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a b s t r a c t

For the fuzzy weighted average (FWA), despite various discrete solution algorithms and
their improvements, attempts at analytical solutions are very rare. This paper provides
an analytical solution method for the FWA based on the conclusions of the Karnik–Mendel
(KM) algorithm. Compared with the two current popular kinds of a-cut based computa-
tional methods for the FWA (mathematical programming transformations and direct iter-
ate computations), our method is precise, and, has a concise structure, efficient
computation process, and sound theoretical proofs. We propose two algorithms for com-
puting the analytical solution of the FWA. Two numerical examples illustrate our proposed
approach.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The fuzzy weighted average (FWA) is an important topic in both fuzzy logic theory and applications. It has been used in
risk evaluation [25,28], multi-criteria decision making [4,12,17,27] and information processing and decision making
[6,15,30,35,36], and continues to attract attention in fuzzy logic theory [1,2,5,7–9,11–13,16,19]. Some extensions such as
general fuzzy weighted average, linguistic weighted average and type-2 fuzzy weighted average were also proposed
[10,21,23,29,31,34].

Let X1,X2, . . . ,Xn be fuzzy numbers and W1,W2, . . . ,Wn be the fuzzy number weights associated with these fuzzy-numbers.
The FWA can be generally expressed as

Y ¼ f ðX1;X2; . . . ;Xn; W1;W2; . . . ;WnÞ ¼
W1X1 þW2X2 þ � � � þWnXn

W1 þW2 þ � � � þWn
: ð1Þ

Various methods have been proposed for computing (1). Dong and Wong [5] were apparently the first to develop a meth-
od for computing the FWA. They gave an algorithm based on Zadeh’s extension principle in which (1) is decomposed into a
collection of a-cuts in the unit interval [0,1]. This a-cut decomposition method became the basis of much FWA research and
algorithm design, e.g. improvements of their method were proposed for computational efficiency in [8,6,18].

The FWA has also been treated as fractional programming and has been transformed into a linear programming problem
by applying the Charnes and Cooper’s rule [7,13], e.g. Kao and Liu [13] proposed an analytical method with the pseudolinear
theory of fractional programming, and Guu [9] viewed the FWA as fractional programming, but suggested a non-constrained
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0–1 integer linear fractional programming solution method. These linear programming (LP) transformation approaches may
be efficient for the FWA, but they can only be employed with the help of linear programming software.

Dong and Wong [5] applied the vertex method to the FWA. Subsequently, some improvements of their algorithm were
proposed [8,18]. Lee and Park [16] also proposed an improved algorithm by using a dichotomy search. Chang et al. [2] gave
a comprehensive review and comparison of discrete FWA algorithms. Chang et al. [3] proposed an improved and efficient
FWA (EFWA) algorithm, which is claimed to be more advantageous than the existing FWA algorithms, and they applied it
to an office-layout design problem. Hung et al. [12] presented an enhanced FWA approach to evaluate the conceptual design
of a mechanical system.

Recent important progress about the FWA is the use of the Karnik Mendel (KM) algorithm to compute it. The KM algo-
rithm was originally used for the computation of the generalized centroid of an interval type-2 fuzzy set [14]. Liu and Mendel
[19] connected the FWA and the type-2 fuzzy set computations, and proposed a new a-cut algorithm for solving the FWA
problem with the KM algorithm. The KM algorithm transforms the fractional programming problem into one of finding
the optimal switch points of the a-cuts; it is monotonically and super exponentially convergent [22]. From [19], it appears
that the KM a-cut algorithms approach for computing the FWA requires the fewest iterations, and may therefore be the fast-
est available FWA algorithm to date. Most recently, Wu and Mendel [32] proposed an Enhanced KM algorithm to reduce the
computational cost of the standard KM algorithm. They [35] also used the KM algorithm to compute the linguistic weighted
average (LWA) of type-2 fuzzy sets. The LWA has been integrated into a perceptual computer and perceptual reasoning
[23,33].

Despite the various solution algorithms for the FWA, most of the existing FWA computations are discrete based, i.e. one
has to discretize the fuzzy numbers into a set of a levels and use the a-cut decomposition theorem. The final fuzzy set of the
FWA can only be observed approximately by connecting these a-cut level values together. This makes the solution accuracy
largely dependent on the sampling division of the a-cut interval [0,1], e.g. if one wants absolute error bounds to be within
0.01, one has to collect at least 100 discrete a-level points, and compute the solutions to the linear programming problem or
perform KM algorithm iterations 200 times. This may be computationally very inefficient. Additionally, these FWA ap-
proaches do not let us observe the inner properties of the problem, i.e. they do not provide closed-form expressions of
the fuzzy set for the FWA, nor do they let us analyze the properties of the FWA. Most current research concentrates on algo-
rithm performance improvements.

