their domains, as shown in the first
column of Fig. 9(a), the corresponding input-output
mapping is continuous.

2) When the two input domains are fully covered by the
UMFs but at least one point in the domain of x2 is
not covered by the LMFs, as shown in the middle
column of Fig. 9(a), the corresponding input-output
mapping has discontinuities.

3) When the input UMFs and LMFs for x2 do not fully
cover its domain, as shown in the last column of
Fig. 9(a), the corresponding input-output mapping has
more obvious discontinuities.

In summary, we recommend Gaussian FOUs for their
simplicity and automatic guarantee of continuity.

B. Number of MFs in Each Input Domain

Like T1 FLSs, theoretically one can use an arbitrary num-
ber of FOUs in each input domain of an IT2 FLS. However,
we again suggest ≤ 7 MFs in each input domain to reduce
computational cost and to facilitate understanding.

C. Fuzzifier: Singleton or Non-Singleton

The fuzzifier of an IT2 FLS maps an input vector x =
(x′

1, ..., x
′
p)

T into p IT2 FSs X̃i, i = 1, 2, ..., p. Like its T1
counterpart, the fuzzifier of an IT2 FLS can also be singleton
or non-singleton [16].

3The EIASC algorithm introduced later in this section is a more efficient
implementation of this type-reducer; however, the outputs are identical from
both.
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Fig. 9. Example input-output mappings of 2-input IT2 FLSs. (a) The input MFs; (b) The input-output mappings computed by the Karnik-Mendel method.

For a singleton fuzzifier, µX̃i
(xi) = 1/1 at xi = x′

i and

µX̃i
(xi) = 1/0 everywhere else. For a non-singleton fuzzifier,

the output can be a T1 FS, as shown in Fig. 4(b), or even an
IT2 FS, as shown in Fig. 7.

Although IT2 FLSs using non-singleton fuzzifiers have
demonstrated better performance than singleton fuzzifiers in
several applications [16], singleton fuzzifiers are much more
popular in practice due to their simplicity. We recommend
singleton IT2 FLSs, and will only consider singleton IT2 FLSs
in the sequel.

D. Rules: Mamdani or TSK

There are two kinds of rules for an IT2 FLS: Mamdani,
where the rule consequents are IT2 FSs, and TSK, where the
rule consequents are crisp functions of the inputs. For example,
for a 2-input IT2 FLS, a Mamdani rule is of the form “IF x1

is X̃1 and x2 is X̃2, THEN y is Ỹ ”, where Ỹ is an IT2 FS,
whereas a TSK rule is of the form “IF x1 is X̃1 and x2 is X̃2,
THEN y = [a ·x1+ b ·x2+ c, a ·x1+ b ·x2+ c]”, where a, a,

b, b, c, and c are crisp numbers. For simplicity, one may set
a = a, b = b, and c = c, in which case each rule consequent
becomes a single function of the inputs instead of an interval
of functions. One can also set a = a = 0 and b = b = 0, in
which case each rule consequent becomes a constant interval
[c, c]. In the simplest case, one sets a = a = 0, b = b = 0,
and c = c, i.e., each rule consequent becomes a single number.
The latter two approaches are much more popular in practice
due to their simplicity, and are our recommended forms to use.

E. t-Norm: Minimum or Product

Both minimum and product t-norms have been extensively
used in IT2 FLSs, and there is no evidence that one t-norm
is better than the other. So, one can choose either without
worrying about performance.

F. Computing the Output

How to compute the output of an IT2 FLS depends heavily
on the kinds of rules used. There are several different methods
for computing the output of Mamdani FLSs [16]. The most
popular method uses center-of-sets type-reduction, in which
the centroid of each rule consequent IT2 FS is computed to
replace the actual FOU. This is equivalent to the simplified
TSK model, where each rule consequent is an interval [c, c].
This is also our recommended approach.

Next we describe two ways to compute the output in this
case.

1) Type-Reduction and Defuzzification: The classical IT2
FLS, as shown in Fig. 6, has separate type-reduction and
defuzzification steps.

