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Abstract— Epilepsy is a neurological illness caused by
abnormal discharge of brain neurons, where epileptic
seizure can lead to life-threatening emergencies. By ana-
lyzing the encephalogram (EEG) signals of patients with
epilepsy, their conditions can be monitored and seizure
can be detected and intervened in time. As the identifica-
tion of effective features in EEG signals is important for
accurate seizure detection, this paper proposes a multi-
view deep feature extraction method in attempt to achieve
this goal. The method first uses fast Fourier transform
(FFT) and wavelet packet decomposition (WPD) to con-
struct the initial multi-view features. Convolutional neural
network (CNN) is then used to automatically learn deep fea-
tures from the initial multi-view features, which reduces the
dimensionality and obtain the features with better seizure
identification ability. Furthermore, the multi-view Takagi-
Sugeno-Kang fuzzy system (MV-TSK-FS), an interpretable
rule-based classifier, is used to construct a classification
model with strong generalizability based on the deep multi-
view features obtained. Experimental studies show that the
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classification accuracy of the proposed multi-view deep
feature extraction method is at least 1% higher than that
of common feature extraction methods such as principal
component analysis (PCA), FFT and WPD. The classifica-
tion accuracy is also at least 4% higher than the average
accuracy achieved with single-view deep features.

Index Terms— EEG, seizure detection, multi-view, feature
extracting, deep learning.

I. INTRODUCTION

ABOUT 1-2% of people worldwide suffer from epilepsy.
The unpredictability of epileptic seizures is the main

cause of disability and even death. Although most people
with epilepsy appear the same as able-bodied people during
non-seizure periods, the spontaneity of seizures affects the
quality of life seriously and can be fatal. Encephalogram
(EEG) is an important means to record the activities of
brain neurons. The electrophysiological signals generated
by the neurons contain information that reflects the overall
brain activities at the cerebral cortex. Since the electrical
brain waves resulting from abnormal discharge of neurons
during seizures are different from those generated during
normal discharges, EEG can be used to detect seizures
by identifying the characteristic brain signals, which is
instrumental for predicting the onset of seizures and applying
in-time interventions. On the other hand, accurate seizure
detection is a key to automatic closed-loop treatment, where
electrical stimulation, drug infusion, cooling or biofeedback,
for example, can be applied to patients when seizure is
detected. The types and the extent of closed-loop treatments
may also be determined automatically based on the features
extracted from the epileptic EEG signals that inform patient’s
condition. Besides, accurate seizure detection can be used to
assess patient’s condition during neurological surgery.

With the advance of machine learning, intelligent algorithms
have been increasingly applied to improve the accuracy of
EEG-based seizure detection. These algorithms include classi-
fication methods such as support vector machines (SVM) [6],
[7], naive Bayes (NB) [9], neural networks [11] and fuzzy
logic systems [13], [14], as well as feature extraction methods
like principal component analysis (PCA) [15], wavelet packet
decomposition (WPD) [6], [16] and high order crossings
(HOC) [17]. For seizure detection, features are extracted from
raw EEG signals to train classification models that can identify
different states of epilepsy. Despite the proliferation of fea-
ture extraction and classification methods, extracting effective
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features with essential information for accurate seizure detec-
tion is still a critical challenge.

In recent years, deep learning emerges as an effective
machine learning paradigm that has received extensive atten-
tion in feature learning. In deep learning, the idea of multi-
level combinations is adopted to achieve complex feature
representations through a large number of simple expressions.
It learns and adjusts the weights at each layer of the neural
network to obtain the features that are more likely to attain
the desired output. That is, the input features are optimized at
each layer to learn increasingly discriminative features. Deep
learning techniques have been applied effectively for EEG
signal processing. Different feature extraction methods are
adopted to extract features from the EEG signals [18]–[20],
whereby seizure detection is performed using convolutional
neural network (CNN).

