
80 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 21, NO. 1, FEBRUARY 2013

Approaches for Reducing the Computational Cost
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Abstract—Interval type-2 fuzzy logic systems (IT2 FLSs) have
demonstrated better abilities to handle uncertainties than their
type-1 (T1) counterparts in many applications; however, the high
computational cost of the iterative Karnik–Mendel (KM) algo-
rithms in type-reduction means that it is more expensive to deploy
IT2 FLSs, which may hinder them from certain cost-sensitive real-
world applications. This paper provides a comprehensive overview
and comparison of three categories of methods to reduce their com-
putational cost. The first category consists of five enhancements to
the KM algorithms, which are the most popular type-reduction
algorithms to date. The second category consists of 11 alternative
type-reducers, which have closed-form representations and, hence,
are more convenient for analysis. The third category consists of
a simplified structure for IT2 FLSs, which can be combined with
any algorithms in the first or second category for further compu-
tational cost reduction. Experiments demonstrate that almost all
methods in these three categories are faster than the KM algo-
rithms. This overview and comparison will help researchers and
practitioners on IT2 FLSs choose the most suitable structure and
type-reduction algorithms, from a computational cost perspective.
A recommendation is given in the conclusion.

Index Terms—Computational cost, fuzzy logic control, interval
type-2 fuzzy logic system (IT2 FLS), Karnik–Mendel (KM) algo-
rithms, type-reduction (TR).

I. INTRODUCTION

TYPE-2 fuzzy sets (T2 FSs) were first proposed by Zadeh
in 1975 [65] as an extension to type-1 (T1) FSs. The main

difference between a T2 FS and a T1 FS is that the member-
ships in a T2 FS are themselves T1 FSs instead of crisp numbers
in a T1 FS. T2 FSs and fuzzy logic systems (FLSs) have been
gaining considerable attentions recently. Particularly, people are
interested in interval type-2 (IT2) FSs [33], whose memberships
are intervals (instead of T1 FSs in a general T2 FS), for their
simplicity and reduced computational cost. IT2 FSs and FLSs
have been used in many applications, including computing with
words [35], [41], [51], linguistic data summarization [38], [52],
modeling and control [6], [9], [18], [20], [40], [58], [59], pattern
recognition [19], [32], [36], [42], [62], [66], recommendation
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Fig. 1. Schematic diagram of an IT2 FLS.

systems [17], [25], etc., and they often demonstrate better per-
formance than their T1 counterparts.

Fig. 1 shows the schematic diagram of an IT2 FLS. It is similar
to its T1 counterpart, the major difference being that at least one
of the FSs in the rulebase is an IT2 FS. Hence, the outputs of
the inference engine are IT2 FSs, and a type-reducer [24], [33]
is needed to convert them into a T1 FS before defuzzification
can be carried out. Type-reduction (TR) is usually performed
by the iterative Karnik–Mendel (KM) algorithms [24], which
are computationally intensive. The extra computational cost of
IT2 FLSs over T1 FLSs may hinder them from certain cost-
sensitive real-world applications, because an IT2 FLS requires a
more powerful processor, which increases the cost of the overall
system.

There have been many different approaches to reduce the
computational cost of IT2 FLSs, including both hardware im-
plementation optimization (e.g., [43]) and software algorithmic
optimization. This paper presents a comprehensive overview
and comparison of methods in the latter approach, which can be
grouped into three categories:1

1) Enhancements to the KM TR algorithms [11], [21], [22],
[31], [50], [53], [64]: These improve directly over the
original KM TR algorithms to speed them up.

1All algorithms in these three categories were originally proposed to save
computational cost or to simplify IT2 FLS design. There are also other algo-
rithms proposed to improve the accuracy of the TR set or the control perfor-
mance. For example, Liu et al. [30] proposed several weighted enhanced KM
(WEKM) algorithms for computing the centroid of IT2 FSs and showed that
they can obtain more accurate centroids than the enhanced KM algorithms [50],
given the same number of discretizations (the ground truth centroids are com-
puted from the continuous case); however, they are slower than the enhanced
KM algorithms and cannot be used for TR of IT2 FLSs. Therefore, the WEKM
algorithms are not considered in this paper. Ulu et al. [45] proposed a dynamic
defuzzification method for IT2 FLCs, in which the TR interval [yl , yr ] is still
computed by the KM algorithms, but the defuzzified output is computed as
α(t)yl + (1 − α(t))yr [instead of (yl + yr )/2 in the standard defuzzifica-
tion approach], where α(t) is a function of the controller inputs. They claimed
that the dynamic defuzzification method can achieve better control performance.
However, since the primary goal of this paper is to compare different approaches
to reduce the computational cost of IT2 FLSs instead of comparing their per-
formance and the dynamic defuzzification method has the same computational
cost as the standard defuzzification method, it is not elaborated in this paper.
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2) Alternative TR algorithms [2], [8], [10], [13], [16], [27],
[28], [37], [44], [56], [61]: Unlike the iterative KM algo-
rithms, most alternative TR algorithms have closed-form
representations. They are usually fast approximations of
the KM algorithms.

3) Simplified IT2 FLSs [54], [59]: In these, the architecture
of an IT2 FLS is simplified by using only a small number
of IT2 FSs for the most critical input regions and T1 FSs
for the rest.

Note that Categories I and II are mutually exclusive, i.e., a
method in Category I cannot be combined with a method in
Category II for further computational cost reduction; however,
the method in Category III can be combined with a method in
Category I or II to further improve speed. We will demonstrate
that in Section V. In addition, the first two categories of methods
can be applied to any IT2 FLS, whereas the simplified structure
was designed for IT2 fuzzy logic controllers (FLCs) and it has
not been used in other FLSs.

The rest of this paper is organized as follows. Section II
presents background materials on IT2 FLSs, including their
operations and the KM algorithms. Section III introduces five
enhanced versions of KM algorithms. Section IV describes 11
alternative TR algorithms, which have closed-form representa-
tions. Section V presents a simplified architecture for IT2 FLCs
and discusses how the simplified architecture can be combined
with a Category 1 or 2 method for further computational cost
reduction. Finally, Section VI draws the conclusion.

II. INTERVAL TYPE-2 FUZZY SETS AND FUZZY LOGIC SYSTEMS

For the completeness of this paper, background materials on
IT2 FSs and FLSs are presented in this section.

A. Interval Type-2 Fuzzy Sets

An IT2 FS [33], [34] X̃ is characterized by its membership
function (MF) μX̃ (x, u), i.e.,

˜X =
∫

x∈DX̃

∫

u∈Jx ⊆[0,1]
μX̃ (x, u)/(x, u)

where x, called the primary variable, has domain DX̃ ; u ∈
[0, 1], called the secondary variable, has domain Jx ⊆ [0, 1] at
each x ∈ DX̃ ; Jx is also called the support of the secondary
MF; and, the amplitude of μX̃ (x, u), called a secondary grade
of X̃ , equals 1 for ∀x ∈ DX̃ and ∀u ∈ Jx ⊆ [0, 1].

An example of an IT2 FS X̃ is shown in Fig. 2. Observe that
unlike a T1 FS, whose membership grade for each x is a number,
the membership of an IT2 FS is an interval. Observe also that
an IT2 FS is bounded from above and below by two T1 FSs,
X and X , which are called upper membership function (UMF)
and lower membership function (LMF), respectively. The area
between X and X is the footprint of uncertainty (FOU). An
embedded T1 FS2 is any T1 FS within the FOU. X and X are
two such sets.

2According to the Mendel–John representation theorem [34], an embedded
T1 FS can be subnormal and nonconvex. Recently, there are arguments that
only convex and normal T1 FSs [46], or only T1 FSs assuming a particular
shape [1], [12], should be considered as embedded T1 FSs.

Fig. 2. IT2 FS. X (the LMF), X (the UMF), and Xe are the three embedded
T1 FSs.

B. Interval Type-2 Fuzzy Logic Sets

An IT2 FLS is an FLS containing at least one IT2 FSs. Without
loss of generality, consider the rulebase of an IT2 FLS consisting
of N rules assuming the following form:

˜Rn : IF x1 is ˜Xn
1 and · · · and xI is ˜Xn

I , THEN y is Y n

where ˜Xn
i (i = 1, . . . , I) are IT2 FSs, and Y n = [yn , yn ] is

an interval, which can be understood as the centroid [23], [33]
of a consequent IT2 FS,3 or the simplest Takagi–Sugeno–Kang
(TSK) model. In many applications [55], [58], [59], we use
yn = yn , i.e., each rule consequent is represented by a crisp
number.

For an input vector x′ = (x′
1 , x

′
2 , . . . , x

′
I ), typical computa-

tions in an IT2 FLS involve the following steps.
1) Compute the membership interval of x′

i on each
Xn

i , [μX n
i
(x′

i), μ
X

n

i
(x′

i)], i = 1, 2, . . . , I , and n =
1, 2, . . . , N .

2) Compute the firing interval of the nth rule Fn :

Fn = [μX n
1
(x′

1) × · · · × μX n
I
(x′

I ),

μ
X

n

1
(x′

1) × · · · × μ
X

n

I
(x′

I )]

≡ [fn , f
n
], n = 1, . . . , N. (1)

Note that the minimum t-norm may also be used in (1).
However, this paper focuses only on the product t-norm.

3) Perform TR to combine Fn and the corresponding rule
consequents. There are many such methods [33]. The most
commonly used one is the center-of-sets type-reducer
[33]:

Ycos =
∑N

n=1 Y nFn

∑N
n=1 Fn

=
⋃

y n ∈Y n

f n ∈F n

∑N
n=1 ynfn

∑N
n=1 fn

= [yl , yr ] (2)

where

yl = min
k∈[1,N −1]

∑k
n=1 ynf

n
+

∑N
n=k+1 ynfn

∑k
n=1 f

n
+

∑N
n=k+1 fn

(3)

yr = max
k∈[1,N −1]

∑k
n=1 ynfn +

∑N
n=k+1 ynf

n

∑k
n=1 fn +

∑N
n=k+1 f

n . (4)

3The rule consequents can be IT2 FSs; however, when the popular center-of-
sets TR method [33] is used, these consequent IT2 FSs are replaced by their
centroids in the computation; therefore, it is more convenient to represent the
rule consequents as intervals directly.



