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Computing With Words for Hierarchical Decision
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Abstract—The perceptual computer (Per-C) is an architec-
ture that makes subjective judgments by computing with words
(CWWs). This paper applies the Per-C to hierarchical decision
making, which means decision making based on comparing the
performance of competing alternatives, where each alternative is
first evaluated based on hierarchical criteria and subcriteria, and
then, these alternatives are compared to arrive at either a single
winner or a subset of winners. What can make this challenging is
that the inputs to the subcriteria and criteria can be numbers, in-
tervals, type-1 fuzzy sets, or even words modeled by interval type-2
fuzzy sets. Novel weighted averages are proposed in this paper as
a CWW engine in the Per-C to aggregate these diverse inputs. A
missile-evaluation problem is used to illustrate it. The main advan-
tages of our approaches are that diverse inputs can be aggregated,
and uncertainties associated with these inputs can be preserved
and are propagated into the final evaluation.

Index Terms—Computing with words (CWWs), hierarchical de-
cision making, interval type-2 fuzzy sets, linguistic weighted aver-
ages, missile-evaluation problem, novel weighted averages (NWAs),
perceptual computing.

I. INTRODUCTION

ZADEH coined the phrase “computing with words”
(CWWs) [89], [90], which is [90] “a methodology in which

the objects of computation are words and propositions drawn
from a natural language.” Words in the CWW paradigm may be
modeled by type-1 fuzzy sets (T1 FSs) [43], [87] or their exten-
sion, interval type-2 (IT2) FSs [43], [47], [49], [88]. Therefore,
an inevitable question follows: Which FS model should be used
in CWW?

There are at least two types of uncertainties associated with
a word [45], [67]: intrapersonal uncertainty and interpersonal
uncertainty. Intrapersonal uncertainty describes [45] “the un-
certainty that a person has about the word.” It is also explic-
itly pointed out by Wallsten and Budescu [67] that “except in
very special cases, all representations are vague to some de-
gree in the minds of the originators and in the minds of the
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Fig. 1. Six examples of word FOUs obtained by using the IA [37] on survey
results from 28 subjects. The areas between the thick curves are FOUs, and the
curves within the FOUs are T1 FSs mapped from individuals’ endpoint data
using the IA.

receivers,” and they suggest to model it by a T1 FS. Interper-
sonal uncertainty describes [45] “the uncertainty that a group of
people have about the word.” It is pointed out by Mendel [43]
as “words mean different things to different people,” and by
Wallsten and Budescu [67] as “different individuals use diverse
expressions to describe identical situations and understand the
same phrases differently when hearing or reading them.” Be-
cause an IT2 FS has a footprint of uncertainty (FOU) that can be
viewed as a group of T1 FSs (see Fig. 1), it can model both types
of uncertainty [45]; hence, we suggest that IT2 FSs be used in
CWW [43], [45]. In addition, Mendel [46] has explained why it
is scientifically incorrect to model a word using a T1 FS, i.e., 1)
a T1 FS for a word is well defined by its membership function
(MF) that is totally certain once all of its parameters are spec-
ified; 2) words mean different things to different people, and,
therefore, are uncertainties; and 3) it is a contradiction to say
that something certain can model something that is uncertain.

CWW that use T1 FSs has been studied by many researchers,
e.g., [6], [24]–[27], [32], [40], [58], [59], [63], [68], [69], [71],
[84]–[86], [89], [90], and [93]; however, because of the afore-
mentioned arguments, in this paper, IT2 FSs [4], [19], [23],
[42], [43], [47]–[49], [52], [53], [56], [72], [82], [88] are used
to model words.

A specific architecture, which was proposed in [44] to make
subjective judgments by CWW, is shown in Fig. 2. It is called a
perceptual computer—Per-C for short. In Fig. 2, the encoder1

transforms linguistic perceptions into IT2 FSs that activate a
CWW engine. The CWW engine performs operations on the
IT2 FSs. The decoder2 maps the output of the CWW engine
into a recommendation, which can be a word, rank, or class.

To operate the Per-C, one needs to solve the following
problems.

1Zadeh calls this constraint explicitation in [89] and [90]. In [91], [92], and
some of his recent talks, he calls this precisiation.

2Zadeh calls this linguistic approximation in [89] and [90].

1063-6706/$26.00 © 2010 IEEE
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Fig. 2. Conceptual structure of the Per-C.

1) How to transform words into IT2 FSs, i.e., the encoding
problem: This can be done with Liu and Mendel’s interval
approach (IA) [37]. First, for each word in an application-
dependent encoding vocabulary, a group of subjects are
asked the following question:

On a scale of 0–10, what are the endpoints of an interval
that you associate with the word ?

After some preprocessing, during which some intervals
(e.g., outliers) are eliminated, each of the remaining in-
tervals is classified as either an interior, left-shoulder, or
right-shoulder IT2 FS. Then, each of the word’s data inter-
vals is individually mapped into its respective T1 interior,
left-shoulder, or right-shoulder MF, after which, the union
of all of these T1 MFs is taken. The result is an FOU for
an IT2 FS model of the word. The words and their FOUs
constitute a codebook.

Software for the IA can be downloaded from the author’s
website at http://sipi.usc.edu/mendel. Therefore, the only
thing that a practitioner needs to do is to conduct the survey
and then to feed the data into the software. IT2 FSs are
generated automatically.

Note that in a decision-making problem, the parame-
ters of IT2 FSs are determined as a result of the word
survey. They should not be modified, because the survey
results capture people’s understanding about the mean-
ings of words, and hence, they should not be distorted.
In addition, to optimize the parameters of IT2 FSs, train-
ing data are needed, but they are usually not available in
decision-making problems. This is different from many
other IT2 fuzzy-logic systems, like fuzzy-logic modeling
and control [8], [22], [23], [41], [60], [80], [81], [95],
where training data are used to optimize the parameters
of the IT2 FSs. For such applications, people may assign
linguistic terms to the IT2 FSs to facilitate understanding;
however, these linguistic terms are only used as symbols
and are not necessarily the true meanings of the IT2 FSs.

2) How to construct the CWW engine, which maps IT2 FSs
into IT2 FSs: There are different kinds of CWW engines.

a) The linguistic weighted average [52], [72], [73],
[75], which is defined as

Ỹ =
∑N

i=1 X̃iW̃i∑N
i=1 W̃i

(1)

where X̃i , which are the subcriteria (e.g., data,
features, decisions, recommendations, judgments,

scores, etc.), and W̃i , which are the weights, are
usually words modeled by IT2 FSs; however, they
can also be special cases of IT2 FSs, e.g., numbers,
intervals, or T1 FSs. It is shown in Appendix C
that the upper membership function (UMF) of Ỹ is
a fuzzy weighted average [36] of the UMFs of X̃i

and W̃i , and the lower membership function (LMF)
of Ỹ is a fuzzy weighted average of the LMFs of
X̃i and W̃i .

b) Perceptual reasoning (PR) [50], [52], [72], [79],
which considers the following problem.

Given a rule base with K rules, each of the form

Rk : If x1 is F̃ k
1 and . . . and xp is F̃ k

p

Then y is G̃k (2)

where F̃ k
j and G̃k are words modeled by IT2 FSs

and a new input X̃′ = (X̃1 , . . . , X̃p) with X̃j (j =
1, . . . , p) being words modeled by IT2 FSs, then
what is the output IT2 FS ỸP R ?

In similarity-based PR [52], [72], [79], one
computes

ỸPR =
∑K

k=1 fk (X̃′)G̃k∑K
k=1 fk (X̃′)

(3)

where fk (X̃′) is the firing level of Rk , i.e.,

fk (X̃′) =
p∏

j=1

sJ (X̃j , F̃
k
j ) (4)

in which sJ (X̃j , F̃
k
j ) is the Jaccard similarity for

IT2 FSs [76]

sJ (X̃j , F̃
k
j )

=

∫
X min(Xj (x), F

k
j (x))dx +

∫
X min(Xj (x), F k

j (x))dx∫
X max(Xj (x), F

k
j (x))dx +

∫
X max(Xj (x), F k

j (x))dx
.

(5)

Another approach that uses firing intervals in-
stead of firing levels is described in [50].

3) How to map the output of the CWW engine into a rec-
ommendation, i.e., the decoding problem: Thus far, there
are three kinds of decoders according to three forms of
recommendations [52], [72].

a) Word: To map an IT2 FS into a word, it must be
possible to compare the similarity between two IT2
FSs. The Jaccard similarity measure described by
(5) can be used to compute the similarities between
the CWW engine output and all words in the code-
book. Then, the word with the maximum similarity
is chosen as the decoder’s output.

b) Rank: Ranking is needed when several alternatives
are compared to find the best one. Because the per-
formance of each alternative is represented by an
IT2 FS obtained from the CWW engine, a ranking
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TABLE I
CRITERIA WITH THEIR WEIGHTS, SUBCRITERIA WITH THEIR WEIGHTS, AND SUBCRITERIA DATA FOR THE THREE COMPANIES

(ADAPTED FROM [11] AND [13])

method for IT2 FSs is needed. A centroid-based
ranking method for IT2 FSs is described in [76].

c) Class: A classifier is necessary when the output of
the CWW engine needs to be mapped into a deci-
sion category [51]. Subsethood [52], [66], [72], [78]
is useful for this purpose. The subsethood of the
CWW engine output for each of the possible classes
is computed first. Then, the final-decision class is
the one corresponding to the maximum subsethood.

