
Computationally Efficient Type-Reduction Strategies
for a Type-2 Fuzzy Logic Controller

Dongrui Wu
Department of Electrical and

Computer Engineering
National University of Singapore

Singapore 117576
E-mail: g0305786@nus.edu.sg

Woei Wan Tan
Department of Electrical and

Computer Engineering
National University of Singapore

Singapore 117576
E-mail: eletanww@nus.edu.sg

Abstract— A type-2 fuzzy set is characterized by a concept
called footprint of uncertainty (FOU). It provides the extra
mathematical dimension that equips type-2 fuzzy logic systems
(FLSs) with the potential to outperform their type-1 counterparts.
While a type-2 FLS has the capability to model more complex
relationships, the output of a type-2 fuzzy inference engine needs
to be type-reduced. As type-reduction is very computationally
intensive, type-2 FLSs may not be suitable for certain real-time
applications. This paper aims at developing more computationally
efficient type-reducers. The proposed type-reducer is based on the
concept known as equivalent type-1 sets (ET1Ss), a collection of
type-1 sets that replicates the input-output map of a type-2 FLS.
Simulations are presented to demonstrate that the proposed type-
reducing algorithms have lower computational cost and better
performances than the Karnik-Mendel type-reducer.

I. INTRODUCTION

Unlike type-1 fuzzy sets whose membership grades are crisp
numbers, the membership grades of a type-2 set are fuzzy
sets in [0, 1]. It is useful in circumstances where it is difficult
to determine the exact shape for a fuzzy set. Thus, type-2
fuzzy logic systems (FLSs), constructed by at least one type-2
set, have the potential to outperform their type-1 counterparts.
Type-2 FLSs have been widely used so far [1]–[8].

The structure of a typical type-2 FLS is shown in Fig. 1.
Compared with type-1 FLSs, the major difference is that an
extra type-reducer is needed to convert the output of the fuzzy
inference engine (type-2 sets) into a type-1 set so that it
can be processed by the defuzzifier to give a crisp output.
Unfortunately, existing type-reducers are very computationally
intensive, rendering type-2 FLSs unsuitable for certain real-
time applications.
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Fig. 1. A type-2 fuzzy logic system

In this paper, more computationally efficient methodologies
for performing type-reduction are proposed. The algorithms
utilize the concept of equivalent type-1 sets (ET1Ss) [9],

[10]. Research has shown that a type-2 set may be replaced
by a collection of ET1Ss without affecting the input-output
relationship. The role of a type-reducer is to reduce a type-2 set
to a type-1 set. By viewing a type-2 fuzzy set as a collection of
ET1Ss, the type-reduction process then simplifies to deciding
which ET1S to employ in a particular situation. Thus, the
computational requirement can be reduced and the resulting
type-2 FLSs would be more amenable to real-time embedded
applications. Simulation results are presented to demonstrate
the feasibility of the proposed idea.

The rest of the paper is organized as follows: Section II
introduces the principle of the proposed type-reducer. Sec-
tion III describes a simple new type-reducer constructed by
experiences. Next, in Section IV the idea of evolving better
type-reducer by genetic algorithm (GA) is introduced. The two
new type-reducers are used to control a first order time delay
system in Section V. Their performances are compared with
a type-1 FLS and two type-2 FLSs with the Karnik-Mendel
type-reducer and the uncertainty bound method. Finally, con-
clusions are drawn in Section VI.

II. BACKGROUND AND MOTIVATIONS

A. Equivalent type-1 sets

The proposed type-reducing algorithm is based on the
following concept [9], [10] :

By definition, equivalent type-1 sets is the col-
lection of type-1 sets that can be used in place
of the FOUs in a type-2 FLS.

