
International Journal of Approximate Reasoning 66 (2015) 39–52
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

Approximation of centroid end-points and switch points for 

replacing type reduction algorithms

Syed Moshfeq Salaken a,∗, Abbas Khosravi a, Saeid Nahavandi a, Dongrui Wu b

a Center for Intelligent Systems Research, Deakin University, Australia
b Machine Learning Lab, GE Global Research, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 February 2015
Received in revised form 28 July 2015
Accepted 28 July 2015
Available online 31 July 2015

Keywords:
Type-2 fuzzy logic system
Type reduction

Despite several years of research, type reduction (TR) operation in interval type-2 fuzzy 
logic system (IT2FLS) cannot perform as fast as a type-1 defuzzifier. In particular, widely 
used Karnik–Mendel (KM) TR algorithm is computationally much more demanding than 
alternative TR approaches. In this work, a data driven framework is proposed to quickly, 
yet accurately, estimate the output of the KM TR algorithm using simple regression models. 
Comprehensive simulation performed in this study shows that the centroid end-points 
of KM algorithm can be approximated with a mean absolute percentage error as low 
as 0.4%. Also, switch point prediction accuracy can be as high as 100%. In conjunction 
with the fact that simple regression model can be trained with data generated using 
exhaustive defuzzification method, this work shows the potential of proposed method 
to provide highly accurate, yet extremely fast, TR approximation method. Speed of the 
proposed method should theoretically outperform all available TR methods while keeping 
the uncertainty information intact in the process.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Soon after the introduction of type-2 fuzzy set by Zadeh in 1974 [1], its applicability in different real world application 
become apparent. Presently, type-2 fuzzy logic system is used with significant success in the field of decision making [2–6], 
mobile robotics [7,8], control [9,10], prior processing of data [11], forecasting accuracy [12], noise reduction [13], survey 
processing [14,15], prediction interval construction [16,17], clustering [18], intelligent environment realization [19] and time 
series forecasting [20,14,21–26], to name a few. This vast field of application generally utilizes high research concentration 
on computationally simpler version of general type-2 fuzzy sets, interval type-2 fuzzy set (IT2FS) and corresponding inter-
val type-2 fuzzy logic system (IT2FLS) [27–29]. One integral part of IT2FLS is the type reduction (TR) block (see Fig. 1), 
which generally poses a bottleneck in computation process [30,29,31]. Existing TR algorithms for non-simplified fuzzy sets, 
which intend to tackle the computational bottleneck using soft algorithmic approach, can be divided into two main classes 
depending on their approach to preserve the associated uncertainty information during TR operation. Wu termed them 
as “Enhancements to KM TR algorithm” [30] and “Alternative TR algorithms” [30]. Recently, Greenfield argued that most 
widely used TR algorithm, Karnik–Mendel algorithm [32], is not the most accurate TR algorithm available [33]. This poses 
an interesting question. If the exhaustive defuzzification is the most accurate method of TR operation, how should this be 
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Fig. 1. IT2 fuzzy logic system.

approached while ensuring minimal run-time computational overhead with an acceptable error margin? In this research 
work, we propose a method to answer this problem. Formally stating, our motivation in this work is to find a systematic 
approach which will minimize the computational overhead associated with type reduction operation in IT2FLS and T2FLS 
while ensuring the accuracy of exhaustive defuzzification is preserved.

It is known for a long time that regression can be used for function approximation [34,35]. Here, we show that simple 
polynomial regression can be used for TR operation with very low error to address the issue mentioned in the above 
paragraph. Using regression based approach to approximate the underlying function mapping among membership functions 
(MFs), input and rulebase has a number of advantages including simpler and faster training, high robustness to capture 
the increased complexities with increasing number of inputs & MFs and the potential of utilizing long established tuning 
techniques for performance enhancement.