We are going to demonstrate the Per-C methodology to assist
in hierarchical decision making by using a specific application,
namely, a missile-evaluation problem, but this methodology is
applicable to hierarchical decision-making problems in general.

There are many publications on hierarchical multicriteria de-
cision making that use FSs [9], [17], [28], [34], [38], [62], [64],
[65], [70], [83]; however, none of them have used IT2 FSs, nor
have they collected data from a group of subjects to obtain the
FSs. These shortcomings are overcome in our approach.

The rest of this paper is organized as follows. Section II intro-
duces the hierarchical multicriteria missile-system-evaluation
problem, Section III introduces the novel weighted averages
(NWAs) that are used as the CWW engine in the Per-C,
Section IV describes details about our perceptual computing
approach for the missile-evaluation problem and its results, Sec-
tion V compares our approach with several previous approaches,
Section VI draws conclusions, and the Appendix provides algo-
rithmic details about the NWAs.

II. MISSILE-EVALUATION PROBLEM

A tactical missile-evaluation problem is introduced in this
section. We used it because it has already appeared in sev-
eral publications [10]–[13], [54], and the published evaluations
range from numbers to words.

A missile is a self-propelled projectile used as a weapon. It
can be broadly classified into two categories [1], [18], [94]: 1)
strategic missiles, which are designed for mass destruction, e.g.,
nuclear missiles, and 2) tactical missiles, which are designed for
short-range (typically less than 300 km) battlefield use.

Tactical missiles are usually mobile to ensure survivability
and quick deployment, as well as carry a variety of warheads to
target enemy facilities, assembly areas, artillery, and other tar-
gets behind the front lines. Warheads can include conventional
high explosive, chemical/biological, and nuclear warheads.

Tactical missiles are evaluated based on a number of different
criteria [3], [12], [15], [18]. Usually, an ensemble of test missiles
are fired to measure their physical properties, e.g., effective
range, flight height, flight velocity, kill radius, reaction time, etc.

In this paper, a contractor has to decide which of the three
companies (A, B, or C) is going to get the final mass-production
contract for a tactical missile system. The contractor uses five
criteria to base his/her final decision (see the first column in
Table I), namely, tactics, technology, maintenance, economy,
and advancement. Each of these criteria has some associated
technical subcriteria, e.g., for tactics, there are seven subcriteria,
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Fig. 3. MF for a fuzzy number ñ (see Table II).

TABLE II
FUZZY NUMBERS AND THEIR CORRESPONDING MFS [10]

namely, effective range, flight height, flight velocity, reliability,
firing accuracy, destruction rate, and kill radius, whereas for
economy, there are three subcriteria, namely, system cost, system
life, and material limitation. Each criterion and subcriterion also
has its weight, as shown in the second column of Table I. The
performances of the three companies for each subcriterion are
also given in Table I. We observe the following.

1) The major criteria are not equally weighted but, instead,
are weighted using fuzzy numbers3 (T1 FSs, as depicted in
Fig. 3 and Table II) in the following order of importance:
tactics, advancement, economy, technology, and mainte-
nance. These weightings were established ahead of time
by the contractor and not by the companies.

2) Tactics has seven subcriteria, technology and maintenance
each have five subcriteria, and economy and advancement
each have three subcriteria; hence, there are 23 subcrite-
ria, all of which were established ahead of time by the
contractor and not by the companies.

3) All of the subcriteria are weighted using fuzzy numbers.
These weightings have also been established ahead of time
by the contractor and not by the companies, and have been
established separately within each of the five criteria and
not simultaneously across all of the 23 subcriteria.

4) The performance evaluations for all 23 subcriteria are
shown for the three companies and are either numbers
or words. Usually, the numerical scores are obtained by
extensive simulations and a few live firings of the mis-
siles [3], [15]. It is not clear how the linguistic scores
were obtained, so it is speculated that the contractor pro-
vided them based on other evidence and perhaps on some
subjective rules.

3It is a common practice to use a tilde overmark to denote a fuzzy number
that is modeled using a T1 FS. Even though it is also a common practice to use
such a tilde overmark to denote an IT2 FS, we shall not change this common
practice for a fuzzy number in this paper. Instead, we shall indicate in the text
when the fuzzy number ñ is modeled either as a T1 or as an IT2 FS.

Fig. 4. Structure of evaluating competing tactical missile systems from three
companies [54].

5) How to aggregate all of this data seems like a daunting
task, especially since it involves numbers, fuzzy numbers
for the weights, and words.

6) Finally, we believe that there should be an uncertainty
band for each numerical score (except missile scale, which
should be certain once the design is finished) because the
numbers correspond to measurements of physical prop-
erties obtained from an ensemble of test missiles [3],
[15], [18]. These bands have not been provided, but will
be assumed, in this paper, to inject some additional real-
ism into this application. This is very important because
according to Harvard Business Essentials [2, p. 59], “in
business, uncertainty of outcome is synonymous with risk,
and you must factor it into your evaluation.” We believe
this is very necessary in weapon evaluations.

The missile-evaluation problem can also be summarized by
Fig. 4. It is very clear from this figure that this is a multicrite-
ria and two-level decision-making problem. At the first level,
each of the three companies4 is evaluated for its performance
on five criteria: tactics, technology, maintenance, economy, and
advancement. The lines emanating from each of the companies
to these criteria indicate these evaluations, each of which in-
volves a number of important (but not shown) subcriteria and
their weighted aggregations that are described shortly. The sec-
ond level in this hierarchical decision-making problem involves
a weighted aggregation of the five criteria for each of the three
companies.

How the Per-C will be used to assist a decision maker to
decide which of the three companies is the winner in this pro-
curement competition is explained in Section IV. However, first,
we explain the CWW Engine that will be used in the Per-C. It
is called an NWA.

III. NOVEL WEIGHTED AVERAGES

The weighted average (WA)

y =
∑n

i=1 xiwi∑n
i=1 wi

(6)

is arguably the earliest and still most widely used form of ag-
gregation or fusion, in which wi are the weights (real numbers)
that act upon the subcriteria xi (real numbers).

4The terms company and system are used interchangeably in this paper.
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Fig. 5. Matrix of possibilities for a WA.

The arithmetic WA (AWA) is the one we are all familiar with
and is the one in which all subcriteria and weights in (6) are
real numbers. In many situations, however, providing a single
number for either the subcriteria or weights is problematic (there
could be uncertainties about them), and it is more meaningful
to provide intervals T1 FSs, IT2 FSs [43], or a mixture of all of
these for the subcriteria and weights.

Definition 1: An NWA is a WA in which at least one subcri-
terion or weight is not a single real number, but instead, is an
interval, a T1 FS or an IT2 FS, in which case, such subcriteria
or weights are called novel models.

Because there can be four possible models for subcriteria or
weights, there can be 16 different WAs, as summarized in Fig. 5.

Definition 2: When at least one subcriterion or weight is
modeled as an interval, and all other subcriteria or weights are
modeled by no more than such a model, the resulting WA is
called an interval WA (IWA).

Definition 3: When at least one subcriterion or weight is
modeled as a T1 FS, and all other subcriteria or weights are
modeled by no more than such a model, the resulting WA is
called a fuzzy WA (FWA).

Definition 4: When at least one subcriterion or weight is
modeled as an IT2 FS, the resulting WA is called a linguistic
WA (LWA).

Definition 1 (Continued): By an NWA, we meant an IWA, an
FWA, or an LWA.

Because NWAs are used as our CWW engine, more discus-
sions about the IWA, FWA, and LWA, including how to compute
them, are given in the Appendix.

IV. MISSILE EVALUATION: A PERCEPTUAL

COMPUTING APPROACH

Recall that the Per-C has three components: encoder, CWW
engine, and decoder. When perceptual computing is used for the
missile-evaluation problem, each of these components must be
considered.

A. Encoder

In this application, mixed data are used—crisp numbers, T1
fuzzy numbers, and words. The codebook contains the crisp
numbers, the T1 fuzzy numbers with their associated T1 FS

Fig. 6. IT2 FS models for the six words used in missile evaluation.

models (see Fig. 3 and Table II), and the words and their IT2 FS
models.