82 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 21, NO. 1, FEBRUARY 2013

In (3) and (4), k is a possible switch point. In an exhaustive
search approach, all k in [1, N − 1] need to be evaluated
until the true switch point is identified. Fortunately, yl

and yr can also be computed more efficiently by the KM
algorithms introduced in the next section, or their many
enhanced versions introduced in Section III.

4) Compute the defuzzified output as

y =
yl + yr

2
. (5)

C. Karnik–Mendel Algorithms

The KM algorithms consist of two parts, one for computing
yl in (3) and the other for computing yr in (4). Define

fl(k) =

∑k
n=1 ynf

n
+

∑N
n=k+1 ynfn

∑k
n=1 f

n
+

∑N
n=k+1 fn

(6)

fr (k) =

∑k
n=1 ynfn +

∑N
n=k+1 ynf

n

∑k
n=1 fn +

∑N
n=k+1 f

n (7)

where k is an integer in [1, N − 1], and {yn} and {yn} have
been sorted in ascending order, respectively. Furthermore, in
this paper, it is assumed that {yn} ({yn}) has no duplicate ele-
ments, which can be easily achieved by combining the weights
for duplicate elements. Then, yl in (3) and yr in (4) can be
reexpressed as [33]

yl = min
k∈[1,N −1]

fl(k) ≡ fl(L)

=

∑L
n=1 ynf

n
+

∑N
n=L+1 ynfn

∑L
n=1 f

n
+

∑N
n=L+1 fn

yr = max
k∈[1,N −1]

fr (k) ≡ fr (R)

=

∑R
n=1 ynfn +

∑N
n=R+1 ynf

n

∑R
n=1 fn +

∑N
n=R+1 f

n

where L and R are switch points satisfying

yL ≤ yl < yL+1

yR < yr ≤ yR+1 .

Note that in [33], the two aforementioned inequalities are

yL ≤yl ≤ yL+1 (8)

yR ≤yr ≤ yR+1 (9)

because there{yn} and{yn} can have duplicate elements. When
duplicate elements are combined, it follows that yL < yL+1

for ∀L ∈ [1, N − 1] and yR < yR+1 for ∀R ∈ [1, N − 1], and
hence the two equalities in (8) or (9) cannot be satisfied simul-
taneously.

The KM algorithm to compute yl and yr is given in Table I.
The main idea is to find the switch points for yl and yr . Take yl

as an example. yl is the minimum of Ycos . Since yn increases
from the left to the right along the horizontal axis of Fig. 3(a),
we should choose a large weight (upper bound of the firing
interval) for yn on the left and a small weight (lower bound of

TABLE I
KM ALGORITHMS

Step For computing yl For computing yr

1. Initialize Initialize

fn =
fn+f

n

2
fn =

fn+f
n

2
and compute and compute

y =
N
n=1 ynfn

N
n=1 fn y =

N
n=1 ynfn

N
n=1 fn

2. Find l ∈ [1, N − 1] s.t. Find r ∈ [1, N − 1] s.t.
yl < y ≤ yl+1 yr < y ≤ yr+1

3. Set Set

fn =
f

n
, n ≤ l

fn, n > l
fn =

fn, n ≤ r

f
n
, n > r

and compute and compute

y =
N
n=1 ynfn

N
n=1 fn y =

N
n=1 ynfn

N
n=1 fn

4. If y = y, stop and If y = y, stop and
set yl = y and L = l; set yr = y and R = r;
otherwise, set y = y otherwise, set y = y
and go to Step 2. and go to Step 2.

Note that {    }n=1,...,N and {    }n=1,...,N have been sorted in ascending order, 
respectively.

yn yn

f

(a)

y y yy

f

f

f
f

f

f
f f

(b)

Fig. 3. Switch points in computing yl and yr . (a) Computing yl :
Switch from the upper bounds of the firing intervals to the lower bounds.
(b) Computing yr : Switch from the lower bounds of the firing intervals to the
upper bounds.

the firing interval) for yn on the right. The KM algorithm for
yl finds the switch point L. For n ≤ L, the upper bounds of the
firing intervals are used to calculate yl ; for n > L, the lower
bounds are used. This ensures yl is the minimum.

III. ENHANCEMENTS TO THE KARNIK–MENDEL ALGORITHMS

Five enhancements to the KM algorithms are introduced
in this section. Their computational costs are also compared
with the original KM algorithms. All of them require that
{yn}n=1,...,N and {yn}n=1,...,N are sorted in ascending order,
respectively.



WU: APPROACHES FOR REDUCING THE COMPUTATIONAL COST OF INTERVAL TYPE-2 FUZZY LOGIC SYSTEMS 83

TABLE II
EKM ALGORITHMS

Step For computing yl For computing yr

1. Set l = [N/2.4] (the nearest integer to N/2.4), and compute Set r = [N/1.7] (the nearest integer to N/1.7), and compute
a = l

n=1 ynf
n

+ N
n=l+1 ynfn a = r

n=1 ynfn + N
n=r+1 ynf

n

b = l
n=1 f

n
+ N

n=l+1 fn b = r
n=1 fn + N

n=r+1 f
n

y = a/b y = a/b

2. Find l ∈ [1, N − 1] such that yl < y ≤ yl +1 Find r ∈ [1, N − 1] such that yr < y ≤ yr +1

3. If l = l, stop and set yl = y and L = l; otherwise, continue. If r = r, stop and set yl = y and R = r; otherwise, continue.
4. Compute s = sign(l − l), and Compute s = sign(r − r), and

a = a + s
max(l,l )
n=min(l,l )+1

yn(f
n − fn) a = a − s

max(r,r )
n=min(r,r )+1

yn(f
n − fn)

b = b + s
max(l,l )
n=min(l,l )+1

(f
n − fn) b = b − s

max(r,r )
n=min(r,r )+1

(f
n − fn)

y = a /b y = a /b
5. Set y = y , a = a , b = b and l = l . Go to Step 2. Set y = y , a = a , b = b and r = r . Go to Step 2.

Note that {    }n=1,...,N and {    }n=1,...,N have been sorted in ascending order, respectively.yn yn

A. Enhanced Karnik–Mendel Algorithms

The enhanced KM (EKM) algorithms [49], [50] are the ear-
liest enhancement to the original KM algorithms. They have
three improvements over the KM algorithms. First, a better ini-
tialization is used to reduce the number of iterations. Then, the
termination condition of the iterations is changed to remove one
unnecessary iteration. Finally, a subtle computing technique is
used to reduce the computational cost of each iteration. The
detailed algorithms are given in Table II.

B. Enhanced Karnik–Mendel Algorithm With
New Initialization

Yeh et al. [64] proposed an enhanced Karnik–Mendel algo-
rithm with new initialization (EKMANI) to compute the gener-
alized centroid of general T2 FSs [33]. It is based on the observa-
tion that for two α-planes [29] close to each other, the centroids
of the resulting two IT2 FSs are also close to each other. There-
fore, it may be advantageous to use the switch points obtained
from the previous α-plane to initialize the switch points in the
current α-plane (the similar idea is also used in [63]). Although
the EKMANI was primarily designed to compute the gener-
alized centroid, it may also be used in the TR of IT2 FLSs,
because, usually, the output of an IT2 FLS changes only a small
amount in each step.

The EKMANI for computing yl is identical to the EKM al-
gorithm for computing yl , except that in Step (1), if there is a
switch point obtained from previous computation, then set l to
it; otherwise, set l = [N/2.4].

The EKMANI for computing yr is identical to the EKM
algorithm for computing yr , expect that in Step (1), if there is a
switch point obtained from previous computation, then set r to
it; otherwise, set r = [N/1.7].

C. Iterative Algorithm With Stop Condition

Melgarejo and his coauthors [11], [31] proposed two effi-
cient algorithms to compute the generalized centroid of IT2
FSs, which can also be used in TR of IT2 FLSs. The faster one,
called iterative algorithm with stop condition (IASC) [11], is
considered in this paper and presented in Table III. It is based
on the fact [33] that fl(k) in (6) first monotonically decreases
and then monotonically increases with the increase of k, and

TABLE III
IASC ALGORITHMS

Step For computing yl For computing yr

1. Initialize Initialize
a = N

n=1 ynfn a = N
n=1 ynf

n

b = N
n=1 fn b = N

n=1 f
n

yl = yN yr = y1

l = 0 r = 0
2. Compute Compute

l = l + 1 r = r + 1

a = a + yl(f
l − f l) a = a − yr(f

r − fr)

b = b + f
l − f l b = b − f

r
+ fr

c = a/b c = a/b
3. If c > yl, set L = l − 1 If c < yr , set R = r − 1

and stop; otherwise, set and stop; otherwise, set
yl = c and go to Step 2. yr = c and go to Step 2.

Note that {    }n=1,...,N and {    }n=1,...,N have been sorted in ascending order, 
respectively.

yn yn

fr (k) in (7) first monotonically increases and then monoton-
ically decreases with the increase of k. Therefore, the IASC
algorithms enumerate the switch point for yl from 1 to N − 1
until fl(k) stops decreasing, at which point yl is obtained. Sim-
ilarly, they enumerate the switch point for yr from 1 to N − 1
until fr (k) stops increasing, at which point yr is obtained.

D. Enhanced Iterative Algorithm With Stop Condition

The enhanced IASC (EIASC) [53], presented in Table IV,
makes the following two improvements over the IASC.