An example will be used to illustrate the ET1S concept.
Consider a two inputs, single output type-2 fuzzy logic

controller (FLC) and an accompanying baseline type-1 FLC.
Both FLCs have two inputs (e and ė) and one output (u̇). Each
input is characterized by two membership functions (MFs) in
its domain. The MFs are shown in Fig. 2. The type-2 fuzzy set,
ẽ1, is obtained by introducing FOU to a type-1 FLS, shown as
the dark thick lines in Fig. 2. The type-2 fuzzy set used here
is an interval one, where each point of the FOU has a unity
secondary membership grade. Table I is the rule base of the
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FLCs. The entries in Table I are defined as :

u̇ij = KI · Pei
+ KP · Pėj

i, j = 1, 2 (1)

where Pei
is the apex of MF ei, Pėj

is the apex of MF ėj , as
labelled in Fig. 2. When the “Product-Sum-Gravity” inference
is employed, the resulting type-1 FLC is equivalent to a PI
controller with a proportional gain of KP and an integral gain
KI [11].
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Fig. 2. MFs of the FLSs

e \ ė ė1 ė2

e1 u̇11 u̇12

e2 u̇21 u̇22

TABLE I

RULE BASE OF THE FLSS

Since the baseline type-1 FLC is actually a PI controller,
its control surface is linear. The control surface of the type-2
FLC is more complex and nonlinear. For example, the control
surface of the type-2 FLC with the following parameters is
shown in Fig. 3(a) :

Pe1 = Pė1 = −1, Pe2 = Pė2 = 1, de = 0.5

KI = 1, KP = 1

As it is more complex, the control surface in Fig. 3(a) may not
be implemented by a type-1 FLC. However, the control surface
can be cutted into numerous slices according to the input ė.
That is, for a particular input ė = ė′, a curve representing
the relationship between the output u̇ and the input e can be
obtained. Fig. 3(b) shows the slice corresponding to ė′ = −1.
As presented in [9], [10], each such slice can be replicated by
constructing an ET1S to replace the type-2 set ẽ1.

Assume an input vector is (e′, ė′). The MFs ẽ1, e2, ė1 and
ė2 are fired and the firing strengths are fẽ1 = [fe1l

, fe1u
],

fe2 , fė1 and fė2 , respectively, where fe1l
and fe1u

are the
firing strengths on the lower and upper MF of ẽ1. Suppose
the interval firing strength fẽ1 = [fe1l

, fe1u
] is replaced by its

equivalent type-1 membership grade [9], [10]. By fixing ė′ and
varying e′ in discrete steps from Pe1−de to Pe2 +de (the FOU
of ẽ1), all the equivalent type-1 membership grades will form
a type-1 set. This type-1 set is the ET1S of ẽ1 corresponding to
ė = ė′. The remaining slices of the control surface can be re-
constructed by finding other ET1Ss. The ET1Ss corresponding
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Fig. 3. Illustration of the control surface and a slice of it

to ė′ = {−1, 0, 1} are plotted in Fig. 4. Note here the ET1S
corresponding to ė′ = −1 coincides with the one to ė′ = 1.
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Fig. 4. ET1Ss obtained by the Karnik-Mendel type-reducer

B. Key Ideas of the Proposed Type-Reducers

Fig. 1 shows that a traditional type-reducer is placed after
the inference engine. Consequently, both the inference engine
and the type-reducer have to process interval firing strengths.
This results in a heavy computational burden and may prevent
type-2 FLSs from certain real-time applications.

The key idea behind the proposed type-reducer is to view a
type-2 set as being equivalent to a collection of ET1Ss. Type
reduction is then simplified to finding the ET1S corresponding
to a particular input. More specifically, the type-reducer needs
to identify the equivalent type-1 membership grade (feq)
for each interval firing strength. Once the equivalent type-1
membership grade has been deduced, the firing set of a type-
2 fuzzy set reduces to a crisp value and a traditional fuzzy
inference engine and defuzzifier can be employed to find the
output of the type-2 FLS. In summary, the proposed type-
reduction procedure is applied before the inference engine,
as illustrated in Fig. 5. The goal is to find the appropriate
equivalent type-1 membership grades according to the inputs.