On the other hand, multi-view learning technology also
finds applications in epileptic seizure detection. Various feature
extraction methods are applied to obtain multi-view datasets
of EEG signals [14], [21]. The datasets are then used for
detecting epileptic seizure by using multi-view learning tech-
niques. Multi-view learning technology is a learning par-
adigm with multi-view data that leverages the similarities
and differences among the views. Multi-view learning algo-
rithms can be divided into three types, namely, co-training,
multiple kernel learning and subspace learning. Co-training
algorithms perform alternate training of different views to
maximize data consistency among the views. Multiple kernel
learning algorithms train models using different kernels that
are associated with different views, such that the kernels
are combined linearly or nonlinearly to improve learning
performance. Subspace learning algorithms consider data from
multiple views from a common subspace and use different
techniques to obtain the subspaces of the multi-view data.
Although the multi-view learning approaches are significantly
different, they are primarily based on the principles of con-
sensus or complementarity to ensure successful multi-view
learning.

In order to construct effective EEG features for seizure
detection, this paper proposes a deep multi-view feature
extraction method for EEG signals, which is based on multi-
view and deep learning technology to construct classifier
for seizure detection. The deep multi-view feature learning
method proposed in this paper is summarized below.

1) Construction of initial multi-view EEG features Many
methods have been proposed to construct features from
EEG signals, each with specific advantages. In this
paper, multi-view features are used to combine the
advantages of these methods for seizure detection. The
multi-view features constructed here include frequency
domain features acquired by fast Fourier transform
(FFT), time-frequency features acquired from WPD, and
the original time domain features.

2) Construction of deep multi-view features To improve
the effectiveness of the initial multi-view features, CNN
is used to construct deep multi-view features based on
the initial multi-view data. Compared with the initial
multi-view features, the deep multi-view features

extracted has lower dimensionality and higher discrim-
inability.

3) Construction of multi-view learning classifier Finally,
multi-view classifier learning technology is adopted to
train the classification model based on the deep multi-
view features learned by using CCN, which yields a
more generalized multi-view classifier for seizure detec-
tion with EEG signals.

The proposed method is advantageous in that it utilizes not
only deep learning but also multi-view learning, where shallow
features of the EEG signals are first generated from different
views to construct the multi-view deep features with deep
learning. This can optimize the feature representation effec-
tively for seizure detection. When multi-view deep features
are integrated with multi-view learning to generate the multi-
view classifier for seizure detection, the generalizability of the
proposed method is further enhanced.

This paper is organized as follows. Section II describes
the relevant technical background of the proposed algorithm.
Section III proposes the seizure detection algorithm based on
deep multi-view feature learning. Experimental analyses are
given in Section IV. Finally, conclusions and future work are
described in Section V.

II. RELATED WORK

This section provides a brief introduction of the work related
to the proposed method, including the significance of using
EEG signals for seizure detection, the application of machine
learning and deep learning in epileptic seizure detection, and
a review of multi-view learning techniques.

A. Seizure Detection Using EEG Signals

EEG signals reflect the activities of brain neurons and have
been widely used in the fields of epileptic seizure detection.
Automatic algorithms are developed to analyze EEG signals so
that the information contained inside the signals is converted
into distinctive outputs for determining different states of
epilepsy, e.g. whether seizure is about to occur or is occurring.
A major goal of EEG-based epilepsy detection is to make
such conversion as fast and accurate as possible. A variety
of epilepsy detection algorithms have been proposed in recent
years [8], [10], [12], [14], [22]. In [22], a method adopting
transfer learning and semi-supervised learning is used to
classify the status of epilepsy with EEG signals. In [14], multi-
view learning technology is used for automatic recognition of
epileptic EEG signals based on shallow features. In [8], [10],
[12], deep learning techniques are used to automatically clas-
sify epilepsy by using deep features. These algorithms apply
multi-view learning and deep learning techniques separately
and demonstrate promising performance. This suggests that
the integration of multi-view learning and deep learning is a
promising approach to further increase the accuracy of EEG-
based epilepsy detection.

B. EEG Epilepsy Detection Based on Machine Learning

Machine learning techniques have received considerable
attention for automatic seizure detection with EEG signals.
In [23], four methods – random forest (RF), decision tree
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(DT) algorithm C4.5, SVM+RF, SVM+C4.5 – are used to
detect seizure, where RF yields the best classification results.
In [24], approximate entropy and sample entropy extracted
by WPD are used as features, whereby SVM and extreme
learning machine are used as classifiers for epileptic seizure
detection. Besides, WPD and kernel PCA (KPCA) are adopted
in [25] for dimensionality reduction, followed by using Takagi-
Sugeno-Kang (TSK) fuzzy logic system as the classifier.
Advancement in automatic seizure detection is achieved with
these algorithms.