1) New stopping criterion based on the fact that fl(k) in (6)
satisfies

fl(k)
{≥ yk , k ≤ L

< yk , k > L
(10)

and fr (k) in (7) satisfies

fr (k)
{

> yk , k ≤ R

≤ yk , k > R
(11)

which have been proved in [53].
2) Both the IASC to compute yl and the IASC to compute yr

start from switch point 1 and increase it gradually to find
the correct switch points. This is reasonable for yl , since
it has been shown in [50] that for a variety of scenarios,
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TABLE IV
EIASC ALGORITHMS

Step For computing yl For computing yr

1. Initialize Initialize
a = N

n=1 ynfn a = N
n=1 ynfn

b = N
n=1 fn b = N

n=1 fn

L = 0 R = N
2. Compute Compute

L = L + 1 a = a + yR(f
R − fR)

a = a + yL(f
L − fL) b = b + f

R − fR

b = b + f
L − fL yr = a/b

yl = a/b R = R − 1
3. If yl ≤ yL+1, stop; If yr ≥ yR, stop;

otherwise, go to Step 2. otherwise, go to Step 2.
Note that {    }n=1,...,N and {    }n=1,...,N have been sorted in ascending order, 
respectively.

yn yn

its switch point L is smaller than N/2; therefore, it is
more efficient to search from L = 1 instead of L = N − 1.
However, setting the initial switch point R = 1 may not
be efficient for yr , since it has been shown in [50] that
generally its switch point R > N/2. Therefore, it would
be more efficient if for yr one initializes the switch point
as R = N − 1 and then gradually decreases it until the
correct R is found.

Clearly, based on (10) and (11), given an initialization of L
(or R), one can easily tell whether it is on the left or right of
the true switch point, and hence, the new initialization idea in
the EKMANI can also be used in EIASC. We implemented the
corresponding algorithm, where the user can specify an initial L
(or R); otherwise, L is initialized to [N/2.4] (R to [N/1.7]), the
same as the EKM algorithm. Experiments showed that this new
algorithm only outperforms the EIASC when N > 1000. Since
for FLSs usually N < 1000, this new algorithm is not included
in this paper.

E. Enhanced Opposite Direction Searching Algorithms

Hu et al. [21], [22] proposed two algorithms to speed up the
KM algorithms. The faster ones, called the enhanced opposite
direction search (EODS) algorithms, are considered in this paper
and presented in Table V. The EODS algorithms are based on the
fact that yL ≤ fl(L) ≤ yL+1 and yR ≤ fr (R) ≤ yR+1 , where
fl(k) and fr (k) are defined in (6) and (7), respectively, and L
and R are the switch points for yl and yr . For each of yl and
yr , the EODS algorithms iteratively compute a positive search
process (see Sl in Table V) and a negative search process (see Sr

in Table V). The corresponding switch point is obtained when
Sl meets Sr .

The EODS algorithms in Table V use exactly the same idea as
that introduced in [22]; however, the implementation is slightly
different from that in [22] because we employed two improve-
ments.

1) We change Sl and Sr from arrays in [22] to scalars to
reduce the memory requirement, as well as to improve
speed.

2) In Step (5), we simplify the computation by computing yl

and yr from ym and ym , instead of yL and yR in [22].

TABLE V
EODS ALGORITHMS

Step For computing yl For computing yr

1. Initialize m = 2, n = N − 1 Initialize m = 2, n = N − 1
and compute and compute

Sl = (ym − y1)f
1

Sl = (ym − y1)f1

Sr = (yN − yn)fN Sr = (yN − yn)f
N

Fl = fN Fl = f1

Fr = f
1

Fr = f
N

2. If m = n, then go to Step 4. If m = n, then go to Step 4.
3. If Sl > Sr , then If Sl > Sr , then

Fl = Fl + fn Fr = Fr + f
n

n = n − 1 n = n − 1
Sr = Sr + Fl(y

n+1 − yn) Sr = Sr + Fr(yn+1 − yn)
else else

Fr = Fr + f
m

Fl = Fl + fm

m = m + 1 m = m + 1
Sl = Sl + Fr(ym − ym−1) Sl = Sl + Fl(y

m − ym−1)
Go to Step 2. Go to Step 2.

4. If Sl ≤ Sr , then If Sl ≤ Sr , then
L = m R = m

Fr = Fr + f
m

Fl = Fl + fm

else else
L = m − 1 R = m − 1

Fl = Fl + fm Fr = Fr + f
m

5. yl = ym + Sr−Sl
Fr+Fl

yr = ym + Sr−Sl
Fr+Fl

Note that {    }n=1,...,N and {    }n=1,...,N have been sorted in ascending order, 
respectively. N ≥ 3 is assumed.

yn yn

We compared the original EODS algorithms and the ones in
Table V. Our implementation was much faster.

Note that the EODS algorithms only work when N ≥ 3.
Therefore, N = 1 and N = 2 need to be considered separately.
Fortunately, they rarely occur in practice and there are closed-
form solutions for yl and yr for these two special cases.

Two experiments are presented next to compare the com-
putational cost of all algorithms presented in this section. The
platform was a Lenovo Thinkpad T500 laptop computer with
Intel Core2 Duo CPU 8600@2.4G Hz and 3-GB memory, run-
ning Windows 7 Home Premium 32-bit and MATLAB R2009a.
We focus on IT2 FLCs; however, the conclusion should also
hold for many other applications of IT2 FLSs.

In the first experiment, we compute the control surfaces of IT2
FLCs using Gaussian and trapezoidal MFs, respectively. This
demonstrates the overall computational cost of different algo-
rithms because every input in the input domain is considered and
all inputs have the same weight in performance evaluation. In
the second experiment, we compare the performance of the five
algorithms in IT2 FLC design using evolutionary algorithms, in
which a step response is used to evaluate the IT2 FLCs. This
demonstrates the practical computational cost of different al-
gorithms because, in practice, different regions of the control
surface have different firing frequencies, e.g., the center por-
tion of the control surface is generally fired more often than
the boundaries. The step response enables us to simulate this
behavior.

F. Computational Cost Comparison: Control Surface
Computation

First, two-input single-output IT2 PI FLCs using Gaussian
MFs are considered. Each input domain consisted of M MFs,
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Fig. 4. Example of the generated Gaussian MFs (a) and the corresponding
control surface (b).

and M = {2, 3, . . . , 10, 20, . . . , 50} were used. The center of
each MF was generated as a uniformly distributed random num-
ber in [−1, 1] using MATLAB command 2*rand-1. The uncer-
tain standard deviations of each MF were generated as uniformly
distributed random numbers in [0.1, 0.5] using MATLAB com-
mand 0.1*sort(rand(1,2))+0.4. The crisp consequent of each
rule was generated as a uniformly distributed random number
in [−2, 2] using MATLAB command 4*rand-2. Each input do-
main was discretized into ten points, and hence computing a
complete control surface requires 10 × 10 = 100 TRs. An ex-
ample of the generated MFs (M = 3) and the corresponding
control surface are shown in Fig. 4.

To make the results statistically meaningful, we generated 100
random IT2 FLCs for each M and recorded the time that the
five algorithms were used to perform these 100 × 100 = 10 000
TRs. To compare the computational cost of IT2 FLCs with T1
FLCs, we also recorded the computation time for baseline T1
FLCs, whose MFs were the UMFs of the corresponding IT2 FSs.
The results are shown in Fig. 5 and the first part of Table VI.
Note that for fair comparison with the alternative TR methods
in the next section, in Fig. 5 and Table VI, we include the time
for computing the firing intervals of the rules,4 because some
alternative TR algorithms may compute crisp firing strengths
instead of firing intervals. Observe from Fig. 5 the following
points.

1) All five enhanced algorithms are faster than the KM algo-
rithms.

2) The EKM algorithms are faster than the EKMANI algo-
rithms when M > 6.

3) Both the IASC and the EIASC algorithms are significantly
faster than the KM, EKM, and EKMANI algorithms, es-
pecially when M is small (M ≤ 10, i.e., the rulebase has
no more than 100 rules). The EIASC algorithms also out-
perform the IASC algorithms slightly.

4) The EODS algorithms are the fastest when M is small
(M < 20, i.e., the rulebase has less than 400 rules), which
is the case for most practical IT2 FLCs.

5) Although the EODS algorithms are the fastest enhance-
ment to the KM algorithms when M < 20, they are still
about three times slower than the T1 FLC.

Next, we repeat the previous experiment using trapezoidal
MFs. There are many different ways to generate trapezoidal IT2

4The comparisons in [53] did not include the time to compute the firing
intervals of the rules; that is why the results in this paper may be different from
those in [53]. However, the rankings of the algorithms are the same, because
the time to compute the firing intervals of the rules is a constant for all methods
presented in this section.

FSs. We used a simple method, as illustrated in Fig. 6 for three
IT2 FSs in an input domain. The apexes of the UMFs were
generated randomly under the constraint that for any point in
the input domain, its firing levels on all UMFs add to 1. After
the UMFs were generated, the LMF for each IT2 FS was also
generated randomly with some constraints. Take the LMF of the
middle IT2 FS as an example. e is a random number between a
and b, f and g are two random numbers between b and c, i is
a random number between c and d, and h is a random number
in [0, 1]. An example of the actually generated trapezoidal MFs
and the corresponding control surface are shown in Fig. 7, where
M = 3 is used.

The experimental results for control surface computation us-
ing trapezoidal MFs are shown in Fig. 8 and the first part of
Table VII. Observe the following points.

1) Except for the EKMANI algorithms, all other four en-
hancements are faster than the KM algorithms; however,
the computational cost saving is not as large as that in
Fig. 5. This is because at any time at most two trapezoidal
IT2 FSs are fired in each input domain, and hence at most
four rules are fired. Therefore, even though M may be a
very large number, the actual N used in TR is always no
larger than four (on the other hand, for Gaussian MFs, the
actual N used in TR is always equal to M 2). As a result,
all algorithms converge very quickly.

2) The EKMANI algorithms are slower than the EKM algo-
rithms. When M becomes large (e.g., M ≥ 20), they are
even slower than the KM algorithms. This suggests that
when trapezoidal IT2 FSs are used, it may not be advan-
tageous to initialize the switch points from previous TR
results.

3) The IASC and EIASC algorithms again have almost iden-
tical speed.