Type-reduction combines Fn, the firing interval of the
rules, and Y n, the corresponding rule consequents. There are
many such methods [16]. The most commonly used one is the
center-of-sets type-reducer [16]:

Y =

∑N

n=1 Y
nFn∑N

n=1 F
n

=
⋃

yn∈Y n

fn∈Fn

∑N

n=1 y
nfn∑N

n=1 f
n

= [yl, yr] (2)
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where,

yl = min
k∈[1,N−1]

∑k
n=1 y

nf
n
+
∑N

n=k+1 y
nfn

∑k
n=1 f

n
+
∑N

n=k+1 f
n

(3)

yr = max
k∈[1,N−1]

∑k

n=1 y
nfn +

∑N

n=k+1 y
nf

n

∑k
n=1 f

n +
∑N

n=k+1 f
n (4)

Several efficient methods have been proposed for computing
yl and yr [6], [10]–[12], [14], [30], [32], [36]. Comprehensive
descriptions and comparisons are given in [15], [28]. The
Enhanced Iterative Algorithm with Stop Condition (EIASC),
presented in Table III, makes the best comprise between speed
and simplicity, and is the suggested algorithm to use. A Matlab
implementation of EIASC can be found in [32].

Once yl and yr are obtained, the final defuzzified output
is:

y =
yl + yr

2
. (5)

TABLE III. THE EIASC ALGORITHMS. NOTE THAT {yn}n=1,...,N

AND {yn}n=1,...,N MUST BE SORTED IN ASCENDING ORDER,
RESPECTIVELY.

Step For computing yl For computing yr

1 Initialize Initialize

a =
∑

N
n=1 ynfn a =

∑
N
n=1 ynfn

b =
∑

N
n=1 fn b =

∑
N
n=1 fn

L = 0 R = N
2 Compute Compute

L = L+ 1 a = a + yR(f
R

− fR)

a = a + yL(f
L

− fL) b = b + f
R

− fR

b = b + f
L

− fL yr = a/b

yl = a/b R = R − 1

3 If yl ≤ yL+1, stop; If yr ≥ yR, stop;

otherwise, go to Step 2. otherwise, go to Step 2.

2) Defuzzification Directly: There are also many proposals
to by-pass type-reduction4 and compute the defuzzified output
directly [1], [4], [5], [7], [8], [15], [21], [24], [33]. A compre-
hensive description and comparison is also given in [28]. The
Nie-Tan method [21], which computes the output as

y =

∑N

n=1 y
n(fn + f

n
)∑N

n=1(f
n + f

n
)

(6)

gives the best comprise between speed and complexity, and is
our recommended one to use.

G. Optimization: Gradient-Based Methods or Evolutionary
Computation Methods

Because an IT2 FLS usually has many parameters to
optimize, e.g., shape of the MFs, rule consequents, etc, there
is no way to tune them manually. Automatic optimization
is needed. Generally there are two major categories of opti-
mization algorithms for IT2 FLSs: gradient-based algorithms,
and heuristic algorithms, particularly evolutionary computation
(EC) algorithms. EC algorithms are recommended for the
optimization of IT2 FLSs because derivatives are difficult to

4Although the type-reduced set provides a measure of the uncertainties that
have flowed through all of the IT2 FLS computations, it does not have to be
used in practical applications.

compute in an IT2 FLS, and such algorithms are globally con-
vergent [18]. There are many such EC algorithms, e.g., genetic
algorithms, simulated annealing, particle swarm optimization,
etc, and we have no preference for any one of them.

H. Optimization: One-Step Approach or Two-Step Approach

Once an EC algorithm is chosen, there are two tuning
strategies: one-step approach, where an IT2 FLS is tuned from
scratch, or two-step approach, where an optimal baseline T1
FLS is tuned first and then optimal FOUs are added to it. In
the two-step approach one can include the optimal T1 FLS
in the population for the IT2 FLS, which guarantees that the
performance of the resulting IT2 FLS is at least as good
as the T1 FLS. Details on how to do that using quantum
particle swarm optimization are given in [18]. Additionally,
the two-step approach also reveals how much performance
improvement an IT2 FLS gets over the optimal T1 FLS,
and hence is very useful to practitioners: if the performance
improvement is not significant, a practitioner may choose to
use the T1 FLS for simplicity and speed. For these reasons,
we recommend the two-step approach.

I. Summary

In summary, we recommend singleton TSK IT2 FLSs, with
≤ 7 Gaussian FOUs in each input domain, and either product
or minimum t-norm. The output can be computed by using:
1) EIASC type-reduction and then defuzzification; or, 2) the
Nie-Tan method directly. The optimization should be done by
EC algorithms using a two-step approach.