With the development of deep learning, classical algo-
rithms such as stacked auto-encoder [26]–[28], deep belief
networks [29]–[31], CNN [32]–[34] and recurrent neural net-
works [35]–[38] have been applied to biomedicine effectively.
Attempts have been made to use CNN to process EEG signals.
For example, CNN is used to perform one-dimensional con-
volution on the original raw EEG signals to predict epileptic
seizure [18]. In [19], EEG signals are transformed to the
frequency domain by Fourier transform and classified using
CNN. Moreover, EEG signals are encoded into pixel colors
through feature processing to form a two-dimensional pattern
[20] for epileptic seizure prediction. In general, deep learning
techniques have demonstrated promising performance in EEG
signal processing.

C. Multi-View Learning Technology

Multi-view learning is a machine learning paradigm devel-
oped for datasets with features from different views. Since
multi-view cooperation can effectively utilize both the inde-
pendence of each view and the correlation between different
views in the learning process, a better modeling effect is
achieved when compared with models obtained based on
single-view data. For dataset without natural segmentation of
features from different views, it is possible to manually con-
struct different views for multi-view learning to achieve better
learning effect than methods that use the original features from
a single view only.

Canonical correlation analysis (CCA) [39], [40], co-training
[41], [42], sparse multi-view SVM [43] are common algo-
rithms that have been applied to different multi-view data
application scenarios. In fact, multi-view learning techniques
have been applied to detect epileptic seizure with EEG signals.
Tensor decomposition is performed on multi-view features to
extract new features which can enhance classification perfor-
mance for seizure detection [21]. Multi-view fuzzy system
classifier is proposed in [14] for epileptic seizure detection
with EEG signals, where multi-view data are obtained by
adopting different feature extraction methods and utilizing
TSK fuzzy system as classifier to train the detection model.

III. EPILEPSY DETECTION BASED ON EEG SIGNALS

USING DEEP MULTI-VIEW FEATURE LEARNING

In the proposed method, the initial multi-view features are
constructed using FFT and WPD with the original raw EEG
signals. The features are then used to generate deep multi-
view features using deep neural networks and CNN. Finally,
a multi-view classification model is trained using the deep

multi-view features. In this section, the overall framework
of the proposed method is described in subsection A. The
details of the initial feature representation from three different
views of the EEG signals are given in subsection B. The
structure of the CNN used to extract deep features from the
different views is introduced in subsection C. The procedure
of constructing the classifier using the multi-view Takagi-
Sugeno-Kang fuzzy system (MV-TSK-FS) and deep multi-
view features is described in subsection D.

A. Framework of Deep Multi-View Learning for Epilepsy
Detection

The framework of the proposed method is shown in Fig. 1. It
consists of three core components, i.e., the construction of the
initial multi-view feature, the automatic learning of deep multi-
view features and the training of the multi-view classifier.

B. Initial Multi-View Features Construction

The original EEG signals are time domain signals. Although
the signals contain some useful time features, features in
other domains can be used to extract more discriminative
information. Transformation of the EEG signals from the time
domain can be conducted using traditional feature extraction
techniques. To obtain frequency domain features, Fourier
transform can be used to transform the signals from the time
domain to the frequency domain. Any continuous signals can
be transformed to the frequency domain provided that the sig-
nals are periodic. Furthermore, wavelet transform can be used
to transform the signals into the time-frequency domain and
obtain the instantaneous frequency at each time point while
retaining the time features of the signals. When calculating
the instantaneous frequency, since the signal length is very
short, the frequency features obtained by wavelet transform is
more accurate.

In the proposed method, features are extracted from the
original EEG signals from three views, i.e., time domain,
frequency domain and time-frequency domain, to construct
the initial multi-view EEG data.

1) Time Domain: The original EEG signals are time-series
signals that change with time. A discrete point in the sig-
nals represents the energy intensity at a certain time, or the
measured voltage value at that moment. This paper uses the
original EEG signals as the features of the time domain view.
Fig. 2 plots a channel of the EEG signals from the time
domain, where the horizontal axis is time and the vertical axis
is the amplitude of the signal.

2) Frequency Domain: EEG signals can be considered as
the superposition of signals of different frequencies. The
frequency range of interest spans from 0 Hz to 60 Hz. It is
divided into six frequency bands: Delta-1 (0-2 Hz), Delta-2
(2-4 Hz), Theta (4-8 Hz), Alpha (8-15 Hz), Beta (15-30 Hz)
and Gamma (30-60 Hz).