The analytical solution attempts for the FWA are very rare. Kao and Liu [13] gave an analytical method for the FWA by
utilizing the pseudolinear structure of the problem; however, their method needs to judge the gradient sign of every variable
at any a-cut level, and as n increases in (1), complexity and difficulty also increases for their method. Van Den Broek and
Noppen [26] regarded the a-cut as a parameter rather than a fixed value, and, by enumerating and comparing the algebraic
formulas of the objective function for "a 2 [0,1], they obtained analytical solutions of the FWA for triangular and trapezoidal
fuzzy numbers.

In this paper, the relationship between the KM algorithm switch points and fractional programming objective function
values is analyzed, and an alternative optimal criterion for the FWA is proposed. Because this criterion can be directly con-
nected with the a-cut parameter, an analytical solution method for the FWA is obtained.

The organization of the paper is as follows. Section 2 introduces the main ideas and processes of two FWA solution meth-
ods: the linear programming method with Charnes and Cooper’s transformation, and the direct computation method with a
KM algorithm. Section 3 is the main part of this paper; it proposes a new optimal criterion for the FWA starting with the KM
algorithm, discusses some properties, introduces an analytical solution method for the FWA, designs new algorithms for the
FWA, and compares the computation and performance of our new method with other FWA methods. Section 4 illustrates the
proposed analytical solution algorithm with two numerical examples. Section 5 summarizes the main results and draws
conclusions.

2. Developments of fuzzy weighted average computation

A fuzzy number is a convex fuzzy subset of the real line R and is completely defined by its membership function. Let A be a
normal fuzzy number, whose membership function lA(x) is defined as

lAðxÞ ¼

f L
A ðxÞ a 6 x < b;

1 b 6 x < c;

f R
A ðxÞ c 6 x 6 d;

0 otherwise;

8>>><>>>: ð2Þ

f LeAðxÞ : ½a; b� ! ½0;1� is a strictly increasing function; and f ReA ðxÞ : ½c; d� ! ½0;1� is a strictly decreasing function.
The a-level sets of A are defined as

Aa ¼ x 2 XjleAðxÞP a
n o

¼ minfx 2 XjlAðxÞP ag;maxfx 2 XjlAðxÞP ag
� �

¼ AðaÞL;AðaÞU
h i

: ð3Þ

According to Zadeh’s extension principle, the fuzzy set A can also be expressed as
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A ¼
[

a2½0;1�
aAa: ð4Þ

However, the computation of FWA in (1) with Zadeh’s extension principle of (4) is complicated by the fact that it leads to
a nonlinear programming problem, and the ordinary fuzzy number addition, multiplication and division cannot be applied
directly in a sequential way [5].

Currently, the most popular method for computing the FWA in (1) is a discrete solution that uses a-cuts. To begin, one
discretizes all fuzzy numbers in (1) using a-cuts. For each X1,X2, . . . ,Xn and W1,W2, . . . ,Wn, and for any a 2 [0,1], the corre-
sponding intervals for xi in Xi and wi in Wi can be expressed as:

xi 2 XiðaÞ ¼ XiðaÞL;XiðaÞU
h i

wi 2WiðaÞ ¼ WiðaÞL;WiðaÞU
h i

The a-cut of Y, Y(a) = [Y(a)L,Y(a)U] can then be determined by the following pair of fractional programming models [18]:

YðaÞL ¼ min
wi2 WiðaÞL ;WiðaÞU½ �

Pn
i¼1XiðaÞLwiPn

i¼1wi
ð5Þ

YðaÞU ¼ max
wi2 WiðaÞL ;WiðaÞU½ �

Pn
i¼1XiðaÞUwiPn

i¼1wi
ð6Þ

Applying the Charnes and Cooper transformation [7,13] to (5) and (6), by letting z ¼ 1=
Pn

i¼1wi
� �

and ti = zwi, i = 1,2, . . . ,n,
they can be reexpressed as the following linear programming problems (a 2 [0,1]):

YðaÞL ¼ min
Pn
i¼1

XiðaÞLti;

s:t:
Pn
i¼1

ti ¼ 1;

WiðaÞLz 6 ti 6WiðaÞUz; i ¼ 1;2; . . . ;n;

z P 0;

ð7Þ

YðaÞU ¼ max
Pn
i¼1

XiðaÞUti

s:t:
Pn
i¼1

ti ¼ 1;

WiðaÞLz 6 ti 6WiðaÞUz; i ¼ 1;2; . . . ;n;

z P 0:

ð8Þ

Instead of solving the FWA by solving these LP problems, Karnik and Mendel [14] developed two algorithms (KM algo-
rithms) that solve (5) and (6) directly. Among the various direct discrete algorithms for the FWA [2], the KM algorithms
are the most efficient direct FWA computations to date [19]. Because our new methods rely heavily on the KM algorithms,
they are reviewed next [14,19,24,32].