More specifically, assume an IT2 FLS has p inputs and N
rules of the form:

R̃n : IF x1 is X̃n
1 and ... and xp is X̃n

p , THEN y is Y n

n = 1, ..., N

For an input vector x′ = (x′
1, x

′
2, ..., x

′
p)

T, our recommended
procedure for computing the output of the IT2 FLS is:

1) Compute the membership interval of x′
i for each

X̃n
i , [µXn

i
(x′

i), µX
n

i
(x′

i)], i = 1, 2, ..., p and n =
1, 2, ..., N .

2) Compute the firing interval of the nth rule, Fn:

Fn = [µXn
1
(x′

1)× · · · × µXn
I
(x′

I),

µX
n

1
(x′

1)× · · · × µX
n

I
(x′

I)]

≡ [fn, f
n
], n = 1, ..., N (7)

Note that the minimum t-norm can also be used in
(7).

3) Compute the output by combining Fn and the cor-
responding rule consequents. This can be done by
EIASC type-reduction and defuzzification separately,
or by defuzzification directly using (6).

J. Example

The following example, adapted from [29], is used to
illustrate the computations in an IT2 FLC, following our
recommendations.
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An IT2 PI FLC may be constructed by blurring the T1 FSs
of a T1 FLC to IT2 FSs. In this paper we blur the standard
deviation of the T1 Gaussian MFs from 0.6 to an interval
[0.5, 0.7], as shown in Fig. 5. The rulebase of the IT2 FLC is

R̃1 : IF ė is X̃ ė
1 and e is X̃e

1 , THEN u̇ is y1.

R̃2 : IF ė is X̃ ė
1 and e is X̃e

2 , THEN u̇ is y2.

R̃3 : IF ė is X̃ ė
2 and e is X̃e

1 , THEN u̇ is y3.

R̃4 : IF ė is X̃ ė
2 and e is X̃e

2 , THEN u̇ is y4.

y1 − y4 have been given in Table I.

Consider again the input vector x′ = (ė′, e′) =
(−0.3,−0.6), as shown in Fig. 5. The firing intervals of the
four IT2 FSs are:

[µX ė
1
(ė′), µ

X
ė

1
(ė′)] = [0.3753, 0.6065]

[µX ė
2
(ė′), µ

X
ė

2
(ė′)] = [0.0340, 0.1783]

[µXe
1
(e′), µX

e

1
(e′)] = [0.7261, 0.8494]

[µXe
2
(e′), µX

e

2
(e′)] = [0.0060, 0.0734]

The firing intervals of the four rules are shown in Ta-
ble IV. When type-reduction and defuzzification are performed
separately, the EIASC algorithm gives yl = −0.9288 and
yr = −0.4209, and the final defuzzified output is u̇ = yl+yr

2 =
−0.6748. When (6) is used, the final output is −0.6932.

Note that the outputs computed from the two approaches
are different, given the same rules and MFs. However, in
practice one first determines which defuzzification method to
use, and then tunes the rules and MFs accordingly, so the
optimal rules and MFs for the two defuzzification methods
will be different.

K. Software

Matlab has a Fuzzy Logic toolbox which considers only T1
FLSs. Several researchers have developed their own Matlab
toolboxes/packages for IT2 FLSs, e.g., Mendel’s software5,
Castillo et al.’s toolbox [2], Wu’s package [25], Ozek and
Akpolat’s toolbox [22], etc. Additionally, Wagner developed
a Java based toolkit, Juzzy, for T1, IT2 and general T2 FLSs6.

IV. MYTHS ABOUT IT2 FLSS

The successful applications of IT2 FLSs have created some
myths about their performance. Here we shall clarify two of
them. To do this we will use IT2 FLCs as an example in the
illustrations, but the clarifications can also be extended to other
applications of IT2 FLSs.