To ensure that LWAs are not unduly influenced by large num-
bers, all of the Table I numbers were mapped into [0, 10]. Let x1 ,
x2 , and x3 denote the raw numbers for companies A, B, and C,
respectively. For the 13 subcriteria whose inputs are numbers,
these raw numbers were transformed into

xi → x′
i =

10xi

max(x1 , x2 , x3)
. (7)

Examining Table I, we observed that the words used for the
remaining ten subcriteria are {low, high} and {poor, average,
good, very good}. Because this application is being used merely
to illustrate how a Per-C can be used for missile system eval-
uation, and we do not have access to domain experts, interval-
endpoint data were not collected for these words in the context of
this application. Instead, each word was mapped into a synonym
in Fig. 1:

Low → Low Amount
High → High Amount

}
(8)

Poor → Small
Average → Medium
Good → Large
Very Good → Very Large


 . (9)

The IT2 FS models of the six words are shown in Fig. 6.
From Table I, we observed that some subcriteria may have a

positive connotation and others may have a negative connota-
tion. The following six subcriteria have a negative connotation.

1) Flight height: The lower the flight height, the better, be-
cause it is then more difficult for a missile to be detected
by radar.

2) Missile scale: A smaller missile is harder to detect by
radar.

3) Reaction time: A missile with shorter reaction time can
respond more quickly.

4) System cost: The cheaper, the better.
5) Operation condition requirement: A missile with lower

operation condition requirement can be deployed more
easily and widely.

6) Material limitation: A missile with lower material lim-
itation can be produced more easily, especially during
wartime.

The first four of these subcriteria have numbers as their in-
puts. For them, a preprocessing step is needed to convert a
large x′

i into a small number x∗
i and a small x′

i into a large
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number x∗
i , i.e.,

xi → x∗
i = 1/xi (10)

and then, (7) is applied to x∗
i , i.e.,

x∗
i → x′

i =
10x∗

i

max(x∗
1 , x

∗
2 , x

∗
3)

. (11)

Equations (10) and (11) can be summarized into one equation
as

xi → x′ =
10 min(x1 , x2 , x3)

xi
. (12)

Example 1: Suppose that x1 = 3, x2 = 4, and x3 = 5.
Then, when these numbers are mapped into [0, 10] using (7),
they become: x′

1 = 10(3/5) = 6, x′
2 = 10(4/5) = 8, and x′

3 =
10(5/5) = 10. On the other hand, for subcriteria with negative
connotation, these numbers are mapped into [0, 10] using (12),
and they become x′

1 = 10(3/3) = 10, x′
2 = 10(3/4) = 7.5, and

x′
3 = 10(3/5) = 6.
For the other two subcriteria with a negative connota-

tion (operation condition requirement, and material limitation),
antonyms [30], [57], [61], [91] are used for the words in (8) and
(9), i.e.,

µ10−A (x) = µA (10 − x) ∀x (13)

where 10 − A is the antonym of a T1 FS A, and 10 is the right
end of the domain of all FSs used in this paper. The definition
in (13) can be easily extended to IT2 FSs, i.e.,

µ10−Ã (x) = µÃ (10 − x) ∀x (14)

where 10 − Ã is the antonym of an IT2 FS Ã. Because an IT2
FS is completely characterized by its LMF and UMF, each of
which is a T1 FS, µ10−Ã (x) in (14) is obtained by applying (13)
to both A and A.

Comment: Using these mappings, the highest score for the
numerical subcriteria that have a positive connotation is always
assigned the value 10, and the lowest score for the numerical
subcriteria that have a negative connotation is also always as-
signed the value 10. What if such scores are not actually “good”
scores? Assigning it, our highest value does not then seem to be
correct.

In this type of procurement competition, the contractor of-
ten sets specifications on numerical performance subcriteria.
Unfortunately, such specifications do not appear in any of the
published articles about this application; therefore, we have had
to do the best we can without them. If, for example, the con-
tractor had set a specification for reliability as at least 85%, then
(see Table I) no company should get a 10. A different kind of
normalization would then have to be used.

B. Computing With Word Engine

The CWW engine is used to aggregate the criteria and sub-
criteria and, hence, to obtain the overall performance of each
missile system. There are many different aggregation operators
(functions) [5], [7], e.g., Beliakov et al. [5] classify them into
four categories: 1) averaging functions; 2) conjunctive func-
tions; 3) disjunctive functions; and 4) mixed functions. The

averaging functions are the most frequently used aggregation
operators in decision making. Among them, there are additive
operators, e.g., the NWAs and the ordered WAs (OWAs) [83],
and nonadditive operators, e.g., the Choquet integral [14] and
the Sugeno integral [55]. Additive operators are defined on ad-
ditive measures, i.e., [5], “the measure of a set is the sum of the
measures of its nonintersecting subsets,” whereas nonadditive
operators are defined on nonadditive measures, i.e., [5], “the
measure of the total can be larger or smaller than the sum of
the measures of its components.”

Choquet and Sugeno integrals are used to model the interac-
tions among the inputs. Take the Choquet integral for example.
As pointed out by Beliakov et al. [5], “the main purpose of
Choquet integral-based aggregation is to combine the inputs in
such a way that not only the importance of individual inputs
(as in weighted means), or of their magnitude (as in OWA), are
taken into account, but also of their groups (or coalitions). For
example, a particular input may not be important by itself, but
becomes very important in the presence of some other inputs.”
This kind of aggregation is very suitable for applications such as
medical diagnosis because [5] “some symptoms by themselves
may not be really important, but may become key factors in
the presence of other signs.” However, in the missile-evaluation
problem, the criteria and subcriteria are nonintersecting; hence,
there is no need to model the interactions among the inputs, and
is why NWAs are used as our CWW engine.

During the aggregation, each of the major criteria had an
NWA computed for it. Examining Table I, we observed that the
NWA for tactics (Ỹ1) is an FWA (because the weights are T1 FSs
and the subcriteria evaluations are numbers), whereas the NWAs
for technology (Ỹ2), maintenance (Ỹ3), economy (Ỹ4), and ad-
vancement (Ỹ5) are LWAs (because at least one subcriterion
evaluation is a word modeled by an IT2 FS). More specifically

Ỹ1 =
∑7

i=1 XiWi∑7
i=1 Wi

(15)

Ỹ2 =
∑12

i=8 X̃iW̃i∑12
i=8 W̃i

(16)

Ỹ3 =
∑17

i=13 X̃iW̃i∑17
i=13 W̃i

(17)

Ỹ4 =
∑20

i=18 X̃iW̃i∑20
i=18 W̃i

(18)

Ỹ5 =
∑23

i=21 X̃iW̃i∑23
i=21 W̃i

. (19)

These six NWAs are then aggregated by another NWA to obtain
the overall performance, i.e., Ỹ , as follows:

Ỹ =
9̃Ỹ1 + 3̃Ỹ2 + 1̃Ỹ3 + 5̃Ỹ4 + 7̃Ỹ5

9̃ + 3̃ + 1̃ + 5̃ + 7̃
. (20)

As a reminder to the reader, when i = 2, 8, 9, 13, 18, and 20,
(10) or the antonyms of the corresponding IT2 FSs must be
used in (15)–(18).
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C. Decoder

Our decoder computes ranking, similarity, and centroid.
Rankings of the three companies are obtained for the six LWA
FOUs in (15)–(20) using a centroid-based ranking method [76],
which ranks IT2 FSs based on their average centroids (see Defi-
nition 6 in the Appendix). The average centroids for companies
A, B, and C are represented in all figures in Section IV-D by ∗,
�, and ◦, respectively.

The Jaccard similarity in (5) is computed only for the three
companies’ overall performances Ỹ so that one can observe how
similar the overall performances are for them.

Centroids are also computed for the three companies’ Ỹ , and
provide a measure of uncertainty [52], [74] for each company’s
overall ranking, since Ỹ has propagated both numerical and
linguistic uncertainties through their calculations.

D. Examples

This section contains examples that illustrate the missile-
evaluation results for different scenarios. Example 2 uses the
data that are in Table I as they are. Examples 4 and 5 use intervals
for all numerical values (Example 3 explains how such intervals
can be normalized), i.e., in Example 4, each numerical value
x (except missile scale, which has no uncertainty) is changed
to the interval [x − 10%x, x + 10%x] for all three companies,
and in Example 5, x is changed to [x − 10%x, x + 10%x] for
company A, [x − 20%x, x + 20%x] for company B, and [x −
5%x, x + 5%x] for company C. The use of more realistic data
intervals instead of numbers is something that was mentioned
earlier in Section II in Item 6.

Example 2: As just mentioned, this example uses the data that
are in Table I as they are. In all figures, system A is represented
by the solid curve, system B is represented by the dashed curve,
and system C is represented by the dotted curve. In order to
simplify the notation in the figures, the notations ỸAj , ỸB j ,
and ỸC j are used for aggregated results for criterion j and
for companies A, B, and C, respectively. The caption of each
figure indicates the name of criterion j (j = 1, 2, . . . , 5), and
the numbering of the criteria corresponds to their numbering in
Table I.

