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Abstract— Objective: This paper aims at reducing the cali-
bration effort of EEG-based brain-computer interfaces (BCIs).
More specifically, in the context of cross-subject classification,
we correct covariate shift of EEG data from different subjects,
so that a classifier trained on auxiliary subjects can also be
applied to a new subject, without any labeled trials from the
new subject. Methods: We propose two approaches to enhance
the performance of a state-of-the-art Riemannian space transfer
learning (TL) algorithm: 1) trials selection, which resamples
trials from the auxiliary subjects so that they become more
consistent with those of the new subject; and, 2) channel
selection, which reduces the number of channels and hence
makes the Riemannian space computations more accurate and
efficient. Results: We tested the proposed approaches on two
motor imagery datasets. The results verified that they can
enhance the performance of the state-of-the-art TL algorithm.
Conclusion and significance: Our proposed approaches make
the state-of-the-art TL algorithm more effective and efficient.

I. INTRODUCTION

Brain computer interfaces (BCIs) [1], [2] enable a user
to interact with his/her surroundings by using brain signals,
including electroencephalogram (EEG), magnetoencephalo-
gram, electrocorticography, and so on. Early BCIs were
developed only for the disabled, allowing them to com-
municate with the environment without the involvement of
muscles [3]. For example, a severely paralyzed patient can
control a powered exoskeleton or wheelchair by imagining
the movement of his/her body with the help of a BCI system.
Recently, there has been a growing interest of BCI research
on able-bodied users, such as playing video games and
controlling unmanned aerial vehicles [4], [5]. EEG is the
most popular form of BCI input as it is easy and safe to
acquire, and offers high temporal resolution.

However, EEG signals are very weak and can be easily
contaminated by various artifacts and noise [6]. Therefore,
sophisticated signal processing and machine learning algo-
rithms are needed to clean and decode EEG signals. One
of the most popular approaches for enhancing the signal-
to-noise ratio of EEG is common spatial pattern (CSP)
filtering [7]–[11]. Then, discriminant features are extracted
and fed into a classifier. Riemannian space classifiers [12]–
[15], which integrate feature extraction and classification,
have becoming popular in the last decade. They take the
symmetric positive definite (SPD) spatial covariance matrices
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of the EEG trials as features and directly classify them by
measuring the distances on the Riemannian manifold.

Although sophisticated signal processing and classifica-
tion/regression algorithms have been proposed, there are still
many challenges in real-world applications of EEG-based
BCIs [2], [16]. Because of individual differences, algorithms
trained on auxiliary subjects may not be directly applied to a
new subject, because people show different neural responses
even in the same task. Therefore, BCI systems usually need
to be calibrated before each use, which is time-consuming
and inconvenient.

Transfer learning (TL) [17], which leverages information
from related domains to improve the learning performance
in a target domain, is a promising approach for shortening
or even eliminating the calibration process. TL has been
successfully used in EEG-based BCIs [18]–[22]. It can
compensate data shifts among different subjects, including
covariate shift, concept shift, and prior shift.

Covariate shift means the distribution of the input changes
across datasets, which is the most commonly occurred and
studied problem in TL. Recently, Zanini et al. [23] proposed
a Riemannian alignment (RA) approach to cope with co-
variate shift in BCIs. It first computes a reference matrix
for each subject, then centers the trials of each subject
with respect to his/her reference matrix, so that the trials
from different subjects are better aligned. The key step is
to compute the reference matrix for each subject. [23] used
“resting trials”, i.e., epochs between two successive imagery
tasks, to compute the reference matrix. Our recent work
[24] discussed different choices of the reference matrix, and
demonstrated that the Riemannian mean of the imagery trials
outperformed that of the resting trials. To our knowledge,
RA using mean covariance matrix of the imagery trials is
the state-of-the-art in Riemannian-based TL for EEG-based
BCIs.

This paper proposes two approaches to further enhance
this state-of-the-art RA:

1) Trials Selection (TS), which reduces the covariate shift
between the target subject and the auxiliary subjects
by selecting the most similar trials from the auxiliary
subjects.

2) Channel Selection (CS), which selects a subset of
channels such that the dimensionality of the spatial
covariance matrices decreases. This may be beneficial
since the computations in the Riemannian space be-
come more accurate and efficient.

The remainder of this paper is organized as follows:
Section II introduces some essential background knowledge.
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Section III presents our enhancements to RA. Section IV
compares the performance of our proposed approaches with
RA on two MI datasets. Finally, Section V draws conclusion.