A. Myth 1: Changing T1 FSs to IT2 FSs Automatically Im-
proves Performance

Many applications have shown that IT2 FLCs can achieve
better control performance than their T1 counterparts. This has
been attributed to the FOUs (which is true), so an IT2 FLC
beginner may get the impression that by changing T1 FSs to
IT2 FSs the resulting IT2 FLC will automatically have better

5http://sipi.usc.edu/∼mendel/software/
6http://juzzy.wagnerweb.net/

performance. Unfortunately, this is not the case. Carefully
designed FOUs usually improves performance, but arbitrary
FOUs almost never do. To achieve better performance, one
needs to re-tune the IT2 FLCs, either from scratch, or using the
T1 FLC as a baseline [18], [34]. There is no black magic that,
by changing T1 FSs to IT2 FSs, an IT2 FLC will automatically
outperform a T1 FLC. The fundamental differences between
T1 and IT2 FLCs are explained in [26]; these will help the
IT2 FLC beginner to understand the effects of the FOUs.

B. Myth 2: Optimizing an IT2 FLC in Known Scenarios Guar-
antees Its Optimal Performance in All Unknown Scenarios

We have seen many cases where people tune an IT2 FLC
for some operating conditions but then apply it to different
operating conditions, and claim that the performance of the
IT2 FLC is not as good as expected. This is because the
design procedure is not correct. If one wants the IT2 FLC to
have good performance under a variety of operating conditions,
then all these conditions must be considered during the tuning
phase. For example, in [34] we wanted the IT2 FLC to be
able to respond quickly to setpoint changes, and also to ro-
bustly handle modeling uncertainties including time delay and
parameter variations of the underlying physics-based model.
All these different scenarios were considered during the design
phase. As a result, experimental results were consistent with
simulation results. If any of those scenarios was not considered
in the design phase, e.g., if the IT2 FLC was tuned without
considering time delay, but was then applied to a plant with
time delay, then very likely the performance would have been
much worse.

V. CONCLUSIONS

There are many choices to be made in designing a well-
performing IT2 FLS, including the shape of membership
functions (Gaussian or trapezoidal), number of membership
functions, type of fuzzifier (singleton or non-singleton), kind
of rules (Mamdani or TSK), type of t-norm (minimum or
product), method to compute the output (type-reduction or
not), and optimization method (gradient-based methods or
evolutionary computation algorithms; one-step or two-step).
While these choices give an experienced IT2 FLS researcher
extensive freedom to design the optimal IT2 FLS, they may
look overwhelming and confusing to IT2 beginners. To help
the IT2 beginner overcome the IT2 learning barrier, this paper
recommends the following representative choices for IT2 FLSs
based on our experience: singleton fuzzifier, TSK rules, ≤
7 Gaussian FOUs in each input domain, either product or
minimum t-norm, computing the output by using EIASC type-
reduction and then defuzzification, or, the Nie-Tan method
directly, and two-step EC algorithms for optimization. We
are not claiming our recommendations are always the best.
An experienced researcher on IT2 FLSs may be able to
design better IT2 FLSs by using other choices; however, our
recommendations have a high chance of leading to IT2 FLSs
that can outperform T1 FLSs. We have also clarified two myths
about IT2 FLSs.

We hope that this paper will be very useful to IT2 begin-
ners, and will also help to promote wider applications of IT2
FLSs.
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TABLE IV. FIRING INTERVALS OF THE FOUR RULES OF THE IT2 FLC

Rule No.: Firing Interval → Rule Consequent

R̃1 : [f1, f
1
] = [µ

Xė
1
(ė′) · µXe

1
(e′), µ

Xė
1
(ė′) · µXe

1
(e′)] = [0.3753 × 0.7261, 0.6065 × 0.8494] = [0.2725, 0.5152] → y1 = −1

R̃2 : [f2, f
2
] = [µ

Xė
1
(ė′) · µXe

2
(e′), µ

Xė
1
(ė′) · µXe

2
(e′)] = [0.3753 × 0.0060, 0.6065 × 0.0734] = [0.0022, 0.0445] → y2 = −0.5

R̃3 : [f3, f
3
] = [µ

Xė
2
(ė′) · µXe

1
(e′), µ

X
ė
2
(ė′) · µ

Xe
1
(e′)] = [0.0340 × 0.7261, 0.1783 × 0.8494] = [0.0247, 0.1514] → y3 = 0.5

R̃4 : [f4, f
4
] = [µ

Xė
2
(ė′) · µXe

2
(e′), µ

Xė
2
(ė′) · µ

Xe
2
(e′)] = [0.0340 × 0.0060, 0.1783 × 0.0734] = [0.0002, 0.0131] → y4 = 1
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