Since the KM type TR algorithms preserve the uncertainty by finding centroid end-points, which is closely intertwined 
with switch points, this work addresses both of them. Even though either centroid end-point approximation or switch point 
prediction is sufficient to determine the uncertainty information, we propose regression model for both of them to ensure 
completeness of the work.

It should be noted that regression model can be trained by either exhaustive defuzzification method, which guarantees 
most accurate output, or any existing TR algorithm. The essence of this study remains same regardless of the defuzzification 
method used in data generation stage. For simplicity, Karnik–Mendel TR algorithm is used in this work.

Rest of this paper is structured as follows: Section 2 states KM algorithm in detail and mentions all available TR al-
gorithms for completeness, Section 3 gives an overview of experimental methods, Section 4 describes the data generation 
methods in detail, Section 5 describes regression modelling technique for both centroid end-points approximation and 
switch point prediction task, Section 6 discusses the findings and finally, Section 7 concludes the paper.

2. Preliminaries

2.1. Karnik–Mendel algorithm

Karnik and Mendel proposed an algorithm, referred as KM algorithm hereafter, for type reduction in 2001 [32]. Since 
then KM algorithm has been considered as a benchmark for TR. KM algorithm provides the left and right end-points of 
centroid which represent the uncertainties associated with a type-2 FLS. We describe the KM algorithm below for the 
completeness of this work. Mathematical proof of this algorithm can be found in [32].

For the left end of centroid, yl:

1. Sort rule consequent xi (i = 1, 2, 3, . . . , N) in increasing order while keeping the variable name same, but now each 
element of xi is positioned in ascending order such that x1 ≤ x2 ≤ . . . ≤ xN .

2. Match the corresponding firing intervals or weights in the order that matches with related original value of rule conse-
quent. In other words, renumber the index of lower and firing intervals, wi and wi respectively, to maintain the original 
one to one correspondence with rule consequent.

3. Initialize the weight, wi as follows:

wi = wi + wi

2
where, i = 1,2,3, . . . , N (1)

4. Compute the initial centroid value by

y =
∑N

i=1 xi wi∑N
i=1 wi

(2)
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5. Find switch point k ∈ [1, N − 1] such that

xk ≤ y ≤ xk+1 (3)

6. Modify the weight as

wi =
{

wi, i ≤ k
wi, i > k

(4)

7. Compute the modified centroid as

y′ =
∑N

i=1 xi wi∑N
i=1 wi

(5)

8. Check if y′ = y. If yes, stop and set yl = y and call k as L. If no, go to step-9.
9. Set y = y′ and go to step-5.

For the right end of centroid, yr :

1. Sort rule consequent xi (i = 1, 2, 3, . . . , N) in increasing order while keeping the variable name same, but now each 
element of xi is positioned in ascending order such that x1 ≤ x2 ≤ . . . ≤ xN .

2. Match the corresponding firing intervals or weights in the order that matches with related original value of rule conse-
quent. In other words, renumber the index of lower and firing intervals, wi and wi respectively, to maintain the original 
one to one correspondence with rule consequent.

3. Initialize the weight, wi as follows:

wi = wi + wi

2
where, i = 1,2,3, . . . , N (6)

4. Compute the initial centroid value by

y =
∑N

i=1 xi wi∑N
i=1 wi

(7)

5. Find switch point k ∈ [1, N − 1] such that

xk ≤ y ≤ xk+1 (8)

6. Modify the weight as

wi =
{

wi, i ≤ k
wi, i > k

(9)

7. Compute the modified centroid as

y′ =
∑N

i=1 xi wi∑N
i=1 wi

(10)

8. Check if y′ = y. If yes, stop and set yr = y and call k as R . If no, go to step-9.
9. Set y = y′ and go to step-5.

In summary, end-points of centroid, yl and yr , can be expressed as

yl =
∑L

i=1 xi wi + ∑N
i=L+1 xi wi∑L

i=1 wi + ∑N
i=L+1 wi

(11)

yr =
∑R

i=1 xi wi + ∑N
i=R+1 xi wi∑R

i=1 wi + ∑N
i=R+1 wi

(12)

where switch points, L and R are determined from KM algorithm. Defuzzified output is calculated as the average of yl
and yr .