In this study, in order to reduce the number of features in
the frequency domain and to preserve the original features,
the sampling interval after discrete Fourier transform is set
to 1 Hz. The studies in [44], [45] show that the features
of epileptic seizure mainly appear between 4Hz and 30Hz.
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Fig. 1. Framework of the proposed method.

Fig. 2. Time domain features of EEG signals.

Fig. 3. Frequency domain features of EEG signals.

Hence, we have adopted the frequency band between 4 Hz and
30 Hz in our experiments to construct the initial features in the
frequency view. Fig. 3 shows the frequency domain features
obtained by transforming the time domain signals shown in
Fig. 2, where the horizontal and the vertical axis represent
frequency and amplitude respectively.

3) Time-Frequency Domain: Time-frequency features
describe the instantaneous frequency of the signals at various
time points. Wavelet decomposition is a commonly used
method to transform time domain signals to the time-
frequency domain, where the trigonometric function base of
Fourier transform is changed to the wavelet function base.
There are two variables in the wavelet functions, i.e., a
and τ , where a controls the expansion and contraction of
the wavelet transform, i.e., frequency; and τ controls the
translation of the wavelet transform, i.e., time. By controlling
these two variables, wavelet transform can realize adaptive
time-frequency signal analysis on multiple scales.

WPD is a common wavelet transform method [24], [46].
It is used in this paper to obtain time-frequency features
of the EEG signals. The wavelet basis function adopted is
Daubechies (dbN), which has good regularity. Since the order
of wavelet basis functions increases with the smoothness of the

Fig. 4. Time-frequency features of EEG signals.

functions and the localization ability in the frequency domain,
the higher the order of the functions, the better the results of
band division. However, high order vanishing moments would
lead to increase in computation time, which is undesirable and
deteriorates real-time performance. In this paper, the order
of the wavelet functions is set to 4. Since the signals to
be transformed into the time-frequency domain are three-
dimensional data (channel ∗ frequency ∗ time), the number of
features after transformation is usually very high. To reduce
the number of features and the computation time, a large
sampling interval of 2 Hz is used in the study. As for Fourier
transform, the frequency range between 4 Hz and 30 Hz
is only considered [44], [45] as discussed above. Fig. 4
shows the time-frequency domain features extracted from the
time domain signals shown in Fig. 2, where the number of
decomposition layers of the wavelet transform is set to 6.
In the figure, the horizontal axis is frequency and the vertical
axis is time. The amplitude at different time and frequency
is represented using the colors shown in the legend on the
right.
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Fig. 5. Deep feature extraction network with time domain features.

Fig. 6. Deep feature extraction network with frequency domain features.

C. Deep Multi-View Feature Learning

In this paper, CNN is used to extract features from EEG
signals from different views. The initial features in the time,
frequency and time-frequency domains are first constructed
following the approach discussed previously. Three different
CNNs are then constructed to extract deep features from
the initial features. The CNN uses the results of the out-
put layer to calculate the approximation error and performs
back propagation to update the network parameters during
training.

Since the feature vector calculated by the penultimate layer
of the network only passes through one fully connected layer
before reaching the output layer, the output of the penultimate
layer is also considered to be optimized when optimizing the
network structure according to the results of the output layer.
Besides the penultimate layer, the CNN also learns a better
feature expression of the middle layers through the training
process. We have chosen the output of the penultimate layer
as the deep features learned by the CNN. The deep features
thus obtained not only have lower dimensionality than the
original features, but also possess better discrimination ability
to enhance the generalizability of the subsequent classification
model.

Figs. 5-7 show the CNN architecture used for extracting
deep features from the three views. In the figures, the notation
k@m∗n indicates the feature map at each layer of the network,
where k is the number of feature maps of the layer, and m∗n is
the size of the feature map. The two-dimensional convolution
kernels of the network are represented by the notation k∗m∗n,
where k is the number of convolution kernels, m∗n is the size
of the convolution kernel. Moreover, the three-dimensional
convolution kernels are represented by k∗m∗n∗l, where k is
the number of convolution kernels, and m∗n∗l is the size of
convolution kernel. The default step size of the convolution
kernel is set to 1. The input of the CNN is the original
features from each view, and the output is a vector with length
equal to 2, corresponding to a seizure or non-seizure sample.
If the sample is a seizure sample, the values for the first and
the second dimension are 0 and 1 respectively. The values are
1 and 0 respectively for a non-seizure sample.