The new approach retains the characteristics of a type-2
FLS, while offering several advantages over existing tech-
niques. First, the proposed algorithm can be much faster
than the Karnik-Mendel iterative method. Second, the firing
strengths of rules that the inference engine has to process
are all crisp numbers now instead of interval sets. Thus,
computational load is reduced because the inference engine
behaves like the one in a type-1 FLS. Finally, the most
significant advantage is that computational intelligence meth-
ods (i.e., Genetic Algorithms, Neural Networks, etc) can be
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employed to construct the type-reduction algorithm and/or
optimize its parameters. This opens up a whole class of tools
for developing type-reducers that satisfy specific requirements
so that better performances can be achieved. In the following
sections, two type-reduction procedures based on the ET1S
concept will be described.
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Fig. 5. Structure of a type-2 FLS with the proposed type-reducer

III. A SIMPLE COMPUTATIONALLY EFFICIENT

TYPE-REDUCER (NEWTR1)

From the observations made in [7]–[10], [12], a type-reducer
in a type-2 FLC may satisfy the following requirements :

1) Sine a type-2 FLS reduces to its type-1 counterpart when
the FOU is zero, a type-reducer must produce ET1Ss
that coincide with the baseline type-1 sets in this case.

2) The ET1Ss change with the input. Hence, a type-reducer
may be a function of all the input variables.

3) [7], [8], [12] show the control surface of a type-2 FLC is
generally smoother than that of a type-1 FLC, especially
around the origin (e = 0, ė = 0). The smoother
control surface is one factor that makes a type-2 FLC
more robust than its type-1 counterpart. The proposed
type-reducer should, therefore, also give rise to control
surfaces that are smoother.

By taking into account the above requirements and trial-
and-error, a new type-reducer NewTR1 is one that defines the
equivalent type-1 set as :

feq = fu − 1
N

N∑
i=1

ratei × (fu − fl) (2)

where feq is the equivalent type-1 membership grade of the
interval firing strength [fl, fu] (refer to Fig. 6) [9], [10], ratei

is a function of the ith input and N is the total number of
inputs.

eqf
uf

lf

bf

Fig. 6. Illustration of the new type-reducer

Analysis verifying that the algorithm defined in Equation (2)
satisfies the three requirements of a type-reducer will now be
presented.

1) Requirement (1) essentially states that feq must equal fb

in Fig. 6 when fu = fl = fb. By setting fu = fl = fb,
it is obvious that Equation (2) satisfies this requirement.

2) The parameter ratei is used to satisfy the second
requirement. For the FLCs given in Fig. 2, there are
two inputs e and ė. Since the type-reducer should be
a function of all input variables, two functions are
defined :

rate1 =
2 |e|

Pe2 − Pe1

(3)

rate2 =
2 |ė|

Pė2 − Pė1

(4)

For different values of e, rate1 is different. This is also
true for ė. Since NewTR1 in Equation (2) is a function
of rate1 and rate2, it is hence a function of both inputs
e and ė and the second requirement is fulfilled.

3) To demonstrate that the control surface obtained by
using Equation (2) is smoother than the baseline type-1
FLC, the relationship between the slope of the control
surface and the value of feq is examined. Using the
structure in Fig. 2 and replacing the interval firing
strength fẽ1 by its equivalent type-1 membership grade
feq, the output is :

u̇ =
feqfė1 u̇11 + feqfė2 u̇12 + fe2fė1 u̇21 + fe2fė2 u̇22

feqfė1 + feqfė2 + fe2fė1 + fe2fė2
(5)

The first derivative of u̇ with respect to feq is :

ü =
fe2 [fė1(u̇11 − u̇21) + fė2(u̇12 − u̇22)]

(feq + fe2)2(fė1 + fė2)
(6)

Substitute Equation (1) into Equation (6) :

ü =
KIfe2(Pe1 − Pe2)

(feq + fe2)2
(7)