Please note that we did not consider different values for upper and lower end of rule consequent since they are same in 
most systems [36].
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Fig. 2. IT2 fuzzy logic system.

2.2. Available TR algorithms

For completeness, a list of currently available TR algorithms is provided in Fig. 2.

3. Experimental set-up

Our objective in this research work is to compare and verify the approximation techniques for TR purpose. Primary 
focus of approximation technique is on largely used machine learning algorithms and methods. In this work, we investigate 
regression for approximation. The method of experiment is described in this section.

First, sample data is generated, then a regression model is chosen and trained. Afterwards, the regression model is tuned 
to enhance its performance and finally the model is tested. The data generation step consists of decision regarding the 
nature of FLS, number of MFs, number of input and distribution of rule consequent. The regression modelling step consists of 
choosing a hypothesis (model structure) and feature mapping. Training step consists of finding regression model parameters 
that minimizes cost function over training set. Tuning step finds the optimum regularization based on lowest cost from 
validation set. In this step, regression model is retrained using the optimum regularization. Finally, learned hypothesis is 
applied on test set to measure the performance. Please note, data in training set, validation set and test sets are completely 
different.

Both centroid end-points approximation and switch point prediction is covered in this work. These two are conducted on 
separate experiment. Therefore, data generation and regression modelling for these two tasks are independent and different. 
In Sections 4 and 5, both are described in detail. In this section, a pictorial view of overall experiment is presented, which 
is available in Fig. 3.

For the centroid end-points approximation task, a total of 100 FLSs are simulated and analysed. Performance is mea-
sured with mean absolute percentage error and root mean squared error. For the switch point prediction task, 12 FLSs are 
simulated with different number of inputs and MFs. Afterwards, impact of different hypothesis is analysed to measure the 
performance where the indicators are accuracy and error histogram.

4. Data generation

4.1. Approximation of centroid end-points

In order to show the effectiveness of KM output approximation, a fairly complex FLS is considered. If our approximation 
method can follow the actual output with small error, it would be logical to assume that proposed approximation tech-
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Fig. 3. Experimental procedure.

niques will be able to generalize over other FLS and is not limited to simple scenarios only. Therefore, an imaginary 4-input, 
3 output fuzzy logic system with 3 membership functions for each input is simulated. Two random numbers between 0
and 1 are drawn from a uniform distribution and the smaller one is used as lower firing interval. This process is contin-
ued until the required length of firing interval is achieved. Rule consequents are generated randomly between 0 and +10 
following the formula 0 + (10 − 0) ∗ rand, which also follows a uniform distribution. At this point, KM algorithm is called 
and centroid end-points are calculated. This is repeated 1000 times for a single FLS. Furthermore, the complete process is 
repeated 100 times which indicates a total of 100 different FLS has been simulated with same architecture. These data are 
stored and used throughout regression phases.

For a 4-input, 3 MF on each input FLS, length of vector containing each of the firing intervals and rule consequents are 
first calculated and then generated accordingly. For regression purpose, they are saved in the below format afterwards:

[ f f yc]
where f , f and yc indicate lower firing intervals, upper firing intervals and rule consequents, respectively. This is called 
input matrix. Centroid values are saved as per the below format:

[yl yr y]
where yl , yr indicates the left and right end-points of centroid and y indicates the defuzzified value found by KM algorithm. 
This is called the target matrix.

Please note, other methods of data generation i.e. keeping lower firing intervals in the range [0, 0.5] and upper firing 
intervals in the range of [0.51, 1.0] is tested as well. They produce similar observations and are not reported in this work.