1) Time Domain Deep Feature Extraction Network: The CNN
architecture shown in Fig. 5 is used for deep feature extraction
from the view of the time domain, which includes a total of 4
convolution layers and 3 fully connected layers. In the time
domain, the multi-channel EEG signals can be represented as
a two-dimensional matrix of channel number and time. Here,
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Fig. 7. Deep feature extraction network with time-frequency features.

the input of the CNN is a two-dimensional matrix of size
23∗256, i.e., the number of channels is 23.

The first convolution layer of the CNN is shown in Fig. 5.
It adopts a 1∗128 convolution kernel and the step size is 1. A
feature map with size of 23∗129 is then obtained. The second
convolution layer of the CNN adopts thirty 1∗65 convolution
kernels and the step size is 1. Thirty feature maps of size
23∗65 are then obtained. The subsequent convolutional layers
are constructed by the same token. The fifth layer of the CNN
is a fully connected layer, where the 10 feature maps of size
13∗16 are first converted into a 1∗2080 vector, and further
into a 1∗1024 vector. The fully connected layers that follow
are constructed in the same way.

2) Frequency Domain Deep Feature Extraction Network:
Fig. 6 shows the CNN architecture used for deep feature
extraction from the view of the frequency domain. It includes
2 convolution layers and 3 fully connected layers. The initial
multi-channel EEG features in the frequency domain can be
represented as a two-dimensional matrix of the number of
channels and the number of frequencies. Here, the input of the
network is a two-dimensional matrix of size 23∗27, i.e., the
number of channels is 23 and the number of sampling points
in frequency are 27. The operations of each layer in the CNN
is similar to that of the time domain deep feature extraction
network described above.

3) Time-Frequency Domain Deep Feature Extraction Net-
work: Fig. 7 shows the CNN architecture used for deep feature
extraction from the view of the time-frequency domain, which
includes a total of 4 three-dimensional convolutional layers
and 3 fully connected layers. The initial features of the multi-
channel EEG signals in the time-frequency domain can be
represented as a three-dimensional matrix of time, number
of channels and number of frequencies. In Fig. 7, the input
of the network is a three-dimensional matrix with the size of
256∗23∗14, i.e., the number of sampling points in time is 256,
the number of channels is 23 and the number of frequencies
is 14. The operations of each layer in the CNN is also similar
to that of the time domain deep feature extraction network
described above. Since the input is a three-dimensional matrix,
the convolution kernel used is also three dimensional. The

three-dimensional convolution operation is an extension of
the two-dimensional operation in three-dimensional space.
The operation is the same as that of the two-dimensional
convolution operation.

In Figs. 5-7, the tanh function is used in the three CNNs as
the activation function to implement nonlinear transformation.
The tanh function is given by

tanh (x) = ex − e−x

ex + e−x .

Since tanh (x) ∈ [−1, 1] and the mean value of the tanh
function is zero, it is more suitable for practical applications
than the sigmoid function.

The CNNs adopt the softmax cross entropy as the loss
function, which is defined as follows.

softmax : a j i = ez ji

K∑
k=1

ezjk

loss : L = 1

N

N∑

j=1

K∑

i=1

−y j i loga j i

The softmax function calculates the probability a j i that the
j th sample belongs to the i th class, z j i is the output of the
j th sample at the i th output node. y j = {y j i |i = 1, · · · , K }
is the true label of the j th sample, K is the total number of
classes, N is the total number of samples, and L is the total
average cross entropy loss of the N samples.

D. Classifier Training Based on Multi-View Learning

In the previous sections, we have focused on the con-
struction of deep multi-view features using deep learning
techniques. In order to exploit the potential of integrating deep
feature learning and multi-view learning, we need to train a
multi-view classifier based on the multi-view deep features.
Multi-view-learning based classification methods have been
effectively used for EEG signal recognition [14], [21]. One
example is the Multi-view TSK Fuzzy system (MV-TSK-FS)
[14], which is proposed to generate multi-view classifier for
EEG-based epilepsy detection by using the traditional shallow
multi-view features to train TSK fuzzy systems.
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Fig. 8. The original multi-channel EEG signals.