Equation (7) shows that the slope of |u̇| will decrease
as feq increases. To achieve fast and robust control,
the control surface should have a small slope near the
origin (steady state) and a big slope far from the origin.
Consequently, the equivalent type-1 membership grades
(feq) should be big when e and/or ė are far from zero,
and small when e and/or ė are around zero. The ET1Ss
corresponding to ė = {−1, 0, 1} are plotted in Fig. 7.
Note here the ET1S corresponding to ė = −1 coincides
with the one to ė = 1. The plots in Fig. 7 show that the
ET1Ss have the desired characteristics as feq is large
when e and ė is approximately zero and small when
the inputs are far away from the origin. Hence, it may
be concluded that the control surface would meet our
requirements.

IV. A TYPE-REDUCER EVOLVED BY GA (NEWTR2)

In this section, genetic algorithms (GAs) will be used to
evolve an expression for performing type-reduction. Since
a plant model must be used in the GA tuning process of
NewTR2, it is introduced first.
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Fig. 7. ET1Ss obtained by the proposed type-reducer

A. Simulation Plant

Consider a first order plus dead-time plant :

G(s) =
Y (s)
U(s)

=
K

τs + 1
e−Ls (8)

where K, τ and L are the static gain, time constant and trans-
portation delay respectively. It is assumed that the nominal

plant is
1

10s + 1
e−2.5s. To ensure good control performance

is obtained for the nominal plant, the PI parameters used to
design the consequent sets of both FLCs are selected by the
ITAE setpoint tracking tuning rule [13] :

KP =
0.586

K

(
L

τ

)−0.916

= 2.086 (9)

KI =
1.03 − 0.165L

τ

τKP
= 0.206 (10)

The MFs of the baseline type-1 FLC used in the study are
shown in Fig. 8 as the dark thick lines. The FOU of the type-2
MFs used to construct the type-2 FLCs are the shaded regions
in Fig. 8. Substituting the PI parameters shown above into
Equation (1), the consequent sets are found and are shown in
Table II.
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Fig. 8. MFs of the FLCs

e \ ė ė1 ė2

e1 −2.2923 1.8797

e2 −1.8797 2.2923

TABLE II

RULE BASE OF THE FLSS

B. The Type-Reducer Evolved by GA (NewTR2)

For NewTR1 in Equation (2), the parameters rate1 and
rate2 contribute equally to the value of feq. This is for
simplicity sake. However, better performance may be obtained
by weighting the contribution of rate1 and rate2. GA can be
used for this purpose. Two weights are needed by each type-2
set and each type-2 MF may have its own weights. For the
type-2 FLC used herein, there are 4 type-2 MFs. Thus, a total
of 8 weights need to be tuned by GA.

In order to evolve a type-reducer that can cope well with
modeling uncertainties, the 5 plants with parameters shown in
Table III are used to tune the type-reducer. The fitness of a
chromosome is evaluated based on the sum of the integral of
time-weighted absolute error (ITAE) of the 5 plants. The best
type-reducers evolved are :

fe1 = fe1u
− (1.4347rate1 − 3.8964rate2) · (fe1u

− fe1l
)

fe2 = fe2u
− (1.7605rate1 − 2.6043rate2) · (fe2u

− fe2l
)

fė1 = fė1u
− (0.9601rate1 + 0.2290rate2) · (fė1u

− fė1l
)

fė2 = fė2u
− (0.9041rate1 + 0.1169rate2) · (fė2u

− fė2l
)

where the definitions of rate1 and rate2 are the same as those
in Equations (3) and (4).