4.2. Prediction of switch points

For this portion of study, a number of different FLSs with different number of inputs and MFs are simulated. This is 
done to demonstrate the relationship between polynomial degree in hypothesis and complexity in FLS architecture e.g.
number of input and number of MFs on each input. For each FLS, 15 000 sample data are generated which indicates our 
data matrix will have 15 000 rows. Firing intervals are generated in the same fashion described in Section 4.1. For each FLS, 
rule consequents are generated between −10 to 10 following a uniform random number distribution.
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Fig. 4. Shape of yl and yr .

The input matrix for switch point prediction contains lower and upper firing interval, rule consequents, number of 
input in the system and number of membership function on each input. The i-th row of input and target matrix can be 
represented as follows:

input(i, :) = [ f f yc ninput nMF];
target(i, :) = [L R];

where,

ninput = Number of inputs in FLS;
nMF = Number of MFs on each input;
L = Left switch point from KM algorithm;
R = Right switch point from KM algorithm;

In this study, 3 values for number of inputs and 4 values for number of membership functions on each input is consid-
ered. This can be expressed as follows:

ninput = {2,3,4} ;
nMF = {2,3,4,6} ;

To illustrate this experiment at a more detailed level, lets consider a FLS with 2 inputs and 4 MFs on each input. A FLS 
model is then built. A total of 15 000 sample data are generated for this FLS and are divided for training the regression 
model, tuning the model (validation) and testing the model in the ratio of 60%, 20% and 20%, respectively. The regression 
model is then trained with the chosen hypothesis. Afterwards, the optimum regularization parameter is chosen based on the 
lowest validation error. Using this optimum regularization parameter, the regression model is retrained and finally tested on 
the data uniquely reserved for testing purpose. The switch point is predicted as the nearest integer of regression output in 
this case as switch points can never be a fraction. This is done using the MATLAB command round. It is possible to define 
a threshold value instead of 0.5, coming from the MATLAB function round, to determine the flooring and ceiling operation. 
This threshold will then be considered as a design parameter. However, this option is not explored in this paper. Please 
note, there is no overlap among training, validation and testing data which is essential to ensure the result is not biased. 
Also note that feature mapping is performed on firing intervals and rule consequents before training is done. However, no 
such preprocessing is done on ninput and nMF .

5. Regression modelling

5.1. Hypothesis

In the process of verifying the effectiveness of linear regression to approximate the output, as well as switch points, 
for KM algorithm, a polynomial hypothesis is chosen. A quick check (see Fig. 4) clearly indicates that any hypothesis with 
first degree polynomial is unlikely to sufficiently approximate the type reduction algorithm. After few trial and error, a 
third degree polynomial form is selected for further investigation to demonstrate the impact of polynomial degree on 
the success of regression modelling. However, impacts of polynomial degree 2 and 4 are also shown for switch point 
approximation/prediction.
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Accordingly, our hypothesis can be represented in the following form:

hx(θ) =
3∑

i=0

θi x
i = θ0 + θ1x + θ2

2 x2 + θ3
3 x3; (13)

Please note that using a polynomial hypothesis does not imply a non-linear regression.

5.2. Cost function

The aim of this regression model is to determine suitable value of θ parameter, which is usually a vector, that minimizes 
some form of error or cost function over the training data in conjunction with further tuning with validation data. In this 
work, a mean squared error form is chosen for the cost function with regularization.

J (θ) = 1

2m

m∑
i=1

(hx(θ)(i) − T (i))2 + λ

2m

n∑
j=1

θ2
j (14)

Here, λ is the regularization parameter and the second term in equation (14) is the regularization term. T is the target of 
the approximation function and can take the form of yl , yr , L or R depending on the problem at hand. For example, when 
approximating the right end-point of centroid, T will be replaced by yr and in case of left switch point approximation, 
L will replace T . In addition, please note that regularization term does not include bias terms in the cost function.