4) The EODS algorithms are the fastest enhancement for all
M considered here. Again, this is because at any time
at most two trapezoidal IT2 FSs are fired in each input
domain, and hence at most four rules are fired. Therefore,
even though M may be a very large number, the actual
N used in TR is always no larger than four. The EODS
algorithms are very fast for small N , which is also obvious
from Fig. 5(b).

5) Although the EODS algorithms are the fastest enhance-
ment to the KM algorithms, they are still about two to four
times slower than the T1 FLC.

We can also observe from the first part of Tables VI and VII
that the enhancements to the KM algorithms have larger com-
putational cost saving over the KM algorithms when Gaussian
IT2 FSs are used, and when the rulebase is small.

G. Computational Cost Comparison: Evolutionary
Interval Type-2 Fuzzy Logic Controller Design

We also compare the computational cost of the KM algo-
rithms and their five enhancements in IT2 FLC design us-
ing evolutionary computation, where the performance of a
large number of (usually randomly generated) FLCs are eval-
uated. The following simple first-order plus dead-time plant is
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TABLE VI
TOTAL COMPUTATION TIME (SECONDS) OF DIFFERENT TR ALGORITHMS WHEN GAUSSIAN IT2 FSS ARE USED

Note that the rulebase has M2 rules.

M
Category Algorithm Control Surface Computation Evolutionary IT2 FLC Design

2 4 6 8 10 20 30 40 50 2 4 6 8 10 20 30 40 50
KM 1.61 1.82 1.98 2.14 2.32 3.71 5.98 9.19 13.23 0.82 1.24 1.59 1.83 2.14 3.64 5.50 8.44 12.02
EKM 1.25 1.53 1.63 1.71 1.86 2.97 4.88 7.60 11.07 0.80 1.11 1.39 1.60 1.87 3.12 4.80 7.25 10.37
EKMANI 1.14 1.41 1.62 1.76 1.93 3.09 4.96 7.71 11.17 1.00 1.06 1.29 1.43 1.70 2.88 4.47 6.90 9.96

I IASC 0.55 0.57 0.64 0.72 0.83 1.84 3.50 5.89 9.04 0.55 0.61 0.74 0.81 1.04 2.12 3.77 6.02 9.10
EIASC 0.52 0.56 0.62 0.70 0.82 1.81 3.45 5.82 8.96 0.54 0.59 0.71 0.79 1.01 2.06 3.65 5.87 8.89
EODS 0.43 0.45 0.53 0.62 0.75 1.82 3.63 6.19 9.60 0.47 0.52 0.67 0.74 1.01 2.18 3.92 6.32 9.58
T1 0.15 0.15 0.18 0.20 0.24 0.53 1.00 1.63 2.49 0.17 0.18 0.23 0.25 0.33 0.66 1.11 1.70 2.49
KM 2.03 1.84 1.97 2.13 2.35 3.82 6.10 9.21 13.28 0.91 1.16 1.58 1.80 1.98 3.42 5.68 8.50 11.74
WM 0.91 0.83 0.89 0.97 1.09 1.95 3.36 5.36 7.98 0.74 0.83 0.99 1.14 1.37 2.24 3.78 5.62 7.59
TTCC 0.57 0.55 0.62 0.72 0.84 1.82 3.43 5.71 8.76 0.56 0.65 0.79 0.94 1.16 2.26 4.09 6.49 9.60
G 0.48 0.52 0.60 0.72 0.88 2.15 4.26 7.31 11.19 0.46 0.56 0.71 0.87 1.10 2.25 4.31 6.92 9.95
CJ 0.54 0.51 0.60 0.72 0.87 2.14 4.24 7.24 11.18 0.45 0.55 0.69 0.85 1.08 2.25 4.36 7.10 10.27

II GCCJ 0.18 0.21 0.25 0.32 0.41 1.12 2.29 3.94 6.11 0.22 0.30 0.37 0.48 0.65 1.44 2.73 4.38 6.35
LYZ 0.20 0.21 0.25 0.30 0.37 0.94 1.86 3.15 4.86 0.25 0.34 0.42 0.53 0.72 1.37 2.43 3.64 4.99
BMM 0.22 0.22 0.25 0.30 0.37 0.88 1.69 2.86 4.39 0.31 0.31 0.40 0.49 0.61 1.17 2.09 3.21 4.46
LM 0.21 0.22 0.25 0.30 0.36 0.85 1.66 2.80 4.31 0.24 0.30 0.38 0.47 0.58 1.11 2.02 3.09 4.35
WT (NT) 0.18 0.19 0.23 0.27 0.33 0.84 1.64 2.77 4.26 0.21 0.28 0.34 0.43 0.57 1.11 2.02 3.08 4.31
T1 0.15 0.16 0.18 0.20 0.24 0.53 0.98 1.61 2.46 0.17 0.20 0.23 0.28 0.35 0.66 1.16 1.76 2.49
KMf 1.61 1.82 2.00 2.14 2.32 3.70 5.92 9.07 13.21 0.93 1.22 1.53 1.87 2.10 3.55 5.42 8.15 12.07
KMs 1.77 1.83 1.86 1.89 1.96 2.38 2.95 3.72 4.72 1.17 1.32 1.45 1.58 1.70 2.22 2.74 3.52 4.57
EODSf 0.44 0.47 0.54 0.62 0.74 1.82 3.66 6.21 9.58 0.46 0.55 0.64 0.81 0.86 2.12 3.86 6.19 9.70

III EODSs 0.68 0.71 0.76 0.80 0.86 1.25 1.82 2.60 3.57 0.72 0.79 0.83 0.91 0.91 1.43 1.91 2.61 3.68
WTf 0.17 0.19 0.23 0.27 0.33 0.84 1.69 2.83 4.29 0.21 0.27 0.33 0.43 0.42 1.09 1.84 2.83 4.41
WTs 0.26 0.28 0.30 0.33 0.38 0.71 1.21 1.90 2.78 0.29 0.33 0.37 0.42 0.43 0.86 1.31 1.91 2.83
T1 0.15 0.16 0.18 0.21 0.24 0.53 1.00 1.65 2.49 0.16 0.20 0.23 0.28 0.28 0.65 1.09 1.65 2.53

employed as the nominal system [60]

G(s) =
K

τs + 1
e−Ls =

1
10s + 1

e−2.5s .

The goal is to design an IT2 fuzzy PI controller

u̇ = kP ė + kI e (12)

where u̇ is the change in control signal, e is the error, ė is the
change of error, and kP and kI are proportional and integral
gains.

First, assume that there are M Gaussian IT2 FSs in each
domain (e and ė), and each IT2 FSs is determined by three
parameters (one mean, mm , and two standard deviations, σ1

m

and σ2
m , m = 1, 2, . . . ,M ). Each of the M 2 rule consequents

is represented by a crisp number yn , n = 1, . . . ,M 2 . Then, for
each input pair (e, ė), all N = M 2 rules are fired, and a TR
algorithm is needed to compute the output of the IT2 FLC.
The population consisted of 100 randomly generated IT2 FLCs
(all mm , σ1

m , σ2
m , and yn were generated randomly), and the

performance of each FLC was evaluated by a step response in
the first 100 s with sampling frequency 1 Hz. We recorded the
time that the five algorithms were used to perform these 100 ×
100 = 10 000 TRs. M = {2, 3, . . . , 10, 20, . . . , 50} were used.
The results are shown in Fig. 9 and the first part of Table VI.
Observe the following points.

1) Generally, all five enhanced algorithms are faster than the
KM algorithms.

2) The EKMANI algorithms are faster than the EKM algo-
rithms when M ≥ 4.

3) Both the IASC and the EIASC algorithms are significantly
faster than the KM, EKM, and EKMANI algorithms, es-
pecially when M is small (M ≤ 20, i.e., the rulebase has

no more than 400 rules). The EIASC algorithms also out-
perform the IASC algorithms slightly.

4) The EODS algorithms are the fastest when M is small
(M ≤ 10, i.e., the rulebase has no more than 100 rules),
which is the case for most practical IT2 FLCs.

5) Although the EODS algorithms are the fastest enhance-
ment to the KM algorithms when M ≤ 10, they are still
about three times slower than the T1 FLC.

We then repeated the experiment using trapezoidal MFs. The
trapezoidal MFs were generated in the same way as those in the
previous section. The results are shown in Fig. 10 and the first
part of Table VII. We have the same observations as those from
Fig. 8.

We can again observe from the first part of Tables VI and VII
that the enhancements to the KM algorithms have larger com-
putational cost saving over the KM algorithms when Gaussian
IT2 FSs are used.

H. Summary

In summary, among the KM algorithms and their five en-
hanced versions, the EODS algorithms seem to be the fastest to
use when there are less than 100 rules fired each time, which
is usually true in practice. However, they are much more com-
plex than the EIASC algorithms, which are only slightly (≤ 1.2
times) slower than the EODS algorithms for practical IT2 FLCs.
For the point of ease in understanding and implementation, the
EIASC algorithms may be preferred in practice.

IV. ALTERNATIVE TYPE-REDUCTION ALGORITHMS

As the iterative KM algorithms have high computational
cost, as well as their iterative nature makes them difficult to
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Fig. 5. Computational cost of the KM algorithms and their enhanced versions
in control surface computation using Gaussian MFs. (a) Total computation time
of the 100 control surfaces for different M (the number of IT2 FSs in each
input domain). Note that N = M 2 . (b) Ratio of the computation time of the
enhanced algorithms to the KM algorithms. To facilitate reading, the order of
the algorithms in the legend is ranked roughly according to their performance.

Fig. 6. Trapezoidal IT2 FSs used in the experiments.
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Fig. 7. Example of the generated trapezoidal MFs (a) and the corresponding
control surface (b).
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Fig. 8. Computational cost of the KM algorithms and their enhanced versions
in control surface computation using trapezoidal MFs. (a) Total computation
time of the 100 control surfaces for different M (the number of IT2 FSs in
each input domain). Note that the rulebase has N = M 2 rules, but at any time,
no more than four rules are fired. (b) Ratio of the computation time of the
enhanced algorithms to the KM algorithms. To facilitate reading, the order of
the algorithms in the legend is ranked roughly according to their performance.

analyze, people have proposed many alternative TR algorithms,
which have closed-form expressions and are usually faster
than the KM algorithms. Eleven of them [2], [8], [10], [13],
[16], [27], [28], [37], [44], [56], [61] are introduced and com-
pared in this section. They are presented in the chronological
order.