In practice, any multi-view-learning based classifiers can
be adopted to implement EEG-based epilepsy detection based
on the multi-view deep features constructed by the abovemen-
tioned strategy. In this work, MV-TSK-FS [14], [47] is adopted
due to its distinctive characteristics of good interpretability and
uncertainty knowledge representation ability, which are inher-
ited from fuzzy rules and fuzzy logic inference. Note that as
a component of the proposed multi-view deep features-based
epilepsy detection method, MV-TSK-FS is only a feasible
choice. It can be replaced with other multi-view classification
methods in the future to enhance the effectiveness. Details
of MV-TSK-FS can be found in Part I of the Supplementary
Materials section. Meanwhile, the algorithm of the proposed
seizure detection is detailed in Table S1 of Part II in that
section.

IV. EXPERIMENTAL STUDIES

This section presents the experiemnts conducted in this
study and is arranged as follows:

1) Subsection IV-A gives the specific details of the dataset,
discusses the oversampling method used to cope with
data imbalance, and describes the performance indices.

2) Subsection IV-B reports the performance of the proposed
algorithm and makes comparison with the related meth-
ods. The sliding window and cross-validation strategy
adopted are also analyzed.

3) Subsection IV-C compares the effect of the deep feature
extraction method with that of the traditional shallow
feature extraction methods in order to demonstrate the
advantages of the former.

4) Subsection IV-D presents the experiments conducted to
verify that the method using the multi-view deep features
are advantageous over the methods that only use single-
view deep features.

5) Subsection IV-E presents the experiments conducted to
demonstate the effectiveness of the proposed method
from the perspective of detection delay.

A. Dataset, Data Preprocessing and Performance
Indices

The CHB_MIT dataset provided by the Boston Children’s
Hospital is adopted for the experiments. The dataset contains

TABLE I
ACCURACY, SENSITIVITY AND SPECIFICITY OF THE PROPOSED

METHOD ON THE CHB-MIT DATASET

EEG signals collected from 23 patients. The data are orga-
nized into 24 groups, each group comprising of EEG signals
acquired from a patient for more than 12 consecutive hours.
Note that the 21st group of the data is the records of the first
patient collected a few years later. The EEG data used in our
experiments were collected with an 18-channel EEG device by
the Boston Children’s Hospital. Based on the data, the hospital
generated multi-channel data with 23 channels, which are open
and have been used extensively for research [1], [4], [5]. Fig. 8
shows the raw data of the CHB-MIT dataset over a certain
period of time in a data group. It contains continuous signals of
the 23 channels, where each of these channels is derived from
the difference between two channels of the original signals.

Since the data are highly imbalanced, i.e., the ratio of the
number of seizure samples to that of non-seizure samples is
1:100, the evaluation would suffer from serious over-fitting
problem if all the data are used directly. To reduce the
imbalance between the non-seizure and seizure data, part of
the non-seizure data is abandoned, as performed in [3]–[5].
Furthermore, over-sampling is applied to the seizure data,
where sliding window is used to capture the data segment.
The interval between two samples is less than the width of one
sliding window. Since there is a repetition segment between
two adjacent samples, the number of epileptic data segments
is also increased. In our experiments, the EEG signals are split
into multiple signal segments of 1s in length, each containing
256 sample points. The data are shown in Table S2 of Part III
in the Supplementary Materials section.

Three common performance indices are used here
for experimental analysis, i.e., accuracy, sensitivity and
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TABLE II
PERFORMANCE OF EXISTING SEIZURE DETECTION METHODS ON THE CHB-MIT DATASET

TABLE III
THE EFFECT OF OVER-SAMPLING METHOD ON THE PERFORMANCE

TABLE IV
THE PERFORMANCE OF DIFFERENT DIVISION PERCENTAGE

specificity [48], [49]. They are defined as follows,

Accuracy = (TN + TP)/(TP + TN + FP + FN),

Sensitivity = TP/(TP + FN),

Specificity = TN/(TN + FP),

where TP, denoting true positive, is the number of seizure
segments detected with seizure segments; FN, denoting false
negative, is the number of non-seizure segments detected with
seizure segments; FP, denoting false positive, is the number
of seizure segments detected with non-seizure segments, and
TN, denoting true negative, is the number of non-seizure
segments detected with non-seizure segments. Accuracy is
the proportion of correctly classified of seizure and non-
seizure segments. Sensitivity is the proportion of correctly
classified seizure segments. A classifier with high sensitivity
has outstanding performance in identifying seizure segments.
Conversely, specificity is the proportion of correctly classified
non-seizure segments. A classifier with high specificity is good
at identifying non-seizure segments.