II. BACKGROUND

This section first introduces CSP filtering, based on which
channel can be performed. Then, the Riemannian geometry
and a state-of-the-art TL approach are described.

A. Common Spatial Pattern (CSP) Filtering

Let Xi ∈ R
C×T be an EEG trial, where C is the number

of channels and T the number of time samples. Consider
a binary classification problem. We first compute the mean
covariance matrix of the trials in Class p by:

Σ̄p =
1

np

np∑
i=1

Xp,iX
T
p,i, p = 0, 1 (1)

where Xp,i is the ith trial in Class p, and np is its number
of trials.

CSP projects an EEG trial into a few subcomponents
which have the maximum difference between the variances
of the two classes, i.e.,

W0 = argmax
W

tr(WT Σ̄0W )

tr(WT Σ̄1W )
, (2)

where W0 ∈ R
C×M is a filter matrix whose columns are the

individual filters, M is the number of filters, and tr(·) is the
trace of a matrix.
W0 maximizes the variance for Class 0 while minimizing

it for Class 1. In practice, we often construct a CSP filter
matrix W∗ = [W0,W1] ∈ R

C×2M , where

W1 = argmax
W

tr(WT Σ̄1W )

tr(WT Σ̄0W )
, (3)

i.e., W1 maximizes the variance for Class 1 while minimizing
it for Class 0.
W∗ is the concatenation of the 2M eigenvectors associated

with the M largest and M smallest eigenvalues of the matrix
Σ̄−1

1
Σ̄0 (or Σ̄−1

0
Σ̄1).

B. Riemannian Geometry

Since this paper investigates TL approaches in the Rie-
mannian space, we next introduce some basic Riemannian
space concepts.

1) Riemannian Distance: The Riemannian distance be-
tween two SPD matrices P1 and P2 is the minimum length
of a curve connecting them on the Riemannian manifold:

δR(P1, P2) =‖ log(P−1

1
P2) ‖F=

[
R∑

r=1

log2 λr

] 1

2

, (4)

where the subscript F denotes the Frobenius norm, and λr

(r = 1, 2, · · · , R) are the real eigenvalues of P−1

1
P2.

2) Riemannian Mean: The Riemannian mean of a set of
SPD matrices is their geometric mean in the Riemannian
space, instead of the arithmetic mean (Euclidean mean).
Specifically, it is defined as the matrix minimizing the sum
of the squared Riemannian distances:

�(P1, · · · , PN ) = argmin
P

N∑
n=1

δ2R(P, Pn), (5)

There is no closed-form solution to (5), and it is usually
computed by an iterative gradient descent algorithm [25].

3) Minimum Distance to Riemannian Mean (MDRM):
The MDRM classifier [12]–[14] first computes the covari-
ance matrix of each EEG trial, and then the Riemannian
mean of each class using the labeled training trials. Next, it
assigns each test trial to the class whose Riemannian mean
is the closest to its covariance matrix, i.e.,

g(Σ) = arg min
c=1,2,··· ,C

δR(Σ, Σ̄
c), (6)

where Σ̄c is the Riemannian mean of Class c, Σ is the
covariance matrix of the test trial, and g(Σ) is the prediction
of its class label.

C. Riemannian Space Alignment (RA)

Zanini et al. [23] first proposed RA to align covariance
matrices of trials from different sessions/subjects in the
Riemannian space. The basic idea of RA is to “center the
covariance matrices of every session/subject with respect to
a reference covariance matrix so that what we observe is
only the displacement with respect to the reference state due
to the task.” Therefore, the reference covariance matrix plays
a significant role in RA, and [23] used the resting trials
to compute the reference matrix for each session/subject,
under the assumption that “different source configurations
and electrode positions induce shifts of covariance matrices
with respect to a reference (resting) state, but that when the
brain is engaged in a specific task, covariance matrices move
over the SPD manifold in the same direction.”

More specifically, RA first computes the covariance matri-
ces of the resting trials, {Ri}

n
i=1

, and then their Riemannian
mean:

R̃ = argmin
R

n∑
i=1

δ2R(R,Ri), (7)

where R̃ is the reference matrix.
Then, R̃ is used to transform the data of the corresponding

subject, making data from different subjects more consistent:

Σ̃i = R̃−1/2ΣiR̃
−1/2, (8)

where Σi and Σ̃i are the covariance matrix before and after
alignment.