A. Gorzalczany Method

Gorzalczany [14] proposed two defuzzification methods to
obtain a number from the output of the Mamdani inference
engine using interval-valued FSs. Since the focus of this paper
is the TSK model, we adapt his methods to TSK models. Note
that both of his methods only apply to yn = yn ≡ yn and n =
1, 2, . . . , N .

Given yn and the firing intervals of the rules, [fn , f
n
], n =

1, 2, . . . , N , first we construct a polygon shown in Fig. 11, which
can be viewed as a special IT2 FS. For each point in [y1 , yN ],
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TABLE VII
TOTAL COMPUTATION TIME (SECONDS) OF DIFFERENT TR ALGORITHMS WHEN TRAPEZOIDAL IT2 FSS ARE USED

M
Category Algorithm Control Surface Computation Evolutionary IT2 FLC Design

2 4 6 8 10 20 30 40 50 2 4 6 8 10 20 30 40 50
KM 1.12 1.17 1.25 1.34 1.39 2.01 2.96 4.24 5.93 1.01 1.18 1.25 1.30 1.46 2.03 2.97 4.28 6.01
EKM 0.86 0.91 0.98 1.05 1.12 1.74 2.68 3.97 5.66 0.82 0.92 0.98 1.04 1.17 1.76 2.70 4.01 5.71
EKMANI 1.04 1.08 1.16 1.24 1.33 2.10 3.28 4.88 7.02 1.00 1.08 1.16 1.23 1.38 2.13 3.32 4.93 7.11

I IASC 0.67 0.71 0.77 0.82 0.90 1.51 2.44 3.71 5.41 0.68 0.72 0.78 0.84 0.95 1.52 2.47 3.77 5.44
EIASC 0.67 0.70 0.77 0.82 0.90 1.50 2.43 3.72 5.42 0.68 0.71 0.78 0.83 0.95 1.52 2.46 3.74 5.44
EODS 0.65 0.66 0.72 0.78 0.85 1.46 2.39 3.67 5.36 0.68 0.66 0.72 0.78 0.89 1.48 2.41 3.68 5.38
T1 0.18 0.20 0.22 0.25 0.29 0.62 1.12 1.82 2.72 0.18 0.20 0.22 0.25 0.29 0.61 1.12 1.83 2.74
KM 1.13 1.27 1.26 1.34 1.50 1.99 2.96 4.25 5.97 0.99 1.24 1.29 1.32 1.42 2.00 3.00 4.28 6.02
WM 0.88 0.92 0.99 1.07 1.19 1.85 3.07 4.65 6.77 0.92 0.95 1.01 1.06 1.16 1.86 3.08 4.67 6.76
TTCC 0.72 0.75 0.81 0.89 1.01 1.73 2.83 4.35 6.37 0.70 0.75 0.81 0.89 1.00 1.75 2.88 4.39 6.36
G 0.63 0.67 0.72 0.77 0.88 1.40 2.31 3.57 5.16 0.70 0.75 0.80 0.86 0.94 1.51 2.49 3.76 5.38
CJ 0.63 0.66 0.71 0.76 0.86 1.39 2.30 3.54 5.16 0.68 0.73 0.77 0.84 0.92 1.48 2.45 3.72 5.34

II GCCJ 0.33 0.35 0.39 0.43 0.53 0.96 1.73 2.82 4.15 0.33 0.34 0.38 0.42 0.51 0.96 1.76 2.82 4.14
LYZ 0.41 0.42 0.47 0.51 0.60 1.09 1.93 3.06 4.76 0.39 0.42 0.46 0.51 0.59 1.07 1.96 3.09 4.54
BMM 0.45 0.48 0.52 0.56 0.65 1.13 1.94 3.06 4.47 0.45 0.48 0.52 0.55 0.64 1.11 1.96 3.04 4.45
LM 0.40 0.43 0.48 0.52 0.61 1.06 1.87 2.95 4.36 0.40 0.42 0.47 0.51 0.60 1.06 1.89 2.97 4.35
WT (NT) 0.32 0.33 0.38 0.42 0.51 0.96 1.76 2.79 4.17 0.32 0.34 0.38 0.42 0.51 0.96 1.77 2.82 4.17
T1 0.21 0.22 0.25 0.28 0.33 0.64 1.14 1.85 2.74 0.21 0.22 0.25 0.28 0.34 0.64 1.15 1.85 2.76
KMf 1.20 1.15 1.32 1.29 1.44 2.07 2.95 4.24 5.96 1.01 1.15 1.26 1.31 1.43 2.04 2.96 4.25 5.98
KMs 0.99 0.81 0.62 0.60 0.65 0.96 1.49 2.22 3.19 0.86 0.78 0.67 0.61 0.65 0.95 1.47 2.22 3.18
EODSf 0.67 0.66 0.74 0.78 0.87 1.45 2.41 3.67 5.35 0.67 0.67 0.73 0.78 0.87 1.48 2.39 3.66 5.38

III EODSs 0.89 0.66 0.61 0.59 0.65 0.95 1.50 2.21 3.19 0.79 0.66 0.62 0.59 0.64 0.95 1.47 2.24 3.19
WTf 0.31 0.33 0.38 0.41 0.50 0.97 1.75 2.79 4.14 0.31 0.33 0.38 0.42 0.49 0.97 1.75 2.80 4.19
WTs 0.38 0.30 0.30 0.31 0.36 0.67 1.18 1.86 2.77 0.34 0.29 0.30 0.31 0.35 0.66 1.16 1.91 2.78
T1 0.21 0.21 0.25 0.27 0.33 0.64 1.15 1.84 2.73 0.20 0.22 0.24 0.27 0.32 0.64 1.14 1.85 2.76

Note that the rulebase has M2 rules.

we compute

μ(y) =
(f + f)

2
· [1 − (f − f)] (13)

where f − f is called the bandwidth. Then, the defuzzified out-
put can be computed as

yG = arg max
y

μ(y). (14)

Gorzalczany [14] explained that (14) provides an element
yG , which most adequately satisfies the compromise between
the maximization of the mean value and the minimization of
the bandwidth of the inference engine output. He also pointed
out that (14) yielded a constant error in his FLC. Therefore,
he proposed another method to prevent such a situation, where
the defuzzified output is chosen as the point that divides in half
the region under the curve μ(y), i.e., yG is the solution to the
following equation:

∫ yG

y 1
μ(y)dy =

∫ yN

yG

μ(y)dy. (15)

Gorzalczany did not point out how to efficiently compute yG

in (15). However, if we form a granule from μ(y), as shown in
Fig. 12, then yG in (15) is its centroid. Coupland and John’s
method for computing the geometric centroid of an IT2 FS,
introduced in Section IV-E, can be used for this purpose, and it
is used in our experiment.

B. Liang–Mendel Unnormalized Method

Liang and Mendel [28] proposed an unnormalized TR
method, in which the defuzzified output is still computed by

(5), but

yl =
N

∑

n=1

fnyn , yr =
N

∑

n=1

f
n
yn

where yn = yn ≡ yn and {yn} do not need to be sorted. This
method is called unnormalized because neither yl nor yr is
normalized by the sum of the firing levels. In the literature and
practice, most FLSs use normalized defuzzification.

C. Wu–Mendel Uncertainty Bound Method

The uncertainty bound method, proposed by Wu and Mendel
[61], computes the output of the IT2 FLS by (5), but

yl =
y

l
+ yl

2
, yr =

y
r

+ yr

2

where

yl = min{y(0) , y(N )}, y
r

= max{y(0) , y(N )}

y
l
= yl −

∑N
n=1(f

n − fn )
∑N

n=1 f
n ∑N

n=1 fn

×
∑N

n=1 fn (yn − y1)
∑N

n=1 f
n
(yN − yn )

∑N
n=1 fn (yn − y1) +

∑N
n=1 f

n
(yN − yn )

yr = y
r

+

∑N
n=1(f

n − fn )
∑N

n=1 f
n ∑N

n=1 fn

×
∑N

n=1 f
n
(yn − y1)

∑N
n=1 fn (yN − yn )

∑N
n=1 f

n
(yn − y1) +

∑N
n=1 fn (yN − yn )
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Fig. 9. Computational cost of the KM algorithms and their enhanced versions
in evolutionary IT2 FLC design using Gaussian MFs. (a) Total computation
time of the 100 IT2 FLCs for different M (the number of IT2 FSs in each
input domain). Note that N = M 2 . (b) Ratio of the computation time of the
enhanced algorithms to the KM algorithms. To facilitate reading, the order of
the algorithms in the legend is ranked roughly according to their performance.
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Unlike the KM algorithms, the uncertainty-bound method
does not require {yn} and {yn} to be sorted, although it still
needs to identify the minimum and maximum of {yn} and {yn}.

D. Wu–Tan Method

Wu and Tan [56] proposed a closed-form TR and defuzzi-
fication method by making use of the equivalent T1 member-
ship grades [57]. The basic idea is to first find an equivalent
T1 membership grade μX n

i
(xi) to replace each firing interval
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Fig. 10. Computational cost of the KM algorithms and their enhanced versions
in evolutionary IT2 FLC design using trapezoidal MFs. (a) Total computation
time of the 100 IT2 FLCs for different M (the number of IT2 FSs in each
input domain). Note that the rulebase has N = M 2 rules, but at any time,
no more than four rules are fired. (b) Ratio of the computation time of the
enhanced algorithms to the KM algorithms. To facilitate reading, the order of
the algorithms in the legend is ranked roughly according to their performance.
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Fig. 11. Polygon used in Gorzalczany’s method to compute μ(y) in (13).
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Fig. 12. Polygon used in computing yG in (15).
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Fig. 13. Closed polygon used in the Coupland–John method.