B. Epilepsy Detection Performance

In our experiments, the proposed method is evaluated by
conducting the experiments on each group of data using k-fold
cross-validation strategy, where the data are divided into k
subsets of the same size to ensure consistent data distribution.
Validation is repeated k times such that at each time, one of
the subsets is taken as the testing set while the rest are used
as the training set. The final validation result is given by the

mean of the results in each individual validation. This strategy
is effective in avoiding sampling bias and thus obtaining
more convincing experimental results. In this paper, five-fold
cross-validation strategy is adopted. The data of each patient
are evenly divided into five parts, each containing the same
amount of seizure and non-seizure data. Four of the five parts
are used as the training set, and the part left behind is used as
the validation set. The above procedure is repeated five times
to obtain the mean and standard deviation of the results.

Table I shows the average results of the experiments
obtained by performing five-fold cross-validation on the
24 groups of data, in terms of the three indices described
above. The average accuracy, sensitivity and specificity over
all the data groups are 98.33 ± 0.18%, 96.66 ± 0.14% and
99.14 ± 0.14% respectively, indicating that the performance
indices of the proposed method are all above 90%, except the
12th group. Furthermore, among the 24 data groups, the accu-
racy, sensitivity and specificity of the proposed method exceed
99% in 12, 7 and 19 groups respectively, showing that the
performance is particularly outstanding from the perspectives
of accuracy and specificity.

We further analyze the proposed method by making com-
parison with the feature extraction methods proposed in recent
studies [1]–[5], [8], [10], [12] that exploit deep learning and
use the same CHB-MIT dataset for seizure detection. Table II
gives the feature extraction methods, experimental settings and
the classification performance (in the table, NA meaning “not
applicable”, indicating that the data is not used in the study).
Note that the studies in [1]–[3] do not adopt cross-validation
strategy, which precludes a clearer analysis of the performance
of the seizure detection methods. A possible reason for this is
due to the lack of seizure samples in the dataset that cross-
validation would result in even fewer seizure samples for
the validation set, thus creating large discrepancy between
the test results and the real case. To avoid the problem,
25% of the samples are only used for training in [3]–[5].
In [8], [10], [12], different over-sampling methods have been
adopted to increase the number of seizure samples. As a result
of data imbalance, the accuracy and sensitivity of most of
the algorithms under comparison are low. On the contrary,
the proposed algorithm exhibits better accuracy and sensitivity
while maintaining the same level of specificity, as indicated
in Table II.
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TABLE V
ACCURACY OF DIFFERENT FEATURE EXTRACTION METHODS

TABLE VI
SENSITIVITY OF DIFFERENT FEATURE EXTRACTION METHODS

TABLE VII
SPECIFICITY OF DIFFERENT FEATURE EXTRACTION METHODS

The dataset of Patient 12 (the 12th group) corresponds to
a special case that the dataset has been excluded from the
experiments in many previous studies [1]–[5]. In [8], [10],
[12] and our study, among the 24 groups of data used in the
experiments, the performance of this 12th group is found to be
particularly inferior. This suggests that the EEG signals of the
12th group is highly unstable and irregular which introduces
a lot of interference to the learning process of the algorithms,
thus leading to poor performance in most cases.

In order to verify the effectiveness of using the strategy of
sliding window to capture the seizure segments, we compare
the sliding window method with the popular over-sampling
method SMOTE [53]. Table III shows the average performance
of sliding window versus SMOTE for all the data groups. It can
be seen that these two methods have similar performance,
thus justifying that the sliding window strategy can be used
effectively for over-sampling.

Besides the five-fold cross validation strategy, we also use
the strategy of percentage split to construct the training and
testing sets. Table IV shows that the performance of using
different percentage to split the testing set and the training set.
It can be seen that the proposed algorithm is more stable when
90% and 75% of the data are used respectively as the training
set. When it is further reduced to 50%, the performance of the
algorithm decreases slightly.