We [24] discussed different choices of the reference matrix
in RA, and demonstrated that using the Riemannian mean of
the imagery trials achieved better performance than using the
Riemannian mean of the resting trials. Therefore, we used
the former approach to compute the reference matrix in RA
in this paper.
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III. PROPOSED ENHANCEMENTS TO THE RA

This section proposes two enhancements to the RA. The
first selects a subset of labeled trials from the auxiliary
subjects based on the Riemannian distance. The second
selects a subset of channels to make the computations in
the Riemannian space more accurate and efficient.

A. Trials Selection (TS)

Covariate shift, or sample selection bias, refers to the input
data distribution discrepancy between training and test data.
We propose a TS approach, in Algorithm 1, to resample the
training data. In order to reduce the input data distribution
discrepancies between the target subject and the auxiliary
subjects, we select the auxiliary trials located closest to the
target trials in the Riemannian space.

Algorithm 1: The TS algorithm.

Input: N t unlabeled trials from the target subject,
{xt

i}
Nt

i=1
;

Ns labeled trials from the auxiliary subjects,
{xs

j}
Ns

j=1
;
k, the number of selected neighbours for each

target trial;
Output: The selected auxiliary trials.
for i = 1, ..., N t do

for j = 1, ..., Ns do
Compute the Riemannian distance between
the covariance matrices of xt

i and x
s
j , by (4);

end
Select k nearest neighbours from the Ns

auxiliary trials for xt
i;

end
Combine all selected auxiliary trials;
Remove duplicate trials.

B. Channel Selection (CS)

Both RA and TS operate on the covariance matrices in
the Riemannian space, whose computational cost increases
with the number of channels. Two CS approaches are used
to alleviate it.

1) Manual Selection: Riemannian approaches decode
EEG signal by computing covariance matrices, which mainly
reflect the spatial distribution of neural activities. For exam-
ple, imagining the movements of a body part (hand, foot,
tongue, etc.) would cause modulations of brain rhythms in
the involved cortical areas. So, the contributions of different
EEG channels vary across locations and tasks.

The first CS approach (CS1) manually selects the channels
located in the areas most related to the corresponding MI
tasks, which usually contain more information and less noise.

2) CSP-based Selection: Since CSP filters carry the chan-
nel weighting information, we also used a CSP-based CS
approach (CS2) [26].

Let W∗ ∈ R
C×2M be the CSP filtering matrix, and wi be

its ith row. Then, the score for Channel c is

SC(c) =
‖ wc ‖1
‖ W ‖1

, c = 1, ..., C (9)

The channels with the maximum scores are then selected.

IV. EXPERIMENTS

This section describes the performance of our proposed
approaches on two MI datasets in offline unsupervised classi-
fication. For each dataset, we picked one subject as the target
subject (test set) each time, and combined the remaining
subjects as auxiliary subjects (training set). The target subject
did not use any labeled training data from himself/herself.

A. Datasets

Two public MI datasets from BCI Competition IV1 were
used. Both were recorded with a cue-based BCI paradigms:
Each subject sat in front of a computer, wearing a BCI
headset and being prepared for the visual cues that would
appear on the computer screen. An arrow pointing to a
certain direction was presented, and the subject was asked
to perform the corresponding MI task in this period. When
the visual cue disappeared, the subjects relaxed and waited
for the next trial.

The first dataset2 (Dataset 1 [27]) was recorded from
59 EEG channels at 100 Hz. It includes seven healthy
subjects. Each subject did the experiments for three phases:
calibration, evaluation, and special feature. Here we only
used the calibration phase data, which provided complete
label information. In the calibration phase, each subject was
instructed to perform two of the three MI tasks (left hand,
right hand, and foot), with 100 trials for each task.

The second MI dataset (Dataset 2a3) was recorded using
22 EEG channels and three EOG channels at 250Hz. It
includes nine subjects. Each subject performed a training
phase and an evaluation phase. In both phases the subjects
were instructed to perform four different MI tasks, namely
the imagination of the movement of the left hand, right hand,
both feet, and tongue. Here we only used the EEG channels
and selected two classes (left hand and right hand) from the
calibration data.

The EEG signals from both datasets were preprocessed
using the Matlab EEGLAB toolbox [28], following the
guideline in [6]. First, a band-pass filter (linear phase Ham-
ming window FIR filter, with 6dB cut-off frequencies at [8,
30] Hz), whose order was defined as the filter length minus
one and made mandatorily even, was applied to remove
muscle artifacts, line-noise contamination and DC drift. Next,
we extracted EEG signals between [0.5, 3.5] seconds after the
cue appearance as our trials for Dataset 1 and EEG signals
between [0.5, 2.5] seconds for Dataset 2a.