FOUs for tactics, technology, maintenance, economy, and
advancement are depicted in Fig. 7(b)–(e), respectively. FOUs
for overall performance are depicted in Fig. 7(f). From Fig. 7(f),
we observed that not only is FOU(ỸB ) visually well to the right
of the other two FOUs, but its average centroid (which is on the
horizontal axis) is also well to the right of those for companies
A and C. Therefore, on the basis of ranking alone, company
B would be declared the winner. This happens because system
B ranks first in maintenance, economy, and advancement, and
by significant amounts. Although it ranks last for tactics and
technology, its FOUs for these two criteria are very close to
those of systems A and C.

Table III summarizes the similarities between ỸA , ỸB , and
ỸC . Observe that ỸB is not very similar to either ỸA or ỸC , so
choosing company B as the winner is further reinforced, i.e., it
is not a close call.

Fig. 7. Example 2. Aggregation results for (a) criterion 1: tactics; (b) criterion
2: technology; (c) criterion 3: maintenance; (d) criterion 4: economy; (e) criterion
5: advancement; and (f) overall performances of the three systems. The average
centroids for companies A, B, and C are shown in all figures by ∗, �, and ◦,
respectively. The FOUs in (b)–(f) are not filled in; therefore, the three IT2 FSs
can be distinguished more easily.

TABLE III
SIMILARITIES OF Ỹ IN EXAMPLE 2 FOR THE THREE COMPANIES
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TABLE IV
CENTROIDS, CENTERS OF CENTROID, AND RANKING BANDS OF Ỹ FOR

VARIOUS UNCERTAINTIES

Finally, the centroids of ỸA , ỸB , and ỸC (see Table IV) are
CA = [6.92, 7.67], CB = [8.59, 9.19], and CC = [7.99, 8.65].
Let the numerical rankings be the average centroids [see (A26)
in the Appendix]. It follows that cA = 7.30, cB = 8.89, and
cC = 8.32; the half-lengths of each centroid [see (A27) in the
Appendix] are δA = 0.37, δB = 0.30, and δC = 0.33. One way
to use these half-lengths is to summarize the rankings as r = c ±
δ, i.e., rB = 8.89 ± 0.30, rC = 8.32 ± 0.33, and rA = 7.30 ±
0.37. Note that the centroids can also be interpreted as ranking
bands [52] and that there is no or little overlap of these bands in
this example. All these results are summarized in Table IV.

Not only does company B have the largest ranking, but it also
has the smallest uncertainty band about that ranking, and ỸB

is not very similar to either ỸA or ỸC . Choosing company B
as the winner seems the right thing to do. This decision is also
consistent with those obtained in [10], [11], [13], and [54].

As we have explained in Item 6 of Section II, in reality, there
are uncertainties about each of the numbers in Table I, except
missile scale, which is fixed once the missile design is finished.
In the remaining examples, uncertainty intervals are assigned to
each of these numbers, except missile scale, so that the effects
of such uncertainties on the overall performances of the three
companies can be studied.

For the ten subcriteria that have a positive connotation, the
uncertainty intervals are

xi → [xi − v%xi,min(xi + v%xi,max(x1 , x2 , x3))]

≡ [αi, βi ], i = 1, 2, 3. (21)

Note that max(x1 , x2 , x3) is used as an upper limit, so that the
converted number is not larger than 10 [see (22)]. The specific
choice(s) made for v are explained in the examples. Equation
(7) is then used for the two endpoints in (21), i.e.,

[αi, βi ] →
[

10αi

max(β1 , β2 , β3)
,

10βi

max(β1 , β2 , β3)

]
. (22)

For the two subcriteria (flight height and reaction time) that
have a negative connotation, the uncertainty intervals are

xi → [max(xi − v%xi,min(x1 , x2 , x3)), xi + v%xi)]

≡ [α′
i , β

′
i ], i = 1, 2, 3. (23)

Note that min(x1 , x2 , x3) is used as a lower limit; therefore, the
converted number is not larger than 10 [see (24)]. Equation (12)
is then used for the two endpoints in (23) so that

[α′
i , β

′
i ] →

[
10min(α′

1 , α
′
2 , α

′
3)

β′
i

,
10min(α′

1 , α
′
2 , α

′
3)

α′
i

]
. (24)

The following example illustrates (21)–(24).
Example 3: As in Example 1, suppose that x1 = 3, x2 =

4, and x3 = 5. Let v = 10. For a subcriterion with positive
connotation, it follows from (21) that x1 → [2.7, 3.3], x2 →
[3.6, 4.4], and x3 → [4.5, 5]. Using (22), one finds that

[2.7, 3.3] → [10(2.7/5), 10(3.3/5)] = [5.4, 6.6]

[3.6, 4.4] → [10(3.6/5), 10(4.4/5)] = [7.2, 8.8]

[4.5, 5] → [10(4.5/5), 10(5/5)] = [9, 10].

For a subcriteria with negative connotation, it follows from
(23) that x1 → [3, 3.3], x2 → [3.6, 4.4], and x3 → [4.5, 5.5].
Using (24), one finds that

[3, 3.3] → [10(3/3.3), 10(3/3)] = [9.1, 10]

[3.6, 4.4] → [10(3/4.4), 10(3/3.6)] = [6.8, 8.3]

[4.5, 5.5] → [10(3/5.5), 10(3/4.5)] = [5.5, 6.7].

Example 4: In this example, each numerical value x in
Table I, except missile scale, is changed by the same percentage
amount to the interval [x − 10%x, x + 10%x]. We are inter-
ested to learn if such uncertainty intervals change the rankings
of the three companies. FOUs for tactics, technology, mainte-
nance, economy, and advancement are depicted in Fig. 8(a)–(e),
respectively. The overall performances of the three systems are
depicted in Fig. 8(f). System B still appears to be the winning
system.

Comparing the results shown in Fig. 8 with their counterparts
shown in Fig. 7, we observed that the FOUs have larger support
generally. Particularly, the T1 FSs shown in Fig. 7(b) are trian-
gular, whereas the T1 FSs shown in Fig. 8(a) are trapezoidal.
This is because in Fig. 7(b), the inputs to the subcriteria are
numbers and the weights are triangular T1 FSs, and hence, the
α = 1 α-cut on ỸA1 (ỸB 1 , or ỸC 1) is an AWA, whereas in
Fig. 8(a), the inputs to the subcriteria are intervals and the
weights are triangular T1 FSs, and hence, the α = 1 α-cut on
ỸA1 (ỸB 1 , or ỸC 1) is an IWA.

Table V summarizes the similarities among ỸA , ỸB , and ỸC .
We observed that ỸC is much more similar to ỸB in this example
than it was in Example 2. Consequently, one may be less certain
about choosing company B as the winner when there is ±10%
uncertainty on all of the numbers in Table I than when there is
no uncertainty on those numbers.

The centroids, centers of centroids, and the ranking bands of
ỸA , ỸB , and ỸC are shown in Table IV. We observed that not
only does company B still have the largest ranking, but it still also
has the smallest uncertainty band about that ranking. However,
when there is±10% uncertainty on all of the numbers in Table I,
not only do the numerical rankings for the three companies shift
to the left (to lower values), but the uncertainty bands about
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Fig. 8. Example 4. Aggregation results for (a) criterion 1: tactics; (b) criterion
2: technology; (c) criterion 3: maintenance; (d) criterion 4: economy; (e) criterion
5: advancement; and (f) overall performances of the three systems. The average
centroids for companies A, B, and C are shown in all figures by ∗, �, and ◦,
respectively.

these rankings also increase. The overlap between the ranking
bands of systems B and C also increases.

In short, even though company B could still be declared the
winner, one is less certain about doing this when there is ±10%
uncertainty on all of the numbers in Table I.

Example 5: In this example, each numerical value x in
Table I is changed to [x − 10%x, x + 10%x] for company

TABLE V
SIMILARITIES OF Ỹ IN EXAMPLE 4 FOR THE THREE COMPANIES

A, [x − 20%x, x + 20%x] for company B, and [x − 5%x, x +
5%x] for company C. FOUs for tactics, technology, mainte-
nance, economy, and advancement are depicted in Fig. 9(a)–(e),
respectively. The overall performances of the three systems are
depicted in Fig. 9(f). We observed that the UMF (LMF) of ỸC

is completely inside the UMF (LMF) of ỸB ; therefore, it is
difficult to declare system B the winner.

Table VI summarizes the similarities among ỸA , ỸB , and ỸC .
We observed that ỸC is more similar to ỸB in this example than
in Example 4; therefore, one may be less certain about choosing
company B as the winner in this case.

The centroids, centers of centroids, and the ranking bands of
ỸA , ỸB , and ỸC are shown in Table IV. Now the ranking bands
for systems B and C overlap a lot, which is why it is difficult to
declare system B the winner.