5.3. Choosing optimal regularization

Further tuning of regression model depends on the test conducted on validation set as it increases generalization capacity 
of hypothesis and ensures better performance on test set. As part of further tuning, the value of regularization parameter 
λ is optimized based on the validation error. Finally, the value of λ that produces lowest validation error is reintegrated in 
into the hypothesis even if it is producing higher training error. It ensures that regression performance is not biased towards 
training set. The value of λ associated with lowest validation cost function value is called optimum λ and denoted as λopt

through out this paper.
In this work, we have considered following values of λ:

λ = {0,0.5,1,1.5,2,3,4,5,7,9,11} ;

5.4. Feature mapping

As indicated in Sections 4.1 and 4.2, firing intervals and rule consequents are placed columnwise in a row in the input 
matrix. However, as a polynomial regression is done here, each column is considered as a feature and mapped accordingly. 
More specifically, firing intervals and rule consequents are mapped upto their third degree polynomial in the case of both 
end-points approximation and switch point prediction. However, number of input and MFs are not included in feature 
mapping operation. Therefore, i-th row of final input matrix takes the below form for centroid end-points approximation 
problem:

input(i, :) = [ f f 2 f 3 f f 2 f 3 yc y2
c y3

c ];
And for the switch point prediction problem, feature mapped input matrix takes the below form:

input(i, :) = [ f f 2 f 3 f f 2 f 3 yc y2
c y3

c ninput nMF];
Due to this unconventional way of feature mapping in switch point prediction, relevant hypothesis becomes slightly 

complex and takes the below form:

hx(θ) =
3∑

i=0

θi x
i + βi zi; (15)

where x now contains firing intervals and rule consequents and z contains the number of inputs to the FLS and number 
of MFs on each input. Please note, x now has 3N number of columns where N + 2 is the number of columns in x in 
equation (13). Also, z has only two columns. Bias is not considered when counting the number of columns.
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Fig. 5. Performance measurement of regression model (rules: [0,10]).

6. Result

6.1. Centroid end-points approximation

Result for centroid end-points approximation is shown in Fig. 5 where Fig. 5a shows the mean absolute percentage error 
(MAPE) and Fig. 5b shows the root mean square error (RMSE) for 100 different FLS with positive rule consequents only. 
As described in Section 4.1, these results are the outcome of 1000 runs per FLS. Observe from 5a that MAPE values are 
very small and are less than 0.4% for both left and right end-points. Also note that, the absolute errors are similar. The 
MAPE for the left end-point is higher because the left end-point has smaller values. Also, here we are talking about centroid 
end-points instead of switch points. These small MAPE values strongly indicates that the error in regression approximation 
is very small and the process should be considered fairly accurate. This conclusion is reinforced by Fig. 5b where RMSE 
values lie in the range of [0.007, 0.021], which indicates very small deviation from the output of KM algorithm.

Fig. 6 shows the approximation error when rule consequents are negative i.e. in the range of [−60, −30] in this case. 
Please note that, both MAPE and RMSE values have increased compared to the case where rule consequents are positive 
and does not include any negative values. However, the errors are still small and below 2.5% and 1.4% for MAPE and RMSE, 
respectively.

6.2. Switch point regression

The success of regression modelling for switch point prediction is depicted in Fig. 7–9 and Table 1. Recalling the fact 
that 20% sample is used for test set from a total of 15 000 samples, it is clear that prediction is highly accurate for FLS 
with low number of inputs and MFs. For example, top left image in Fig. 7a shows 100% accuracy as all prediction error lies 
in the zero bin, where 3000 is the total number of elements in test set (equivalent to 20% of 15 000). Also note from this 
figure, when complexity in FLS architecture increases with increased number of inputs and MFs, a 2nd degree polynomial 
can no longer predict the switch point with considerable accuracy. The worst case scenario can be seen from the bottom 
right image of Figs. 7a and 7b where number of inputs and number of MFs on each input is 4 and 6, respectively. However, 
when the degree of polynomial is increased, general performance for complex FLS is also improved. This can be realized 
by examining the bottom right images of Figs. 8a and 8b. Note that number of zero errors increases for both left and right 
switch prediction in comparison with 2nd degree polynomial for the same FLS. However, when a 4th degree polynomial is 
used for regression hypothesis for that same FLS, performance does not improve with respect to a 3rd degree polynomial 
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Fig. 6. Performance measurement of regression model (rules: [−60,−30]).

hypothesis. This indicates that regression is over-optimized for training data and other steps e.g. different features may be 
needed to improve this prediction.