Parameter \ Plant I II III IV V

K 1 1 1 0.5 2
τ 10 5 20 10 10
L 2.5 2.5 2.5 2.5 2.5

TABLE III

PARAMETERS OF THE FIVE PLANTS

V. COMPARATIVE RESULTS

Consider the following FLCs :
• Type-1: A type-1 FLC realizing a PI controller with

KP = 2.086 and KI = 0.206;
• K-M TR: A type-2 FLC using the Karnik-Mendel type-

reducer;
• UnctnBound: A type-2 FLC using the uncertainty bound

type-reducer [14];
• NewTR1: A type-2 FLC using the type-reducer developed

in Section III;
• NewTR2: A type-2 FLC using the type-reducer evolved

by GA in Section IV.
Their input MFs are shown in Fig. 8 and rule base in

Table II. The performances of the 5 FLCs to handle modelling
uncertainties are compared. The 5 plants given in Table III are
used as testbeds. The step responses are shown in Fig. 9–13.

Three performance indices are employed as quantitative
measures for comparing the 5 FLCs:

• Integral of the absolute error (IAE): IAE=
∫ 100

0
|e(t)|dt.

• Integral of the squared error (ISE): ISE=
∫ 100

0
e2(t)dt.

• Integral of the time-weighted absolute error (ITAE):
ITAE=

∫ 100

0
t|e(t)|dt.
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Fig. 9. Step response when K = 1, τ = 10
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Fig. 10. Step response when K = 1, τ = 5
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Fig. 11. Step response when K = 1, τ = 20
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Fig. 12. Step response when K = 0.5, τ = 10
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Fig. 13. Step response when K = 2, τ = 10

The results are listed in Table IV. When their overall
performances are compared, NewTR2 is the best of the five,
NewTR1 is the second. This means the two type-2 FLCs with
the proposed type-reducers can handle modelling uncertainties
better than the type-1 FLC and the type-2 FLC with Karnik-
Mendel type-reducer or uncertainty bound method. Besides,
more interesting patterns may be found: when the response is
fast, i.e., K is big (Plant V) or τ is small (Plant II), all the 4
type-2 FLCs outperform the type-1 FLC. On the other hand,
when the response is slow, i.e., K is small (Plant IV) or τ is
big (Plant III), the type-1 FLC outperforms all the 4 type-2
FLCs. The reason will be explored in a forthcoming paper.

(a) IAE of the 5 FLCs
FLC\Plant I II III IV V Sum

Type-1 6.2690 8.7621 10.5164 9.6941 15.3482 50.5898
K-M TR 8.7302 5.6858 16.2223 13.0920 8.2086 51.9389

UnctnBound 7.7965 7.6447 13.2338 15.7551 6.8963 51.3263
NewTR1 7.1429 7.2118 12.9132 10.0955 10.2925 47.6560
NewTR2 6.4481 7.0047 13.1466 11.8570 8.0851 46.5415

(b) ISE of the 5 FLCs
FLC\Plant I II III IV V Sum

Type-1 4.5960 4.8172 6.2603 6.4649 7.6374 29.7758
K-M TR 5.5494 4.2626 8.4429 8.4130 5.1966 31.8645

UnctnBound 5.4474 4.4632 7.8100 9.1500 4.4992 31.3697
NewTR1 4.6890 4.3552 6.7941 6.6841 6.1704 28.6928
NewTR2 5.0406 4.2950 7.3074 7.6748 4.9216 29.2395

(c) ITAE of the 5 FLCs
FLC\Plant I II III IV V Sum

Type-1 38.0564 104.2077 129.1421 85.3527 307.8952 664.6542
K-M TR 84.9387 32.8934 335.7619 157.1687 70.3821 681.1449

UnctnBound 58.2806 91.3164 200.4673 237.7789 52.7201 640.5633
NewTR1 60.4384 67.6799 222.7414 89.2998 112.6438 552.8033
NewTR2 34.8456 70.4150 215.6216 121.7163 72.5361 515.1346

TABLE IV

PERFORMANCES OF THE FIVE FLCS

An advantage of the proposed type-reducers is their low
computational cost. Compared with the Karnik-Mendel type-
reducer which requires several iterations and the number of
iterations may be different from run to run, the new type-
reducers are straight forward. The computational burden is
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fixed and is much less. Without loss of generality, assume that
N equally spaced MFs are used to partition each of the two
[−1, 1] input domains. The FOU of every type-2 MF is defined
as de = dė = 1