This example clearly demonstrates that providing only aver-
age values for the subcriteria in Table I can lead to misleading
conclusions. Uncertainty bands about these average values can
change conclusions dramatically.

In summary, our Per-C approach can consider scenarios with
different levels of uncertainties, and hence evaluate the robust-
ness of the final decision, e.g., the numerical rankings of the
three companies (c) when v [see (21) and (23)] changes by the
same amount for all three systems from 0 to 20 are shown in
Fig. 10(a), and the corresponding half-length of the ranking
bands (δ) are shown in Fig. 10(b). Observe that Company B is
always the best choice, but as v increases, c decreases, and δ
increases, which means that the ranking band overlap between
ỸB and ỸC increases, and hence, the lead of company B over
company C decreases.

V. COMPARISONS WITH PREVIOUS APPROACHES

In this section, our Per-C approach is compared with four
previous approaches to the missile-evaluation problem. We are
only able to do this for the 0% uncertainty situation of Example
2, because none of the previous methods were developed to
handle intervals of numbers for the subcriteria.

Note that the missile systems evaluation problem is quite
different from other applications of fuzzy-logic systems, e.g.,
fuzzy-logic control [8], [22], [23], [39], [41], [60], [80], [81],
[95], where well-established measures can be used to quan-
tify the performance for validation. In decision making, usually
there is no ground truth data or quantitative measures to assess
the performance of a method. The Per-C for missile evaluation
provides aids to the decision maker, who then uses them to make
the final decision. This is why “plausibility” is used rather than
“validation.”

We believe that for a decision to be plausible, the decision-
making process must be reasonable and transparent. There-
fore, in the following, we summarize each of the four previous



450 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 18, NO. 3, JUNE 2010

Fig. 9. Example 5. Aggregation results for (a) criterion 1: tactics; (b) criterion
2: t; (c) criterion 3: maintenance; (d) criterion 4: economy; (e) criterion 5:
advancement; and (f) overall performances of the three systems. The average
centroids for companies A, B, and C are shown in all figures by ∗, �, and ◦,
respectively.

approaches and point out its limitations. From the comparative
analysis, the reader should be able to conclude that these four
approaches have obvious limitations, and our Per-C approach is
the most reasonable. As a result, we believe our result is also
the most plausible.

Verification of a decision can only occur after (and sometimes
long after) the decision has been made when the consequences
of the decisions can be observed and evaluated. As a result, it is

TABLE VI
SIMILARITIES OF Ỹ IN EXAMPLE 5 FOR THE THREE COMPANIES

Fig. 10. (a) Ranking of the three companies, i.e., c, and (b) half-length of
ranking band, i.e., δ, when v changes from 0 to 20.

not possible to verify different approaches when each approach
provides only an aid to the decision maker.

A. Comparison With Mon et al.’s Approach

Mon et al. [54] appear to be the first to work on “performance
evaluation and optimal design of weapon systems [as] multiple
criteria decision-making problems” using FSs. They perform
the following steps (we comment on some of these steps next):

1) Convert each subcriterion entry in Table I into either 1 if
the (contractor’s specified) subcriterion is satisfied or 0.5
or 0 if the subcriterion is not satisfied.5

2) Aggregate the subcriteria crisp scores by first adding them
(implying that they are given the same weight) to provide a
total score, and then, mapping it into a fuzzy number. The
fuzzy numbers are then put into a 3 × 5 fuzzy-judgment
matrix X . An example of computing the total scores for
tactics and maintenance, based on the entries in Table I,
is shown in Table VII, and6 the fuzzy-judgment matrix is
given in (25), as shown at the bottom of the next page.

5For tactics, the following specifications are given [54]: “If the effective range
is further than 40 km, the flight height is smaller than 20 m, the flight velocity
is greater than 0.8 Mach number, reliabilityis greater than 80%, firing accuracy
is greater than 65%, destruction rate is greater than 85%, and kill radius is
greater than 15 m, then the corresponding score of the [each] subcriterion is
1; otherwise, the score is 0.5.” For maintenance, the following specifications
are given [54]: “If the subcriteria are good or higher, their scores are 1; if they
are poor, the score is 0; otherwise, the scores are 0.5.” Specifications are not
provided in [54] for technology, economy, and advancement.

6There is no obvious connection between the total scores in Table VII and
their fuzzy counterparts in (25), which is something that we comment upon later
in this section.
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TABLE VII
MON et al.’S [54] SCORES AND TOTAL SCORES FOR THE TACTICS AND

MAINTENANCE CRITERIA FOR THE THREE MISSILE SYSTEMS

3) Assign fuzzy importance weights (fuzzy numbers) to each
of the five criteria. These weights are indicated in Table I.

4) Compute a total fuzzy-judgment matrix Y by multiplying
each element of X by its fuzzy weight, as in (26), shown at
the bottom of the page. The multiplications are performed
using α-cuts, for many values of α, the result for each
α being Yα , shown in (27) at the bottom of the page.
Each element of Yα is an interval (yil)α = [(yl

il)α , (yr
il)α ]

(i = 1, 2, 3 and l = 1, . . . , 5).
5) Construct a crisp judgment matrix J(α) =

{jik (α)}i=1,2,3,k=1,2,...,5 , where

jik (α) = λyl
ik (α) + (1 − λ)yr

ik (α) (28)

in which λ ∈ [0, 1] is called an index of optimism
andjik (α) is called the degree of satisfaction. When
jik (α) is 0, or 1/2, or 1, the decision maker is called
pessimistic, moderate, or optimistic, respectively. In [54],
results are provide for these three values of λ.

6) Compute the entropy, i.e., ei , for each system, as

ei = −
5∑

k=1

fik log2(fik ), i = 1, 2, 3 (29)

where

fik =
jik (α)

maxk jik (α)
. (30)

7) Normalize the three entropies by diving each entropy num-
ber by the sum of the three entropy numbers, leading to
three entropy weights, i.e., one for each company. This
is done for sampled values of α ∈ [0, 1] and for specified
values of λ.

8) Chooses the winning company as the one that has the
largest entropy.

Mon et al. [54] demonstrate that system B is the winner
(which coincides with our results) and system A is better than
system C (which does not agree with our results—see Table IV,
column 3) for the three values of λ mentioned in Step 5, and for
all values of α. Note the following in their approach.

1) Words are not modeled (probably because they did not
know how to do this); instead, they are ranked in an ad
hoc manner using the crisp numbers 0, 0.5, and 1.

2) When a numerical subcriterion is not satisfied, a company
is assigned a score of 0.5 (or 0), regardless of how far away
its score is from its specification; hence, useful information
is lost.

3) Each subcriterion is weighted the same when the total
score is computed, which is counterintuitive, and is very
different from the weightings that are used in Table I.

4) How the “total score” is converted into a fuzzy number
is not explained and seems very strange and inconsistent
(e.g., for tactics, 5.5 → 5̃, 6 → 7̃, and 4.5 → 1̃, and for
maintenance, 3.5 → 7̃, 3 → 5̃, and 2 → 1̃). Information
is lost when this is done.

5) Step 6 is controversial since entropy is a measure of uncer-
tainty [74] rather than a measure of overall performance
of a system.

6) Their procedure has to be repeated for many values of α
and λ. Although the same result was obtained in [54] for all
values of α and λ, there is no guarantee that results could

Tactics Technology Maintenance Economy Advancement

A
X = B

C


 5̃ 1̃ 7̃ 3̃ 1̃

7̃ 5̃ 5̃ 5̃ 7̃
1̃ 3̃ 1̃ 1̃ 5̃


 (25)

Tactics Technology Maintenance Economy Advancement

A
Y = B

C


 5̃ × 9̃ 1̃ × 3̃ 7̃ × 1̃ 3̃ × 5̃ 1̃ × 7̃

7̃ × 9̃ 5̃ × 3̃ 5̃ × 1̃ 5̃ × 5̃ 7̃ × 7̃
1̃ × 9̃ 3̃ × 3̃ 1̃ × 1̃ 1̃ × 5̃ 5̃ × 7̃


 (26)

Tactics Technology Maintenance Economy Advancement

A
Yα = B

C


 (5̃ × 9̃)α (1̃ × 3̃)α (7̃ × 1̃)α (3̃ × 5̃)α (1̃ × 7̃)α

(7̃ × 9̃)α (5̃ × 3̃)α (5̃ × 1̃)α (5̃ × 5̃)α (7̃ × 7̃)α

(1̃ × 9̃)α (3̃ × 3̃)α (1̃ × 1̃)α (1̃ × 5̃)α (5̃ × 7̃)α


 . (27)
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TABLE VIII
CHEN’S [10] SCORES AND TOTAL SCORES FOR THE TACTICS AND

MAINTENANCE CRITERIA FOR THE THREE MISSILE SYSTEMS

not depend on both α and λ, in which case, conflicting
conclusions could be reached.