[μX n
i
(xi), μX

n

i
(xi)], i.e.,

μX n
i
(xi) = μ

X
n

i
(xi) − hn

i (x)[μ
X

n

i
(xi) − μX n

i
(xi)]

where hn
i (x) is a function of the input x, and is different for

different IT2 FSs (In [56] x = (e, ė) and hn
i (x) = αe + βė,

where α and β change with i and n, and they were identified by
Genetic Algorithms). This property is motivated by the adap-
tiveness of an IT2 FLC [47], which means that the embedded
T1 FSs used to compute the bounds of the TR interval change
as input changes.

Since the firing strengths of the rules become point (instead
of interval) numbers fn computed from these μX n

i
(xi), the IT2

FLS becomes an adaptive T1 FLC, and its output is computed as

y =
∑N

n=1 ynfn

∑N
n=1 fn

.

The Wu–Tan (WT) method also does not require {yn} to be
sorted.

E. Coupland–John Geometric Method

Coupland and John [8] proposed a geometric method for TR
and defuzzification of Mamdani IT2 FLSs. In this paper, we
extend it to TSK IT2 FLSs.

The Coupland–John method constructs a closed polygon
from yn and the corresponding firing intervals, and relabels
the boundary points as those shown in Fig. 13. For an IT2 FLS
with N rules, there are 2N points on the boundary of the closed
polygon, (yn , fn ), n = 1, . . . , 2N . Then, the centroid of the
polygon is viewed as the defuzzification output of the IT2 FLS:

y =
∑2N

n=1(y
n + yn+1)(ynfn+1 − yn+1fn )

3
∑2N

i=1(ynfn+1 − yn+1fn )

where (y2N +1 , f 2N +1) is the same as (y1 , f 1). Observe that the
geometric method requires {yn}n=1,...,N to be sorted so that the
closed polygon can be constructed.

F. Nie–Tan Method

Nie and Tan [37] proposed another closed-form TR and de-
fuzzification method, where the output of an IT2 FLS is com-
puted as

y =

∑N
n=1 yn (fn + f

n
)

∑N
n=1(f

n + f
n
)

.

Observe that the Nie–Tan (NT) method does not require {yn}
to be sorted, and it is a special case of the WT method when

hn
i (x) = 0.5. However, by specifying hn

i (x) to be a constant
for all inputs, the resulting IT2 FLS loses adaptiveness, which is
considered as one of the two fundamental differences between
IT2 and T1 FLCs [47].

G. Begian–Melek–Mendel Method

Begian et al. [2] proposed another closed-form TR and de-
fuzzification method for IT2 FLSs, i.e.,

y = α

∑N
n=1 fnyn

∑N
n=1 fn

+ β

∑N
n=1 f

n
yn

∑N
n=1 f

n . (16)

where α and β are adjustable coefficients. Observe that it views
the output of an IT2 FLS as a combination of the outputs of two
T1 FLSs: one constructed only from the LMFs and the other
constructed only from the UMFs.

The Begian–Melek–Mendel (BMM) method does not require
{yn} to be sorted. It is also similar to Niewiadomski et al.’s [39]
fourth method for TR of IT2 FSs; however, Niewiadomski et al.
have not extended their methods to IT2 FLSs.

The BMM method requires yn = yn ≡ yn . Li et al. [26]
extended it to the case that yn 	= yn , i.e.,

y = α

∑N
n=1 fnyn

∑N
n=1 fn

+ β

∑N
n=1 f

n
yn

∑N
n=1 f

n . (17)

Since (17) and (16) have the same computational cost, only the
BMM method is considered in this paper.

Note that Castillo et al. [7] also proposed a new defuzzifica-
tion method, in which the output of an IT2 FLS is approximated
by the average of two T1 FLSs, which are tuned by evolutionary
algorithms. Once the two T1 FLSs are obtained, the computa-
tional cost of Castillo et al.’s approach is similar to the BMM
method; therefore, it is not considered separately in this paper.

H. Greenfield–Chiclana–Coupland–John Collapsing Method

Greenfield et al. [16] proposed a collapsing method for TR
of IT2 FLSs, where each IT2 FS is replaced by a representa-
tive embedded T1 FS whose membership grades are computed
recursively. To simplify the computation, the representative em-
bedded T1 FS can be approximated by a pseudo representative
embedded T1 FS

μX (x) =
μX (x) + μX (x)

2
.

Once all IT2 FSs in an IT2 FLS are replaced by their pseudo
representative embedded T1 FSs, the IT2 FLS is reduced to a
T1 FLS, and the defuzzification is straightforward. Again, the
collapsing method does not require {yn} to be sorted.

Observe that the collapsing method looks very similar to
the NT method. In fact, when there is only one input, these
two methods are identical; however, they are different when
there are more than one input, because the firing level of ˜Rn

(see Section II-B) in the Greenfield–Chiclana–Coupland–John
(GCCJ) method is

fn
GCCJ =

I
∏

i=1

μX n
i
(xi) + μ

X
n

i
(xi)

2
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whereas the firing level of ˜Rn in the NT method is

fn
NT =

∏I
i=1 μX n

i
(xi) +

∏I
i=1 μ

X
n

i
(xi)

2
.

Greenfield et al. [15] also proposed a sampling method for
TR, where only a relatively small random sample of the totality
of embedded T1 FSs is processed. Because its output is not
deterministic, it is not considered in this paper.

I. Li–Yi–Zhao Method

Li et al. [27] proposed a new TR method based on interval
analysis without considering the dependence of fn in the nu-
merator and denominator of (2). They still computed the output
of the IT2 FLS by (5), but

yl = min

×

⎡

⎣

∑N
n=1 min

(

fnyn , f
n
yn

)

∑N
n=1 fn

,

∑N
n=1 min

(

fnyn , f
n
yn

)

∑N
n=1 f

n

⎤

⎦

yr = max

×

⎡

⎣

∑N
n=1 max

(

fnyn , f
n
yn

)

∑N
n=1 fn

,

∑N
n=1 max

(

fnyn , f
n
yn

)

∑N
n=1 f

n

⎤

⎦.

The Li–Yi–Zhao (LYZ) method does not require {yn} to be
sorted.

Li et al. [27] also showed that the [yl , yr ] computed from
the KM algorithms is a subset of the [yl , yr ] computed earlier,
and the absolute value of the difference between the defuzzi-
fied output computed by the KM algorithms and their defuzzi-
fied output is upper bounded by max(maxn |yn |,maxn |yn |) ·
∑N

n = 1
(f

n −f n )
∑N

n = 1
f n

. However, this is a very loose bound, especially

when
∑N

n=1 fn approaches 0. Consider a simple example,

in which only two rules are fired, and [f 1 , f
1
] = [0.001, 0.2],

[y1 , y1 ] = [0.5, 0.6], [f 2 , f
2
] = [0, 0.8], and [y2 , y2 ] = [0.9, 1].

The bounds are computed to be 999, which is 999 times of the
maximum consequent y2 . In fact, [yl , yr ] computed by the KM
algorithms is [0.5, 0.9995], whereas [yl , yr ] computed by the
LYZ method is [0.0005, 920]. Clearly, the difference is huge.

J. Du–Ying Method

Du and Ying [10] proposed an average defuzzifier. It first
computes 2N crisp outputs obtained by all possible combina-
tions of the lower and upper firing levels, i.e.,

ym =
∑N

n=1 ynfn∗

∑N
n=1 fn∗ , m = 1, 2, . . . , 2N

where fn∗ ∈ {fn , f
n}. The final defuzzified output is then com-

puted as the average of all these 2N ym , i.e.,

y =
1

2N

2N
∑

m=1

ym .

(a) (b)

Fig. 14. (a) Possible-left-most and possible-right-most embedded T1 FSs used
in [44]. (b) Possible-left-most and possible-right-most embedded T1 FSs for an
arbitrary FOU.

The DY method does not require {yn} to be sorted.
Although the DY method makes the analysis of the result-

ing IT2 FLS easier, it has higher computational cost than the
KM type-reducer. Additionally, its computational cost increases
exponentially with the number of rules since there are 2N T1
FLSs to be computed.

K. Tao–Taur–Chang–Chang Method

Tao et al. [44] proposed a simplified IT2 FLS, whose output
is computed as

y = αyP L M + (1 − α)yP L M

where yP L M is the output of a T1 FLS constructed only from
the possible-left-most embedded T1 FSs, and yP R M is the out-
put of a T1 FLS constructed only from the possible-right-most
embedded T1 FSs. In [44], an IT2 FS was obtained by blurring
a triangular T1 FS left and right, and hence, the possible-left-
most and possible-right-most embedded T1 FSs can be easily
identified, as shown in Fig. 14(a); however, Tao et al. did not
discuss how to identify these embedded T1 FSs for IT2 FSs with
arbitrary FOUs. In this paper, we construct these embedded T1
FSs as shown in Fig. 14(b). It is easy to observe that Tao et al.’s
construction method is a special case of ours.

The Tao–Taur–Chang–Chang (TTCC) method does not re-
quire {yn} to be sorted. Observe that it is similar to the BMM
method in that both methods compute the output of the IT2
FLS as a linear combination of the outputs of two T1 FLSs,
which are constructed from the embedded T1 FSs. However,
the BMM method uses the upper and lower MFs, whereas the
TTCC method uses the possible-left-most and possible-right-
most convex and normal embedded T1 FSs.

L. Computational Cost Comparison: Control Surface
Computation

A comparison of the computational cost of the alternative
TR algorithms in control surface computation using Gaussian
MFs is shown in Fig. 15 and the second part of Table VI. The
experimental setup was the same as that in Section III-F. Note
that we did not include the DY method because its computational
cost is much higher than others and increases exponentially with
respect to N . Observe from Fig. 15 and Table VI the following
points.

1) All ten alternative TR algorithms in Fig. 15(b) are faster
than the KM algorithms, especially when M is small, e.g.,
M < 10.
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Fig. 15. Computational cost of the alternative TR algorithms in control surface
computation using Gaussian MFs. (a) Total computation time of the 100 IT2
FLCs for different M (the number of IT2 FSs in each input domain). Note that
N = M 2 . (b) Ratio of the computation time of alternative type-reducers to the
KM algorithms. To facilitate reading, the order of the algorithms in the legend
is ranked roughly according to their performance.