C. Effectiveness of Deep Feature Extraction

To evaluate the effectiveness of the proposed method in
extracting deep features, comparison is made by using differ-
ent feature extraction methods to extract the features and then

TABLE VIII
THE EFFECT OF DEEP FEATURES ON THE CLASSIFIERS

applying the classifiers SVM, K-nearest neighbors (KNN),
NB, DT and TSK-FS respectively to assess the performance
of the feature extraction methods. The results are shown in
Tables V-VII. For TSK-FS, the evaluation for the feature
extraction method WPD is not conducted since the features
obtained have high dimensionality. The results indicate that the
deep features extracted from the frequency and time-frequency
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TABLE IX
DETECTION DELAY OF THE PROPOSED METHOD

domain yield the best accuracy, specificity and sensitivity
for all the classifiers. While the time domain deep features
produce the best average sensitivity for all the classifiers,
their effect on the enhancement of accuracy and specificity is
moderate. It can be concluded that the deep features obtained
by using the deep feature extraction method are a better feature
representation than those obtained by using the conventional
methods from the three views, and therefore resulting in better
classification performance.

D. Effectiveness of Multi-View Model Learning

Table VIII compares the effect of different single-view
classifiers and the proposed MV-TSK-FS multi-view learning
classifier with the deep features extracted from the three views.
The results show that adopted MV-TSK-FS classifier achieves
the best results in terms of accuracy, sensitivity and specificity,
indicating that the multi-view classifier MV-TSK-FS also plays
a role in improving the classification performance of the
proposed method.

E. Performance on Detection Delay

Detection delay reflects the real-time performance of EEG
seizure detection algorithms [49]. Here, two indices are used
to evaluate detection delay – the proportion of successful
detection S and the average detection delay EOLatency. S is
defined by

S = 1

Ns

Ns∑

m=1

Sm ,

where Ns is the total number of seizure records that are used
for evaluation, Sm ∈ {0, 1} is used to indicate whether a record
m is detected as a seizure record, with 1 and 0 specifying

respectively that seizure is detected or not. EOLatency is defined
by

EOLatency = 1

K

Ns∑

m=1

Sm
∗ EOLatency,m,

where K is the total number of seizure records that are
successfully detected and EOLatency,m is the detection delay of
record m. EOLatency,m is calculated with the procedure below.
First, the seizure segment of the first second is used for testing.
If seizure is not detected, then the seizure segment in the
next second is tested. The above process is repeated until
seizure is detected, or when the segments in the first ten sec-
onds are tested. If seizure is detected with the segment in the
i th second EOLatency,m = i . Otherwise, a large constant value
is assigned to EOLatency,m to indicate that seizure is not suc-
cessfully detected with all the segments in the first ten seconds.

The experimental results are shown in Table IX. It can be
seen that the average detection delay is only 1.0431s, showing
that the proposed method has a low detection delay. Besides,
the proportion of successful detection is 99.95%, indicating
that almost all epileptic events can be successfully detected
within 10 seconds.

V. CONCLUSIONS

This study proposes a deep multi-view feature learning
approach to develop epileptic seizure detection method with
EEG signals. Multi-view classifier is used to integrate deep
features from different views to further enhance the detection
performance. The study demonstrates that the deep feature
extraction method and the introduction of multi-view learning
are instrumental for epilepsy detection with EEG signals.
Experimental studies show that the deep features concerned
in this study can increase the detection performance when
compared with traditional feature extraction methods.

Despite the promising results, there exist issues that deserve
further study. For example, the present study only concerns
feature from the time, frequency and time-frequency domains,
while EEG signals also contain other useful features such
as statistical features and nonlinear features, which can be
exploited to enhance seizure detection performance. How to
make effective use of these features is an interesting work.
Although the multi-view classifier MV-TSK-FS adopted in
the proposed epilepsy detection method exhibits better per-
formance than single-view classifiers, there is still room for
improvement, e.g. further improving the multi-view classi-
fier by using more effective multi-view learning mechanism.
In addition, while the focus of the study is to detect epileptic
seizure, it can indeed be extended to the prediction of epilep-
tic seizure. In-depth investigations will be conducted along
these research directions. The codes are released and down-
loadable from https://github.com/Txiaobin/deep-multi-view-
feature-learning.
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