In summary, although both Mon et al.’s approach and our
Per-C approach conclude that system B is the best, we believe
that this is more a coincidence because of the earlier significant
differences. Mon et al. conclude that system A is better than
system C, whereas we have the opposite conclusion. We believe
that our result is more plausible because our Per-C approach has
overcome Mon et al.’s limitations.

B. Comparison With Chen’s First Approach

Chen has published two approaches [10], [11] for the same
missile-evaluation problem. Chen [10] carried out the following
steps.

1) Converts each subcriterion entry in Table I into either 1 if
the (contractor’s specified) subcriterion is satisfied, or 2
or 3 if the subcriterion is not satisfied.

2) Aggregates the subcriteria crisp scores by first adding
them (implying that they are given the same weight) to
provide a total score, and then, mapping it into a fuzzy
number. The fuzzy numbers are then put into a 3 × 5 fuzzy
rank score matrix7 X . An example for computing the total
scores of tactics and maintenance, on the basis of the
entries in Table I, is shown in Table VIII, and the fuzzy
rank score matrix is given in (31), shown at the bottom
of the page. We observed that Table VIII is quite similar
to Table VII, except that scores 0, 0.5, and 1 have been
replaced by 3, 2, and 1, respectively, and (31) is analogous
to (25).

3) Assigns fuzzy importance weights (fuzzy numbers) to each
of the five criteria. These weights are indicated in Table I.

4) Multiplies each element of X by its fuzzy importance
weight, and then adds the resulting five fuzzy numbers for
each company to obtain three (triangle) fuzzy numbers,8

7This term is synonymous with Mon et al.’s [54] “fuzzy-judgment matrix.”
8Recall that a triangle fuzzy number can be specified as (a, b, c), where a

and c are its base endpoints, and b is its apex location.

RA , RB , and RC . For triangle and trapezoidal fuzzy num-
bers (as in Table II), Chen explains how to do this without
having to use α-cuts. His results are

RA = (140, 199, 257)

RB = (106, 159, 222)

RC = (146, 208, 280). (32)

5) Defuzzifies each of these fuzzy numbers to obtain the rank
of the three companies, namely

R̄A = 198.75, R̄B = 161.5, R̄C = 210.5. (33)

6) Chooses the winning company as the one that has the
smallest rank. The smallest number is the winner because
in [10], 1 is of higher rank than 2 or 3.

By this method, Chen arrives at the same results as Mon
et al. do, namely, system B is the winner and system A is better
than system C.

Comparing Chen’s first approach with ours, we see the
following:

1) Words are not modeled in Chen’s first approach; instead,
they are ranked in an ad hoc manner using the crisp num-
bers 3, 2, and 1.

2) It appears that Chen started wth Mon et al.’s scores and
mapped 1 into 1, 0.5 into 2, and 0 into 3, regardless of
how far away a score is from its specification; hence,
useful information is lost again.

3) Each subcriterion is weighted the same when the total
score is computed, which is counterintuitive, and is very
different from the weightings that are used in Table I.

In summary, though Chen’s first approach has some improve-
ments over Mon et al.’s approach, e.g., how the “total score” is
converted into a fuzzy number is transparent and it does not de-
pend on α-cuts, it still has several limitations compared with our
Per-C approach. Although both Chen’s first approach and our
Per-C approach conclude that system B is the best, we believe
that this is more a coincidence because of the earlier significant
differences. Chen concludes that system A is better than system
C, whereas we have the opposite conclusion. We believe that
our result is more plausible because our Per-C approach has
overcome Chen’s limitations.

C. Comparison With Chen’s Second Approach

Chen [11] uses the index of optimism introduced in Mon
et al.’s approach, i.e., he carried out the following steps.

1) Assigns (for the first time) a fuzzy importance number to
each of the subcriteria.

2) Ranks the subcriteria by using fuzzy ranking (1̃, 2̃, or 3̃),
where now 3̃ is the highest rank and 1̃ is the lowest rank.
An example of this ranking for tactics and maintenance,

Tactics Technology Maintenance Economy Advancement

A
X = B

C


 1̃0 9̃ 8̃ 5̃ 7̃

9̃ 7̃ 9̃ 4̃ 4̃
1̃2 8̃ 1̃1 6̃ 5̃


 (31)
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TABLE IX
CHEN’S [11] SCORES FOR THE TACTICS AND MAINTENANCE CRITERIA FOR THE

THREE MISSILE SYSTEMS

on the basis of the entries in Table I that is consistent with
these entries, is shown in Table IX.

3) Computes a fuzzy score for each company by multiply-
ing each subcriterion’s fuzzy importance number by its
fuzzy ranking, and then adding all of these products to
obtain three (triangle) fuzzy numbers, TA , TB , and TC .
His results are

TA = (134, 234, 418)

TB = (174, 276, 467)

TC = (125, 226, 412). (34)

4) Computes the α-cuts of TA , TB , and TC , for many values
of α, where the α-cuts of TA , TB , and TC are denoted by
[a(α)

1 , a
(α)
2 ], [b(α)

1 , b
(α)
2 ], and [c(α)

1 , c
(α)
2 ], respectively.

5) Lets λ ∈ [0, 1] be an index of optimism and constructs the
following three crisp scores:


Dλ

a (A|α) = λa
(α)
1 + (1 − λ)a(α)

2

Dλ
b (B|α) = λb

(α)
1 + (1 − λ)b(α)

2

Dλ
c (C|α) = λc

(α)
1 + (1 − λ)c(α)

2

. (35)

6) Normalizes these crisp scores to obtain


Nλ
a (A|α) = Dλ

a (A|α)/[Dλ
a (A|α) + Dλ

b (B|α) + Dλ
c (C|α)]

Nλ
b (A|α) = Dλ

b (A|α)/[Dλ
b (A|α) + Dλ

b (B|α) + Dλ
c (C|α)]

Nλ
c (A|α) = Dλ

c (A|α)/[Dλ
a (A|α) + Dλ

b (B|α) + Dλ
c (C|α)].

(36)
7) Chooses the winning company as the one that has the

largest normalized crisp score.
Chen [11] demonstrates that system B is again the winner,

and system A is again better than system C for λ = 0, 0.5, and
1 and for all values of α.

Comparing Chen’s second approach with ours, we see the
following.

1) Chen is still losing information by first assigning a fuzzy
importance number to each subcriterion and then process-
ing the ranked subcriteria.

2) In his step 3, Chen is weighting each of the five main
criteria the same, which in counterintuitive.

3) As in Mon et al.’s approach [54], Chen’s second approach
has to be repeated for many values of α and λ, and although
the same result was obtained in [11] for all values of α
and λ, there is no guarantee that results could not depend
on both α and λ, in which case, conflicting conclusions
could again be reached.

In summary, though Chen improves Mon et al.’s approach
by considering the different weights of the subcriteria, we still
have doubts about his results because of the aforementioned
three limitations.

D. Comparison With Cheng’s Approach

Cheng proposes two approaches [12], [13] to evaluate the
missile systems. Because his results are not consistent, we con-
sider only his latest approach [13] in this paper, where he carried
out the following steps.

1) Converts each subcriterion entry in Table I into either 1,
or 0.5 or 0, as done in step 1 of Mon et al.’s approach.

2) Computes a total score for each criterion, as done in step 2
of Mon et al.’s approach, maps it into a fuzzy number, and
puts all these fuzzy numbers into a 3 × 5 fuzzy-judgment
matrix X , shown in9 (37) at the bottom of the page.

3) Assigns fuzzy importance weights to each of the five crite-
ria. These weights are indicated in Table I.

4) Aggregates each system by computing the weighted sum
of its fuzzy numbers, e.g., for system A, it is

r̃A = 1̃ ⊗ 9̃ ⊕ 1̃ ⊗ 3̃ ⊕ 7̃ ⊗ 1̃ ⊕ 3̃ ⊗ 5̃ ⊕ 1̃ ⊗ 7̃

= (21, 41, 131). (38)

5) Ranks r̃A , r̃B , and r̃C to find the best system.
Cheng obtains the results that system B is still the winner

(which agrees with our result), but now, system C is better than
system A (which also agrees with our result).

Comparing Cheng’s approach with ours, we observe the fol-
lowing limitations of Cheng’s approach.

1) Words are not modeled; instead, they are ranked in an ad
hoc manner using the crisp numbers 0, 0.5, and 1.

2) When a numerical subcriterion is not satisfied, a company
is assigned a score of 0.5 (or 0), regardless of how far away
its score is from its specification; hence, useful information
is lost.

9Observe that the first column of X in (37) is different from that in (25).
How (37) was computed is unclear. The author only mentioned that [13] “as-
sume that the tactical factors for 3 TMs can be increased by the opinions from
experts . . .”