N−1 , i.e. half of the distance between the two
adjacent apexes. This study is conducted by first generating
101 points, ei = 2(i−1)/100−1(i = 1, . . . , 101), that divide e
domain into 100 equally-spaced intervals. Another 101 points
in ė domain are generated in a similar manner. By combining
these points in all possible ways, 10201 input vectors are
generated. Computational cost is evaluated by comparing
the time needed to calculate the outputs corresponding to
these 10201 input vectors. The platform is an Intel Pentium
III 996MHz computer with 256M RAM and Windows XP
running MATLAB 6.5. The computation time for the 5 FLCs
are shown in Table V. It shows that a type-2 FLS with the
proposed type-reducer has similar computational cost as a
type-1 FLS. Compared to a type-2 FLS with Karnik-Mendel
type-reducer, the computational burden is greatly reduced.
Though the uncertainty bound method is specially designed
for reducing computational cost, it is still about 2 times higher
than that of the proposed type-reducers. Thus, the proposed
type-reducers may be more suitable for certain types of real-
time applications.

N \ FLC Type-1 K-M TR UnctnBound NewTR1 (NewTR2)
2 1.0 sec 11.9 sec 2.5 sec 1.4 sec
3 1.2 sec 12.8 sec 2.8 sec 1.5 sec
5 1.6 sec 13.3 sec 3.4 sec 2.0 sec
7 2.3 sec 15.8 sec 4.9 sec 2.7 sec
9 3.2 sec 19.6 sec 7.0 sec 3.8 sec

TABLE V

COMPARISON OF COMPUTATIONAL COST

In [7] a simplified type-2 FLS structure is proposed to
reduce the computational cost. However, that computational
cost is still higher than the results here with the same number
of input MFs. Besides, the simplified structure is a subset of
the type-2 FLS with Karnik-Mendel type-reducer. Thus, its
best performance is bounded by the type-2 FLS based on the
Karnik-Mendel iterative method. On the other hand, the ideas
in this paper enable one to design different type-reducers,
and the performances of the resulting type-2 FLS may be
better than a traditional type-2 FLS with Karnik-Mendel type-
reducer.

There are, however, some limitations to the proposed type-
reducers. In this paper the type-reducer transforms a type-
2 FLC into a type-1 one before the inference engine. This
approach gives rise to minimum computational cost. However,
it does not allow the uncertainties to flow to the inference
engine which presents a measure of uncertainty. Besides, the
definitions of rate1 and rate2 are obtained from experience
and only their coefficients are tuned by GA. It may be too
constrained.

To overcome the limitations, one may find a function to
replace the Karnik-Mendel type-reducer. This function also
uses the type-2 output fuzzy sets from the inference engine as

its input and outputs a type-1 set which will be used by the
defuzzifier. However, it will calculate the type-1 set directly,
without the iterations in the Karnik-Mendel type-reducer. This
kind of type-reducers may have heavier computational cost
than the two proposed in this paper since the inference engine
also has to process type-2 sets. However, the computational
cost is still much less than that of a Karnik-Mendel type-
reducer. Besides, they seem more reasonable since the flow
of uncertainties is the same as that in a traditional type-2
FLS. The uncertainty bound method can be considered as an
example of this idea [14]. Better type-reducers may be found
by genetic programming.

Finally, it should be note that there is no guarantee the two
type-reducers proposed herein can be applied to all kinds of
type-2 FLSs. However, their success in this paper suggests
the feasibility of constructing faster and better type-reducers
according to our specific requirements.

VI. CONCLUSIONS

In this paper, computationally efficient type-reducers are
proposed. Simulation results show that they are much simpler
to implement than the widely used Karnik-Mendel iterative
method, while at the same time providing better performances.
The results are promising and indicate that GA can be use to
evolve faster and better type-reducers according to the specific
requirements of a problem.
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