Observe that prediction accuracy is very good for less complex system i.e. FLS which concurrently has small number 
of inputs (Ninput) and small number of MFs (NMF ) on each input. For example, when Ninput = 2 and NMF = 3, prediction 
accuracy for both left and right switch point is 100% using a 2nd degree polynomial in hypothesis. With the increased 
complexity of FLS, prediction accuracy with this hypothesis starts to fall. This can be realized by looking at the case where 
Ninput = 3 and NMF = 6. Prediction accuracy for left and right switch points are 84.7% and 53.57%, respectively, in this case. 
However, when the polynomial degree increases in hypothesis, prediction accuracy may increase as well. This is evident 
from the fact that a 2nd degree polynomial yields 95.6% and 98.93% accuracy for left and right switch point prediction 
with a FLS configuration of Ninput = 2 and NMF = 4, whereas a 3rd degree polynomial provides 96.63% and 99.53% accuracy, 
respectively. It is important to note that different polynomial degree can be optimum for left and right switch point predic-
tion for same FLS. For example, increase of polynomial degree (from 2 to 3) increases prediction accuracy for right switch 
point from 82.56% to 96.03%, but produces a significant reduction in left switch prediction for the same FLS (e.g. Ninput = 3
and NMF = 4). This highlights the fact that left and right switch point prediction are two separate problems. However, once 
modelled, they can be run in parallel.

The main point of these results is prediction accuracy and error histogram results are clearly showing that a regression 
model can successfully estimate the switch point for a complex FLS provided that proper tuning is done for that particular 
regression model.

At this point, we want to emphasize that both the KM approximation and switch point prediction are data-driven models. 
Accordingly, the regression model parameters will be different for every system. Every application, not every prototype of 
one specific application, needs to be designed separately and then parameters of regression models need to be tuned to 
achieve desired accuracy. Typical regression techniques can be used for tuning the model parameters. Also note that, this 
data-driven TR approach is very simple and moderately accurate. Once designed and tuned with the help of KM algorithm or 
exhaustive defuzzification, it will significantly reduce the run time computational cost because of the simplicity of learned 
hypothesis. TR approximation function will consist of few multiplication and addition to find the value of left and right 
end-points of centroid.

It should be further noted that the results in this research work only shows the accuracy for left and right end-points 
approximation. Since the end-point values carry the information required to calculate the defuzzified value and uncertainty 
estimation, we believe these results sufficiently describe the success of regression techniques in TR approximation.
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Fig. 7. Prediction accuracy for 2nd degree polynomial.

7. Conclusion

This research work demonstrates the applicability of regression modelling techniques for approximation of Karnik–
Mendel type reduction algorithm. It addresses both end-point approximation and switch point finding tasks. Since every 
FLS is designed for a specific application and therefore has predicted input range, it is possible to use approximation models 
to replace type reduction block. In this paper, we show that regression technique can be used in design phase for such ap-
proximation purpose. This work, by its nature, is applicable to exhaustive defuzzification as well. Hence the question raised 
in the beginning of this paper about accuracy of TR operation can be answered by using proposed method in conjunction 



S.M. Salaken et al. / International Journal of Approximate Reasoning 66 (2015) 39–52 49
Fig. 8. Prediction accuracy for 3rd degree polynomial.