Tactics Technology Maintenance Economy Advancement

A
X = B

C


 1̃ 1̃ 7̃ 3̃ 1̃

7̃ 5̃ 5̃ 5̃ 7̃
9̃ 3̃ 1̃ 1̃ 5̃


 (37)
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3) Each subcriterion is weighted the same when the total
score is computed, which is counterintuitive, and is very
different from the weightings that are used in Table I.

4) How the “total score” is converted into a fuzzy number is
subjective and not explained.

5) The fuzzy number representing the overall performance of
a system (e.g., r̃A ) is outside of [1, 9], the domain of the
fuzzy numbers in Table II, because weighted sum instead
of weighted average is used; Therefore, it is very difficult
to assess how good a system is.

E. Summary

Four previous approaches on the same missile-evaluation
problem have been introduced and compared with our Per-C
approach. We observed the following points.

1) Although we do not agree with some steps in each of the
four previous approaches, the Per-C approach reaches the
same final decision as these four approaches, i.e., system
B is the best. Since all four previous approaches were pub-
lished in peer-reviewed journals, we believe that system
B is indeed the best, i.e., our Per-C approach selects the
best system correctly.

2) The four previous approaches have different conclusions
in comparing the performance of systems A and C: the
three earlier approaches (see Section V-A–V-C) suggested
that system A is better than system C, whereas the latest
approach (see Section V-D) suggested that System C is
better than System A. Our Per-C approach gives the same
result as the latest approach, i.e., system C is better than
system A. We believe that Per-C again gives the right
answer on this.

By the previous comparison, the meaningfulness and useful-
ness of Per-C is validated and verified. The discussions in this
paper also suggest that Per-C is a very useful tool for multi-
criteria decision making, i.e., diverse information is correctly
aggregated and uncertainties associated with the decision are
given.

A reader may wonder why the Per-C is needed, given that
Cheng’s approach (see Section V-D) can reach the same con-
clusion. Recall that we have pointed out several limitations of
Cheng’s approach at the end of Section V-D. The Per-C ap-
proach avoids them because of its distinguishing features, which
are listed next in our Section VI.

VI. CONCLUSION

The Per-C is an instantiation of Zadeh’s CWW paradigm,
as applied to assisting people in making subjective judgments.
This paper has shown how the Per-C can be applied to a
missile-evaluation problem, which is a hierarchical multicri-
teria decision-making problem, in which a contractor has to
decide which of the three companies will be awarded a contract
to manufacture a missile weapon system, and is a representative
of a class of procurement judgment applications. Distinguishing
features of our approach are as follows.

1) No preprocessing of the subcriteria scores (e.g., by rank-
ing) is done, and therefore, no information is lost.

2) A wide range of mixed data can be used, from numbers to
words. By not having to convert words into a preprocessed
rank, information is again not lost.

3) Uncertainties about the subcriteria scores as well as their
weights flow through all NWA calculations so that our fi-
nal company performance FOUs not only contain ranking
and similarity information but uncertainty information. No
other existing method contains such uncertainty informa-
tion.

4) Normalization automatically occurs in an NWA.
Although we have explained how the Per-C can be applied

to a hierarchical multicriteria decision-making problem in the
context of a specific procurement application, the methodology
of this Per-C is quite general, and it can be applied to similar
procurement applications. In addition, note that the Per-C is
not limited to such applications only [52], [72]. It has been
used to assist people in hierarchical and distributed decision
making [51], [52], [72], social judgments [52], [72], etc.

APPENDIX

COMPUTING THE NOVEL WEIGHTED AVERAGES

Without loss of generality, in this appendix, it is assumed
that: for the IWA, all subcriteria and weights are modeled as
intervals; for the FWA, all subcriteria and weights are modeled
as T1 FSs; and for the LWA, all subcriteria and weights are
modeled as IT2 FSs. All other IWAs, FWAs, and LWAs shown
in Fig. 5 can be viewed as special cases of these three cases.

A. Interval Weighted Average

The IWA is defined as

YIWA ≡
∑n

i=1 XiWi∑n
i=1 Wi

= [l, r] (A1)

where

Xi = [ai, bi ], i = 1, . . . , n (A2)

Wi = [ci, di ], i = 1, . . . , n (A3)

and YIWA is also an interval completely determined by its two
endpoints l and r, with

l = min
xi ∈Xi
wi ∈Wi

∑n
i=1 xiwi∑n
i=1 wi

= min
wi ∈Wi

∑n
i=1 aiwi∑n
i=1 wi

(A4)

r = max
xi ∈Xi
wi ∈Wi

∑n
i=1 xiwi∑n
i=1 wi

= max
wi ∈Wi

∑n
i=1 biwi∑n
i=1 wi

. (A5)

The variables l and r can easily be computed by the Karnik–
Mendel (KM) or enhanced Karnik–Mendel (EKM) algorithms
[29], [43], [77].

Example 6: Suppose for n = 5, {xi}|i=1,...,5 = {9, 7, 5, 4, 1}
and {wi}|i=1,...,5 = {2, 1, 8, 4, 6} so that the arithmetic WA
yAWA = 4.14. Let λ denote any of these crisp numbers. In
this example, for the IWA, λ → [λ − δ, λ + δ], where δ may be
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different for different λ, i.e.,

{xi}|i=1,...,5

→ {[8.2, 9.8], [5.8, 8.2], [2.0, 8.0], [3.0, 5.0], [0.5, 1.5]}
{wi}|i=1,...,5

→ {[1.0, 3.0], [0.6, 1.4], [7.1, 8.9], [2.4, 5.6], [5.0, 7.0]}.

It follows that YIWA = [2.02, 6.36]. Note that the average of
YIWA is 4.19, which is very close to the value of yAWA . The
important difference between yAWA and YIWA is that the uncer-
tainties about the subcriteria and weights have led to an uncer-
tainty band for the IWA, and such a band may play a useful role
in subsequent decision making.

B. Fuzzy Weighted Average

The FWA [16], [20], [21], [33], [35], [36] is defined as

YFWA ≡
∑n

i=1 XiWi∑n
i=1 Wi

(A6)

where Xi and Wi are T1 FSs, and YFWA is also a T1 FS. Note
that (A6) is an expressive way to represent the FWA because it
is not computed using multiplications, additions, and divisions,
as expressed by it. Instead, it has been shown [36], [73] that
the FWA can be computed by using the α-cut decomposition
theorem [31], where each α-cut on YFWA is an IWA of the cor-
responding α-cuts on Xi and Wi , as described by the following
algorithm.

1) For each α ∈ [0, 1], the corresponding α-cuts of the T1
FSs Xi and Wi are first computed, i.e., compute

Xi(α) = [ai(α), bi(α)], i = 1, . . . , n (A7)

Wi(α) = [ci(α), di(α)], i = 1, . . . , n. (A8)

2) For each α ∈ [0, 1], compute the α-cut of the FWA by
recognizing that it is an IWA, i.e., YFWA(α) = YIWA(α),
where

YIWA(α) = [l(α), r(α)] (A9)

in which

l(α) = min
∀wi (α)∈[ci (α),di (α)]

∑n
i=1 ai(α)wi(α)∑n

i=1 wi(α)
(A10)

r(α) = max
∀wi (α)∈[ci (α),di (α)]

∑n
i=1 bi(α)wi(α)∑n

i=1 wi(α)
(A11)

and the KM or EKM algorithms [29], [43], [77] are used
to compute l(α) and r(α).

3) Connect all left coordinates (l(α), α) and all right coordi-
nates (r(α), α) to form the T1 FS YFWA .

Example 7: This is a continuation of Example 6 in which each
interval is assigned a symmetric triangular T1 FS that is centered
at the mid-point (λ) of the interval, has membership grade equal
to one at that point, and is zero at the interval endpoints (λ − δ
and λ + δ) (see the triangle in Fig. 11). The FWA is depicted in
Fig. 12. Although YFWA appears to be triangular, its sides are
actually slightly curved.

Fig. 11. T1 FS used in Example 7.

Fig. 12. FWA for Example 7.

Fig. 13. W̃i and an α-cut. The dashed curve is an embedded T1 FS.

The support of YFWA is [2.02, 6.36], which is the same as
YIWA (see Example 6). This will always occur because the
support of YFWA is the α = 0 α-cut, and this is YIWA .

The center of gravities of YFWA and YIWA are 4.15 and 4.19,
respectively, and while close are not the same. The T1 FS YFWA
indicates that more emphasis should be given to values of vari-
able y that are closer to its apex, whereas the interval YIWA
indicates that equal emphasis should be given to all values of
variable y in its interval. The former reflects the propagation of
the nonuniform uncertainties through the FWA and can be used
in future decisions.

C. Linguistic Weighted Average

The LWA is defined as [73], [75]

ỸLWA ≡
∑n

i=1 X̃iW̃i∑n
i=1 W̃i

(A12)

where Xi and Wi are IT2 FSs, and ỸFWA is also an IT2 FS.
Again, (A12) is an expressive way to describe the LWA. To
compute ỸLWA , one only needs to compute its LMF Y LWA and
UMF Y LWA .