1http://www.bbci.de/competition/iv/.
2http://www.bbci.de/competition/iv/desc 1.html.
3http://www.bbci.de/competition/iv/desc 2a.pdf.
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B. Algorithms

Each algorithm had three stages:

1) Preprocessing stage: It first temporally filters the EEG
data, then divides the continuous signals into epochs,
as described in the previous subsection.

2) Middle stage: It performs CS as described in Sec-
tion III-B, RA in Section II-C, or TS in Section III-A,
according to the specific algorithm.

3) Classification stage: It classifies the spatially filtered
data by MDRM.

All algorithms had the same preprocessing and classifica-
tion stages. They are distinguished only by the middle stage.

Because Dataset 1 has more channels than Dataset 2a,
we applied both CS and TS to Dataset 1, but only TS to
Dataset 2a. Two CS approaches were used for Dataset 1:

1) CS1: We manually selected channels {‘Fz’, ‘FC3’,
‘FC1’, ‘FCz’, ‘FC2’, ‘FC4’, ‘C5’, ‘C3’, ‘C1’, ‘Cz’,
‘C2’, ‘C4’, ‘C6’, ‘CP3’, ‘CP1’, ‘CPz’, ‘CP2’, ‘CP4’,
‘P1’, ‘Pz’, ‘P2’, ‘PO1’ }, located in the areas most
related to the activations of left hand and right hand
movements.

2) CS2: We selected the channels based on the CSP filters,
as introduced in Section III-B.2.

C. Evaluation of TS

We first tested TS on Dataset 2a, and compared its per-
formance with algorithms using all trials from the auxiliary
subjects. More specifically, four approaches were compared:

1) Raw, which directly feeds the filtered data into the
MDRM classifier, i.e., it does nothing in the middle
stage.

2) TS, which performs only TS in the middle stage.
3) RA, which performs only RA in the middle stage.
4) RA-TS, which performs both RA and TS in the middle

stage.

To study how the performance of TS changes with k,
we started with k = 20, trained TS and RA-TS models,
and evaluated their performances on the test set. Then, we
increased k by 10 in each iteration, and updated the models
and results, until k = 100. Raw and RA always used all
labeled trials of auxiliary subjects to train their models. The
results are shown in Fig. 1, where the first nine subfigures
show the performances on the individual subjects and the last
shows the average performance across all subjects. In each
subfigure, the horizontal axis denotes k, and the vertical axis
denotes the test accuracy. Observe that:

1) TS outperformed Raw on 8 out of the 9 subjects,
and the two had comparable performances on the
remaining subject, suggesting that TS generally re-
duced covariate shift between the target and auxiliary
subjects.

2) On average RA-TS outperformed RA, suggesting that
TS can also enhance the performance of RA.

3) The performance improvement of RA-TS over RA was
smaller than that of RA over Raw. This may be because
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Fig. 1. Classification accuracies (%) on Dataset 2a. Horizontal axis: k;
vertical axis: test accuracy.

RA had reduced some discrepancies between the target
and auxiliary subjects.

D. Evaluation of CS

In this section we first compared the performances of
algorithms using CS1 with the one using all channels. More
specifically, the following four approaches were compared:

1) Raw, which is the same as before.
2) CS1, which performs only CS1 in the middle stage.
3) RA, which performs only RA in the middle stage.
4) CS1-RA, which performs both CS1 and RA in the

middle stage.

Their classification accuracies are shown in Table I. CS1
performed slightly worse than Raw, but CS1-RA outper-
formed RA, suggesting that CS1 can enhance the perfor-
mance of RA.

TABLE I

CLASSIFICATION ACCURACIES (%) OF CS1 ON DATASET 1.

Subject Raw CS1 RA CS1-RA
1 51.0000 50.0000 68.5000 68.0000
2 50.0000 50.0000 57.5000 57.0000
3 50.0000 50.0000 52.0000 62.5000
4 51.0000 50.0000 61.0000 61.0000
5 50.0000 50.0000 74.0000 76.0000
6 60.5000 51.0000 63.5000 69.5000
7 50.0000 50.0000 69.5000 69.5000

avg 51.7857 50.1429 63.7143 66.2143

CS could not only improve the classification accuracy,
but also reduce the computational cost. We compared the
computational cost of RA and CS1-RA. The platform was a
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ThinkPad laptop with Intel Core i5-6200U CPU@2.30GHz,
4GB memory, and 190 GB SSD, running 64-bit Windows
10 and Matlab 2017a. The results are shown in Table II.
CS1-RA was 4.14-5.04 times faster than RA, and also it had
smaller standard deviation.