2) The WT, NT, Liang–Mendel (LM), and BMM methods
have similar computational cost, and generally, they are
faster than other alternative TR algorithms.

3) The WT and NT methods are about 1.2–1.7 times slower
than a T1 FLC.

We can observe from the first two parts of Table VI that
the WT, NT, LM, and BMM methods are much faster than
the EODS algorithms, the fastest enhancement to the KM al-
gorithms. However, there is an important difference between
the methods presented in this section and those in the previ-
ous section: All the enhanced versions of the KM algorithms
introduced in Section III give exactly the same outputs as the
original KM algorithms, which have some fundamentally dif-
ferent characteristics from T1 FLCs [47]. On the other hand, the
alternative TR algorithms presented in this section have very
different characteristics from the original KM algorithms, and
hence their outputs are different. More comparisons on this are
given later in this section.
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Fig. 16. Computational cost of the alternative TR algorithms in control surface
computation using trapezoidal MFs. (a) Total computation time of the 100 IT2
FLCs for different M (the number of IT2 FSs in each input domain). Note that
the rulebase has N = M 2 rules, but at any time, no more than four rules are
fired. (b) Ratio of the computation time of alternative type-reducers to the KM
algorithms. To facilitate reading, the order of the algorithms in the legend is
ranked roughly according to their performance.

We repeated the previous experiments for trapezoidal IT2
FSs. The results are shown in Fig. 16 and the second part of
Table VII. Observe the following points.

1) The computational cost saving of all algorithms, includ-
ing the T1 FLC, over the KM algorithms is not as large as
that in the Gaussian MF case. This is because for trape-
zoidal MFs at any time at most four rules are fired, so all
algorithms converge very quickly.

2) The WT and NT methods are still the fastest; however,
the GCCJ method is equally fast. This is because when
a very small number of rules are fired, the time used
to construct the closed polygon in the GCCJ method is
negligible.

We can observe from the first two parts of Table VII that
the WT, NT, and GCCJ methods are much faster than the
EODS algorithms, which are the fastest enhancement to the KM
algorithms.
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Fig. 17. Computational cost of the alternative TR algorithms in evolutionary
IT2 FLC design using Gaussian MFs. (a) Total computation time of the 100 IT2
FLCs for different M : the number of IT2 FSs in each input domain. Note that
N = M 2 . (b) Ratio of the computation time of alternative type-reducers to the
KM algorithms. To facilitate reading, the order of the algorithms in the legend
is ranked roughly according to their performance.

M. Computational Cost Comparison: Evolutionary
Fuzzy Logic Controller Design

We also compare the computational cost of the alternative TR
algorithms in evolutionary FLC design. The results are shown
in Figs. 17 and 18, and the second part of Tables VI and VII,
for Gaussian IT2 FSs and trapezoidal IT2 FSs, respectively.
All alternative TR algorithms are much faster than the KM
algorithms when Gaussian IT2 FSs are used; however, their
computational cost savings are not so large when trapezoidal
IT2 FSs are used.

We can observe from the first two parts of Table VI that the
WT, NT, LM, and BMM methods are much faster than the EODS
algorithms, the fastest enhancement to the KM algorithms. We
can also observe from the first two parts of Table VII that the
WT, NT, and GCCJ methods are much faster than the EODS
algorithms.
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Fig. 18. Computational cost of the alternative TR algorithms in evolutionary
IT2 FLC design using trapezoidal MFs. (a) Total computation time of the 100
IT2 FLCs for different M : the number of IT2 FSs in each input domain. Note
that N = M 2 . (b) Ratio of the computation time of alternative type-reducers
to the KM algorithms. To facilitate reading, the order of the algorithms in the
legend is ranked roughly according to their performance.

N. Comparison of the Defuzzified Outputs

The 11 alternative TR algorithms, generally, give different
defuzzified outputs from the KM algorithms and their enhanced
versions. Since the KM algorithms are the most popular TR
algorithms and many theoretical (e.g., [47]) and experimental
results are based on them, it is interesting to examine how close
the outputs of the 11 alternative TR algorithms are to those of
the KM algorithms. Surprisingly, no one has done these types of
studies before. We believe that the conclusions are application
dependent and a comprehensive comparison is out of the scope
of this paper. We only use the results obtained in the previous
experiments to perform some qualitative comparison, and we
believe this should also give us some useful insight. The statistics
of the absolute difference between the output of the KM TR
method and ten alternative TR methods are shown in Table VIII.
Observe the following points.

1) The WM method gives the closest approximation to the
KM TR method.
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TABLE VIII
STATISTICS OF THE ABSOLUTE DIFFERENCE BETWEEN THE OUTPUTS OF TEN

ALTERNATIVE TR ALGORITHMS AND THOSE OF THE KM ALGORITHMS

Control Surface Computation Evolutionary IT2 FLC Design
TR Algorithm Gaussian Trapezoidal Gaussian Trapezoidal

mean std mean std mean std mean std
WM 0.043 0.087 0.077 0.104 0.035 0.075 0.078 0.103
G 0.169 0.185 0.127 0.183 0.103 0.155 0.127 0.179
CJ 0.235 0.251 0.142 0.195 0.132 0.192 0.151 0.202
TTCC 0.062 0.148 0.153 0.291 0.148 0.238 0.131 0.260
BMM 0.065 0.153 0.173 0.251 0.153 0.243 0.166 0.249
NT (WT) 0.065 0.157 0.196 0.310 0.158 0.257 0.172 0.281
GCCJ 0.066 0.163 0.202 0.314 0.166 0.266 0.178 0.285
T1 0.097 0.162 0.199 0.311 0.174 0.253 0.177 0.283
LM 2.702 4.536 0.323 0.228 1.164 2.815 0.261 0.226
LYZ ∞ ∞ 211 15661 ∞ ∞ 214 14187

2) Generally, the G, CJ, TTCC, BMM, NT, WT, and GCCJ
methods give better approximation to the KM TR method
than a T1 FLS, in which the UMFs of the corresponding
IT2 FSs are used as its MFs.

3) The output of the LM method is significantly different
from other methods because it is an unnormalized method.

4) There is a huge difference between the output of the LYZ
method and all other methods.

However, we need to point out that the alternative TR methods
give different output from the KM TR method, but it does not
mean that they have poor performance. In fact, many of them
have demonstrated good performance in the literature. It only
means that the MFs need to be retuned when a different TR
method is used.

O. Summary

Observe from the first two parts of Tables VI and VII that
the WT, NT, LM, BMM, LYZ, and GCCJ methods consistently
outperform the EODS algorithms: the fastest KM algorithm
based type-reducer. Among them, the WT and NT methods seem
to be the fastest alternative TR algorithms. However, we should
also point out that there are many other considerations [48],
beyond the computational cost, in IT2 FLS design. Among these
six fast alternative TR algorithms, the LM and LYZ methods
give significantly different results from the KM algorithms. The
BMM method is the only one whose stability [3] and robustness
[4], [5] have been extensively studied. Therefore, it may be
preferred in practice.

V. SIMPLIFIED INTERVAL TYPE-2 FUZZY LOGIC SETS

In the previous two sections, we consider IT2 FLSs whose
MFs are all IT2 FSs, and the introduced TR computational cost
reduction approaches can be applied to IT2 FLSs in a variety
of applications. However, when specified to IT2 fuzzy logic
control, the most widely used application of IT2 FLSs, some
unique observations can be made. We have demonstrated that
an IT2 FLC’s ability to eliminate oscillations can be attributed
to its control surface near the steady state [54], [55], [59]. To
save computational cost, while maintaining their superior ability
to eliminate oscillations, we proposed a simplified architecture
for IT2 FLCs [54], [59], where IT2 FSs are only used for the
most critical regions in the input domains. The rest of the input
domains are covered by T1 FSs.

(a)

(b)

Fig. 19. MFs of the simplified IT2 FLS in (a) the e domain, and (b) the ė
domain. Note that the middle MF in each domain is an IT2 FS. All other MFs
are T1 FSs.

Consider the PI controller in (12). The control surface near
e = 0 and ė = 0 is mainly responsible for eliminating oscilla-
tions. Therefore, in the simplified architecture shown in Fig. 19,
we use some (usually only one) IT2 FSs to cover the areas
around e = 0 and ė = 0 and T1 FSs for the rest of the input
domains.

Clearly, a simplified IT2 FLC using trapezoidal MFs has two
parts—a T1 part and an IT2 part. Different fuzzy partitions will
be activated when the state of the plant is in different operating
regions. During the transient stage, the FLC behaves like a T1
FLC since no IT2 FSs are fired. When the output approaches
the set point, IT2 FSs will be fired and the plant is controlled by
an IT2 FLC. Smoother control signals will be generated, which
help eliminate oscillations.

There are two approaches to design a simplified IT2 FLC:
1) the one-step approach, where we prespecify the number of

IT2 FSs near the steady state and then design the simplified
IT2 FLC through experience or optimization algorithms;

2) the two-step approach, where we design a baseline T1
FLC first, change some T1 FSs near the steady state to be
IT2 FSs, and retune the parameters using an optimization
algorithm.

The simplified IT2 FLCs have been used in [54] and [59].
In [54], a simplified IT2 FLC, which used one IT2 FS around
e = 0 and one around ė = 0, outperformed a T1 FLC with the
same number of MFs and showed similar performance as an IT2
FLC whose MFs are all IT2 FSs. In [59], a simplified IT2 FLC,
which used only one IT2 FS in the ė domain, outperformed
a T1 FLC with the same number of MFs and showed similar
performance as a T1 FLC with more MFs and an IT2 FLC whose
all MFs are IT2 FSs.