Let Wi be an embedded T1 FS [43] of W̃i , as shown in Fig. 13.
Because in (A12), X̃i only appears in the numerator of ỸLWA ,
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Fig. 14. X̃i and an α-cut.

Fig. 15. ỸLWA and associated quantities.

it follows that

Y LWA = min
∀Wi ∈[W i ,W i ]

∑n
i=1 XiWi∑n

i=1 Wi
(A13)

Y LWA = max
∀Wi ∈[W i ,W i ]

∑n
i=1 XiWi∑n

i=1 Wi
. (A14)

The α-cut-based approach [73], [75] is also used to compute
Y LWA and Y LWA . First, the heights of Y LWA and Y LWA need to
be determined. Because all UMFs are normal T1 FSs, hY LWA

=
1. Let hX i

denote the height of Xi and hW i
the height of Wi .

Let

hmin = min{min
∀i

hX i
,min

∀i
hW i

}. (A15)

Then [75], hY LWA
= hmin .

Let [ail(α), bir (α)] be an α-cut on Xi , [air (α), bil(α)] be
an α-cut on Xi (see Fig. 14), [cil(α), dir (α)] be an α-cut
on Wi , [cir (α), dil(α)] be an α-cut on Wi (see Fig. 13),
[yLl(α), yRr (α)] be an α-cut on Y LWA , and [yLr (α), yRl(α)]
be an α-cut on Y LWA (see Fig. 15), where the subscripts l and
L mean left, and r and R mean right. The endpoints of the α-
cuts on ỸLWA are computed as solutions to the following four
optimization problems [73], [75]:

yLl(α) = min
∀wi ∈[ci l (α),di r (α)]

∑n
i=1 ail(α)wi∑n

i=1 wi
, α ∈ [0, 1]

(A16)

yRr (α) = max
∀wi ∈[ci l (α),di r (α)]

∑n
i=1 bir (α)wi∑n

i=1 wi
, α ∈ [0, 1]

(A17)

yLr (α) = min
∀wi ∈[ci r (α),di l (α)]

∑n
i=1 air (α)wi∑n

i=1 wi
, α ∈ [0, hmin ]

(A18)

yRl(α) = max
∀wi ∈[ci r (α),di l (α)]

∑n
i=1 bil(α)wi∑n

i=1 wi
, α ∈ [0, hmin ].

(A19)

Equations (A16)–(A19) are again computed by the KM or EKM
algorithms [29], [43], [77].

From (A16), (A17), and Figs. 13 and 14, we observed that
yLl(α) and yRr (α) only depend on the UMFs of X̃i and W̃i ,
i.e., they are only computed from the corresponding α-cuts on
the UMFs of X̃i and W̃i ; therefore

Y LWA =
∑n

i=1 XiWi∑n
i=1 Wi

. (A20)

Because all Xi and Wi are normal T1 FSs, Y LWA is also
normal. The algorithm for computing Y LWA is as follows.

1) Select appropriate m α-cuts for Y LWA (e.g., divide [0,
1] into m − 1 intervals, and set αj = (j − 1)/(m − 1),
j = 1, 2, . . . ,m).

2) For each αj , find the corresponding α-cuts
[ail(αj ), bir (αj )] and [cil(αj ), dir (αj )] on Xi and
Wi (i = 1, . . . , n). Use a KM or EKM algorithm to find
yLl(αj ) in (A16) and yRr (αj ) in (A17).

3) Connect all left coordinates (yLl(αj ), αj ) and all right
coordinates (yRr (αj ), αj ) to form the T1 FS Y LWA .

Similarly, we observed from (A18), (A19), and Figs. 13 and
14 that yLr (α) and yRl(α) only depend on the LMFs of X̃i and
W̃i ; hence

Y LWA =
∑n

i=1 XiWi∑n
i=1 Wi

. (A21)

Unlike Y LWA , which is a normal T1 FS, the height of Y LWA is
hmin , i.e., the minimum height of all Xi and Wi . The algorithm
for computing Y LWA is as follows.

1) Determine hX i
and hW i

, i = 1, . . . , n, and hmin in (A15).
2) Select appropriate p α-cuts for Y LWA (e.g., divide

[0, hmin ] into p − 1 intervals and set αj = hmin(j −
1)/(p − 1), j = 1, 2, . . . , p).

3) For each αj , find the corresponding α-cuts
[air (αj ), bil(αj )] and [cir (αj ), dil(αj )] on Xi and
Wi . Use a KM or EKM algorithm to find yLr (αj ) in
(A18) and yRl(αj ) in (A19).

4) Connect all left coordinates (yLr (αj ), αj ) and all right
coordinates (yRl(αj ), αj ) to form the T1 FS Y LWA .

In summary, computing ỸLWA is equivalent to computing two
FWAs: Y LWA and Y LWA . A flowchart for computing Y LWA and
Y LWA is given in Fig. 16. For triangular or trapezoidal IT2 FSs,
it is possible to reduce the number of α-cuts for both Y LWA and
Y LWA by choosing them only at turning points, i.e., points on
the LMFs and UMFs of X̃i and W̃i (i = 1, 2, . . . , n) at which
the slope of these functions changes.

In order to communicate effectively about the LWA, some
measures of the uncertainty that is associated with ỸLWA are
needed [74]. The centroid [29] of the LWA is one such measure.

Definition 5: Let yi (i = 1, 2, . . . , N) be the discretizations
in the domain of the primary variable of ỸLWA . Then, the
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Fig. 16. Flowchart for computing the LWA [75].

membership of yi , i.e., µỸLWA
(yi), is an interval, i.e.,

µỸLWA
(yi) = [Y LWA(yi), Y LWA(yi)] (A22)

and the centroid of ỸLWA , which is a special IWA, is defined as

CỸLWA
=

∑N
i=1 yiµỸLWA

(yi)∑N
i=1 µỸLWA

(yi)
≡ [cl , cr ] (A23)

where

cl = min
∀µ(yi )∈[Y LWA (yi ),Y LWA (yi )]

∑N
i=1 yiµ(yi)∑N
i=1 µ(yi)

(A24)

cr = max
∀µ(yi )∈[Y LWA (yi ),Y LWA (yi )]

∑N
i=1 yiµ(yi)∑N
i=1 µ(yi)

. (A25)

The variables cl and cr are also computed by the KM or EKM
algorithms.

Definition 6: The average centroid (center of centroid) of
ỸLWA is defined as

cỸLWA
= (cl + cr )/2. (A26)

The half-length of ỸLWA is defined as

δỸLWA
= (cr − cl)/2. (A27)

Example 8: This is a continuation of Example 7, where
each subcriterion and weight is now assigned an FOU, i.e.,
for a 50% symmetrical blurring of the T1 MF depicted in
Fig. 11 (see Fig. 17). The left half of each FOU has sup-
port on the x (w)-axis given by the interval of real num-
bers [(λ − δ) − 0.5δ, (λ − δ) + 0.5δ], and the right-half FOU

Fig. 17. IT2 FS used in Example 8. The dashed lines are the corresponding
T1 FS used in Example 7.

has support on the x-axis given by the interval of real num-
bers [(λ + δ) − 0.5δ, (λ + δ) + 0.5δ]. The UMF is a triangle
defined by the three points (λ − δ − 0.5δ, 0), (λ, 1), (λ + δ +
0.5δ, 0), and the LMF is a triangle defined by the three points
(λ − δ + 0.5δ, 0), (λ, 1), (λ + δ − 0.5δ, 0). The resulting sub-
criterion and weight FOUs are depicted in Fig. 18(a) and (b),
respectively, and ỸLWA is depicted in Fig. 18(c). Although ỸLWA
appears to be symmetrical, it is not. The support of the left-hand
side of ỸLWA is [0.85, 3.10], and the support of the right-hand
side of ỸLWA is [5.22, 7.56]; hence, the length of the support
of the left-hand side of ỸLWA is 2.25, whereas the length of
the support of the right-hand side of ỸLWA is 2.34. In addition,
CỸLWA

= [3.38, 4.96], and cỸLWA
= 4.17.

Comparing Figs. 12 and 18(c), we observed that ỸLWA is
spread out over a larger range of values than is YFWA , thus
reflecting the additional uncertainties in the LWA due to the
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Fig. 18. Example 8. (a) X̃i , (b) W̃i , and (c) ỸLWA .

blurring of subcriteria and weights. This information can be
used in future decisions.

Another way to interpret ỸLWA is to associate values of y that
have the largest vertical intervals (i.e., primary memberships)
with values of greatest uncertainty; hence, there is no uncertainty
at the three vertices of the UMF, and, e.g., for the right half of
ỸLWA , uncertainty increases from the apex of the UMF, reaching
its largest value at the right vertex of the LMF and then decreases
to zero at the right vertex of the UMF.
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