with prior training by exhaustive defuzzification. Our simulation shows that proposed regression model can achieve very 
small MAPE values e.g. less than 1% for positive rule consequents and less than 2.5% for negative rule consequents. It is also 
demonstrated that regression model keeps the RMSE values very low, which is an additional indicator of good accuracy in 
centroid end-points approximation. It is also demonstrated that switch point prediction accuracy can be as high as 100%. 
Since regression modelling can be completed in design stage and it is possible to achieve high precision with very little 
effort, this study implies that type reduction block can be replaced by a properly trained and tuned approximation block 
in the implementation phase of interval type-2 fuzzy logic system. Therefore, this work demonstrates that the application 
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Fig. 9. Prediction accuracy for 4th degree polynomial.

specific tuning can remove the run time computational burden from standalone systems, without sacrificing substantial 
amount of accuracy, by adopting the proposed methodology in design phase.

The most significant contribution of this paper is that it demonstrates a simple data-driven TR approach is moderately 
accurate and very simple in terms of implementation. Theoretically, it has the potential of performing as fast as a type-1 
defuzzifier because only a few multiplication and addition is necessary for defuzzification purpose in run-time. Therefore, 
proposed method addresses the question posed at the beginning of this paper about both minimal run-time complexity and 
acceptable error margin.



S.M. Salaken et al. / International Journal of Approximate Reasoning 66 (2015) 39–52 51
Table 1
Accuracy and error in switch point prediction.

Pdegree Ninput NMF AccuracyL AccuracyR MAPEL MAPER λL λR

2

2

2 100 100 0 0 9 9
3 100 100 0 0 0 0
4 95.6 98.93333333 3.25 1.066666667 0 0
6 85.23333333 95.73333333 10.00555556 2.533333333 0 0

3

2 100 100 0 0 1.5 1.5
3 93.96666667 90.86666667 3.633333333 6.055555556 0 0
4 95.4 82.56666667 1.265 3.836587302 0 0
6 84.7 53.56666667 3.026984127 5.077585378 0 0

4

2 100 100 0 0 9 9
3 93.5 90.56666667 2.405555556 2.873333333 0 0
4 67.73333333 62.8 4.296013616 2.510572869 0 0
6 49.63333333 46.6 1.870346844 1.677369741 0 0

3

2

2 100 100 0 0 5 5
3 100 100 0 0 9 9
4 96.63333333 99.53333333 2.783333333 0.466666667 0 0
6 94.83333333 94.56666667 3.133333333 5.211111111 0 0

3

2 100 100 0 0 5 5
3 91.86666667 95.46666667 5.822222222 2.094444444 0 0
4 55.06666667 96.03333333 12.74388889 0.748571429 0 0
6 53.06666667 73.26666667 8.373690476 3.033029101 0 0

4

2 100 100 0 0 9 9
3 95.4 88.06666667 1.569444444 2.402222222 0 0
4 78.26666667 47.5 2.143381248 3.348384687 0 0
6 81.66666667 60.8 0.739517867 1.077100407 0 0

4

2

2 100 100 0 0 9 9
3 100 100 0 0 9 9
4 94.96666667 99 3.616666667 0.883333333 0 0
6 93.96666667 96.53333333 2.338888889 1.616666667 0 0

3

2 100 100 0 0 5 5
3 76.13333333 97.9 16.06666667 1.394444444 0 0
4 75.23333333 98.63333333 7.286666667 0.41 0 0
6 100 57.1 0 6.10030303 7 0

4

2 100 100 0 0 5 5
3 86.73333333 81.26666667 4.869444444 4.442777778 0 0
4 95.5 71.9 0.589415954 2.098437118 0 0
6 35.76666667 59.43333333 2.76102718 1.273215167 0 0

pdegree: polynomial degree in hypothesis, Ninput : number of input in FLS, NMF : number of MF on each input, AccuracyL/R : prediction accuracy for left/right 
switch point, MAPEL/R : mean absolute percentage error for left/right switch point, λL/R : optimum regulation parameter for left/right switch point prediction.
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