A. Type-Reduction and Defuzzification of the Simplified
Interval Type-2 Fuzzy Logic Controller

There are two categories of methods for TR and defuzzifi-
cation of the simplified IT2 FLC. The first category is to use
the KM algorithms or their enhanced versions introduced in
Section III. The second is to use the alternative TR algorithms
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introduced in Section IV. The second category of methods is
very straightforward; therefore, only the first category of meth-
ods is described in this section.

Consider a simplified IT2 FLC where M out of the N rules
contain only T1 FS in the antecedent. The remaining N − M
rules have at least one IT2 FS in the antecedent. There will,
therefore, be M crisp firing strengths fn , n = 1, 2, . . . , M ,
and N − M interval firing strengths, Fn , n = M + 1, M +
2, . . . , N . In this case, the center-of-sets type-reducer in (2)
becomes

Ycos =
∑M

n=1 Y nfn +
∑N

n=M +1 Y nFn

∑M
n=1 fn +

∑N
n=M +1 Fn

=
β +

∑N
n=M +1 Y nFn

α +
∑N

n=M +1 Fn

=
β

α
+

∑N
n=M +1 Y nFn − β

α

∑N
n=M +1 Fn

α +
∑N

n=M +1 Fn

=
β

α
+

∑N
n=M +1(Y

n − β
α )Fn

α +
∑N

n=M +1 Fn
(18)

where

α =
M
∑

n=1

fn

β =
M
∑

n=1

Y nfn =

[

M
∑

n=1

ynfn ,
M
∑

n=1

ynfn

]

β

α
=

[

∑M
n=1 ynfn

∑M
n=1 fn

,

∑M
n=1 ynfn

∑M
n=1 fn

]

Y n − β

α
≡

[

yn −
∑M

n=1 ynfn

∑M
n=1 fn

, yn −
∑M

n=1 ynfn

∑M
n=1 fn

]

.

Defining Y n
∗ and FN +1 as

Y n
∗ =

⎧

⎨

⎩

Y n − β

α
, n = M + 1, M + 2, . . . , N

0, n = N + 1
(19)

FN +1 = α (20)

and (18) can be further simplified to

Ycos =
β

α
+

∑N +1
n=M +1 Y n

∗ Fn

∑N +1
n=M +1 Fn

. (21)

The second term on the right-hand side of (21) can be calculated
by the KM algorithms or their enhanced versions introduced in
Section III.

B. Computational Cost Comparison: Control
Surface Computation

In this section, we compare the computational cost of the
simplified IT2 FLCs with “full” IT2 FLCs (whose all MFs are
IT2 FSs) in control surface computation. Three TR approaches
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Fig. 20. Computational cost of the simplified IT2 FLC in control surface
computation using Gaussian IT2 FSs. (a) Total computation time of the 100 IT2
FLCs for different M : the number of IT2 FSs in each input domain. Note that
N = M 2 . (b) Ratio of the computation time of different algorithms to the KM
algorithms. In each legend, f means full, and s means simplified. To facilitate
reading, the order of the algorithms in the legend is ranked roughly according
to their performance.

are considered: 1) the standard KM type-reducer; 2) the EODS
algorithms, which are the fastest enhancement to the KM al-
gorithms in Section III; and 3) the WT (NT) method, which is
the fastest alternative TR algorithm in Section IV. Additionally,
we also record the computational cost of the corresponding T1
FLCs.

When Gaussian IT2 FSs are used and the simplified IT2 FLC
has only the center MF in each input domain as IT2 FS, the
results are shown in Fig. 20 and the third part of Table VI.
The experimental setup was the same as that in Section III-F.
Observe from Fig. 20 the following points.

1) When M is small, e.g., when there are fewer than ten
MFs in each input domain, the computational cost of the
simplified IT2 FLC is higher than the corresponding full
IT2 FLC (KMs versus KMf, EODSs versus EODSf, and
WTs versus WTf) because of the extra effort in construct-
ing Y n

∗ in (19) and FN +1 in (20). When M gets larger,
the simplified IT2 FLC becomes faster than the full IT2
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Fig. 21. Computational cost of the simplified IT2 FLC in control surface
computation using trapezoidal IT2 FSs. (a) Total computation time of the 100
control surfaces for different M : the number of IT2 FSs in each input domain.
Note that the rulebase has N = M 2 rules, but at any time, no more than four
rules are fired. (b) Ratio of the computation time of different algorithms to
the KM algorithms. In each legend, f means full, and s means simplified. To
facilitate reading, the order of the algorithms in the legend is ranked roughly
according to their performance.

TABLE IX
NUMBER OF RULES WHICH HAVE FIRING INTERVALS INSTEAD OF CRISP FIRING

LEVELS IN THE SIMPLIFIED IT2 FLC

Note the total number of rules is M2.

Gaussian MFs Trapezoidal MFs
When the input is far from the origin 2M − 1 0
When the input is around the origin 2M − 1 4

FLC because the computational cost saving offered by the
simplified structure outweighs the extra effort to construct
Y n
∗ and FN +1 .

2) When M becomes larger, the speed of the simplified IT2
FLC, regardless of the TR method, approaches the T1 FLC
because most part of the simplified IT2 FLC is essentially
a T1 FLC.

We repeated the previous experiments for trapezoidal IT2
FSs. The results are shown in Fig. 21 and the third part of
Table VII. Observe that the simplified IT2 FLC is almost al-
ways faster than the corresponding full IT2 FLC. Recall that, in
Fig. 20, this only happens when M is large. The reason is that
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Fig. 22. Computational cost of the simplified IT2 FLC in evolutionary FLC
design using Gaussian IT2 FSs. (a) Total computation time of the 100 IT2
FLCs for different M : the number of IT2 FSs in each input domain. Note that
N = M 2 . (b) Ratio of the computation time of different algorithms to the KM
algorithms. In each legend, f means full, and s means simplified. To facilitate
reading, the order of the algorithms in the legend is ranked roughly according
to their performance.

when trapezoidal IT2 FSs are used, except for the small area
around the origin, the simplified IT2 FLC is identical to the T1
FLC since the firing strengths on the center IT2 FSs are zero;
however, when Gaussian IT2 FSs are used, no matter where the
input is, its firing strengths on the center IT2 FSs are always
nonzero intervals, and hence, there are more interval rule firing
strengths in the Gaussian FS case than in the trapezoidal FS
case. A comparison of the number of rules which have firing
intervals is shown in Table IX.

C. Computational Cost Comparison: Evolutionary
Fuzzy Logic Controller Design

We also compared the computational cost of the simplified
IT2 FLC with the corresponding full IT2 FLC in evolutionary
FLC design. The results are shown in Figs. 22 and 23, and
the third part of Tables VI and VII, for Gaussian IT2 FSs and
trapezoidal IT2 FSs, respectively. We have similar observations
as those in the previous section, i.e., for Gaussian IT2 FSs,
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Fig. 23. Computational cost of the simplified IT2 FLC in evolutionary FLC
design using trapezoidal IT2 FSs. (a) Total computation time of the 100 control
surfaces for different M : the number of IT2 FSs in each input domain. Note
that the rulebase has N = M 2 rules, but at any time, no more than four rules
are fired. (b) Ratio of the computation time of different algorithms to the KM
algorithms. In each legend, f means full, and s means simplified. To facilitate
reading, the order of the algorithms in the legend is ranked roughly according
to their performance.

the simplified IT2 FLC becomes faster than the corresponding
full IT2 FLC when M is large, whereas for trapezoidal IT2
FSs, the simplified IT2 FLC is almost always faster than the
corresponding full IT2 FLC.

D. Summary

In summary, we have demonstrated that a simplified IT2 FLC
can save a significant amount of computational cost over a full
IT2 FLC, especially when the number of rules is large and
the EODS algorithms or the WT (NT) method is used in TR.
Particularly, the simplified IT2 FLC using the WT (NT) method
has the fastest speed.

VI. CONCLUSION

IT2 FLSs have demonstrated better abilities to handle un-
certainties than their T1 counterparts in many applications;
however, their high computational cost may hinder them from
certain cost-sensitive real-world applications. In this paper, we

have provided a comprehensive overview and comparison of
three categories of methods to reduce the computational cost of
IT2 FLSs. The first category consists of five enhancements to
the KM algorithms. Experiments demonstrated that generally
they are all faster than the KM algorithms; among them, the
EODS algorithms are the fastest for practical IT2 FLSs. Addi-
tionally, the EIASC algorithms, which are much simpler than
the EODS algorithms and are at most 1.2 times slower, may
also be preferred by practitioners for the ease in understanding
and implementation. The second category consists of 11 alterna-
tive type-reducers, which have closed-form representation and,
hence, are more convenient for analysis. Experiments demon-
strated that except for the DY method, all the other ten methods
are generally faster than the KM algorithms; among them, the
WT and NT methods are the fastest. The BMM method may also
be preferred because its properties, e.g., stability and robust-
ness, have been extensively studied. The third category consists
of a simplified structure for IT2 FLCs, which can be combined
with any algorithm in the first or second category. Experiments
demonstrated that a simplified IT2 FLC can save a significant
amount of computational cost over a full IT2 FLC, especially
when the number of rules is large. Particularly, the simplified
IT2 FLC using the WT or NT method has the fastest speed.
However, it is important to note that the first two categories of
methods can be applied to all IT2 FLSs, whereas the simplified
structure is only designed for control applications.

The investigations in this paper will help researchers and prac-
titioners on IT2 FLSs choose the most suitable structure and TR
algorithms. Because there is no comprehensive comparison on
the performances of the KM algorithms-based TR approaches
and the alternative TR approaches (this is an interesting open
problem), our recommendation is to start from the full IT2 FLS
using the EODS or EIASC TR algorithms, because most studies
so far use the KM algorithm-based type-reducer. If more com-
putational cost saving is desired, then alternative TR algorithms
like the WT, NT, BMM, or GCCJ method may be considered
because they are consistently faster than the EODS algorithms
and their outputs are close to the outputs of the KM algorithms.
Particularly, the BMM method may be preferred because its sta-
bility and robustness have also been extensively studied. If the
IT2 FLS is used in control and the rulebase is large, then it may
also be worthwhile to use the simplified structure to further save
some computational cost.
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