TABLE II

THE COMPUTATION TIME (SECONDS) OF RA AND CS1-RA.

RA CS1-RA
Mean 12.4743 2.5861

std 0.7859 0.3800

Next, we tested the performance of CS when different
numbers of channels were selected. We used CS2 to select
channels and increased the number of selected channels by
5 in each iteration, from 15 to 35. As the main purpose was
to verify that CS2 can enhance the performance of RA, we
only compared RA with CS2-RA. The results are shown in
Table III. CS2-RA always outperformed RA on average, and
it also slightly outperformed CS1-RA. However, there was
not a clear and consistent pattern between the classification
performance and the number of selected channels.

TABLE III

CLASSIFICATION ACCURACIES (%) OF CS2 ON DATASET 1.

RA CS2-RA
Subject 59 (All) 15 20 25 30 35

1 68.50 69.50 71.00 70.50 68.50 67.50
2 57.50 63.50 58.00 57.50 56.00 56.50
3 52.00 65.50 64.00 67.00 69.50 68.50
4 61.00 57.00 59.00 60.50 63.50 65.50
5 74.00 77.50 78.50 74.00 82.00 81.50
6 63.50 69.50 72.50 67.50 68.50 69.00
7 69.50 70.00 73.00 76.50 75.00 77.50

avg 63.71 67.50 68.00 67.64 69.00 69.43

E. Evaluation of CS and TS

We also studied how CS, RA, and TS affected each other.
First, we used CS1 to select channels and compared the
following approaches:

1) Raw, which is the same as before.
2) TS, which performs only TS in the middle stage.
3) CS1, which performs only CS1 in the middle stage.
4) CS1-TS, which performs both CS1 and TS in the

middle stage.
5) RA, which performs only RA in the middle stage.
6) RA-TS, which performs both RA and TS in the middle

stage.
7) CS1-RA, which performs both CS1 and RA in the

middle stage.
8) CS1-RA-TS, which performs all three operations in

the middle stage.
The results are shown in Fig. 2. The last subfigure shows

the average performances across all subjects. Observe that:
1) Both TS and CS1 performed slightly worse than Raw,

suggesting that TS and CS did not work when they
were independently used on datasets with a relatively
large number of channels.
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Fig. 2. Classification accuracies (%) on Dataset 1. The horizontal axis: k;
vertical axis: test accuracy.

2) CS1-TS outperformed both CS1 and TS, suggesting
that more useful trials were selected when applying
CS before TS. This might be because CS improved
the computational accuracy in the Riemannian space.

3) CS1-RA outperformed both CS1 and RA, suggesting
again that CS improved the computational accuracy in
the Riemannian space.

4) CS1-RA-TS performed the best among all algorithms,
suggesting that it is beneficial to integrate TS, CS and
RA.

Next, we compared the eight algorithms when CS2 was
used to select channels. Due to the page limit, we only
present their average performances across all seven subjects
for each number of selected channels. The results are shown
in Fig. 3. Both CS2-RA and CS2-RA-TS outperformed RA.
However, CS2-RA-TS may not outperform CS2-RA when
the number of selected channels was large.

V. CONCLUSION

The transition of BCIs from laboratories to the real world
is hindered significantly by individual differences, which re-
quire a time-consuming calibration process to collect subject-
specific labeled data. Transfer learning, which leverages
labeled data from auxiliary subjects to learn a model for
a new subject, is a promising solution to this problem.
However, data discrepancies among different subjects may
result in negative transfers. So, it is important to reduce the
data shift between the new subject and the auxiliary subjects.

This paper investigated approaches for handling covariate
shift, one of the main causes of data shift. More specifically,
we used two approaches to enhance the performance of
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Fig. 3. Average classification accuracies (%) across all subjects on
Dataset 1. Horizontal axis: k; vertical axis: test accuracy.

a state-of-the-art RA approach: 1) TS, which resamples
trials from the auxiliary subjects so that they become more
consistent with those of the new subject; and, 2) CS, which
reduces the number of channels and hence makes the Rie-
mannian space computations more accurate and efficient. We
first validated the effectiveness of TS and CS separately.
Particularly, two CS approaches (manually selection based
on the channel locations, and automatic selection using CSP)
were compared. Experiments showed that both enhanced the
performance of RA on average, and the automatic selection
approach was more stable. We also showed that integrating
TS and CS can sometimes result in additional performance
improvement.
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