Without considering the specific cut level a, and also regardless of whether Y(a)L or Y(a)U are computed in (5) or (6), it is
necessary to minimize or maximize the function

f ðw1;w2; . . . ;wnÞ ¼
Pn

i¼1xiwiPn
i¼1wi

: ð9Þ

Differentiating f(w1,w2, . . . ,wn) with respect to wk, observe that

@f ðw1;w2; . . . ;wnÞ
@wk

¼ xk � f ðw1;w2; . . . ;wnÞPn
i¼1wi

k ¼ 1;2; . . . ;n: ð10Þ

As noted by Karnik and Mendel [14], equating @f/@wk to zero does not give us information about the value of wk that opti-
mizes f(w1,w2, . . . ,wn), i.e.

f ðw1;w2; . . . ;wnÞ ¼ xk )
Pn

i¼1
xiwiPn

i¼1
wi
¼ xk;

)
Pn

i–k
xiwiPn

i–k
wi
¼ xk:

ð11Þ

Observe that wk no longer appears in the final expression in (11), so that the direct calculus approach does not work.
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Returning to (10), because
Pn

i¼1wi > 0, it is true that

@f ðw1;w2; . . . ;wnÞ
@wk

P 0 if xk P f ðw1;w2; . . . ;wnÞ;
< 0 if xk < f ðw1;w2; . . . ;wnÞ:

�
ð12Þ

This equation gives the direction in which wk should be changed in order to increase or decrease f(w1,w2, . . . ,wn), i.e.

If xk P f ðw1;w2; . . . ;wnÞ;
f ðw1;w2; . . . ;wnÞ increases as wk increases;
f ðw1;w2; . . . ;wnÞ decreases as wk decreases;

�
If xk < f ðw1;w2; . . . ;wnÞ;

f ðw1;w2; . . . ;wnÞ increases as wk decreases;
f ðw1;w2; . . . ;wnÞ decreases as wk increases:

� ð13Þ

Because wi 2 [Wi(a)L,Wi(a)U], the maximum value wi can attain is Wi(a)U and the minimum value it can attain is Wi(a)L.
Eq. (13) therefore implies that f(w1,w2, . . . ,wn) attains its minimum value f �L if (1) for those values of k for which
xk < f(w1,w2, . . . ,wn), one sets wk = Wk(a)U and (2) for those values of k for which xk P f(w1,w2, . . . ,wn), one sets wk = Wk(a)L.
Similarly, f(w1,w2, . . . ,wn) attains its maximum value f �U if (1) for those values of k for which xk < f(w1,w2, . . . ,wn), one sets
wk = Wk(a)L and (2) for those values of k for which xk P f(w1,w2, . . . ,wn), one sets wk = Wk(a)U. Consequently, to compute
f �L or f �U ; wk switches only one time between Wk(a)U and Wk(a)L, or between Wk(a)L and Wk(a)U, respectively.

If Xi(a)L and Xi(a)U are ordered with X1(a)L
6 X2(a)L

6 � � � 6 Xn(a)L and X1(a)U
6 X2(a)U

6 � � � 6 Xn(a)U, then the FWA prob-
lem reduces to finding the switch points kL(a) and kU(a).

Putting all of these facts together, Y(a)L in (5) and Y(a)U in (6) can be expressed as [starting from (14) and (15), for nota-
tional simplicity, kL(a) � kL and kU(a) � kU]:

YðaÞL ¼ f �L ¼ min
wi2½WiðaÞL ;WiðaÞU �

Pn
i¼1XiðaÞLwiPn

i¼1wi
¼
PkL

i¼1XiðaÞLWiðaÞU þ
Pn

i¼kLþ1XiðaÞLWiðaÞLPkL
i¼1WiðaÞU þ

Pn
i¼kLþ1WiðaÞL

; ð14Þ

YðaÞU ¼ f �U ¼ min
wi2½WiðaÞL ;WiðaÞU �

Pn
i¼1XiðaÞUwiPn

i¼1wi
¼
PkU

i¼1XiðaÞUWiðaÞL þ
Pn

i¼kUþ1XiðaÞUWiðaÞUPkU
i¼1WiðaÞL þ

Pn
i¼kUþ1WiðaÞU

; ð15Þ

where kL and kU are the switch points such that

XkL
ðaÞL 6 f �L 6 XkLþ1ðaÞL; XkU

ðaÞU 6 f �U 6 XkUþ1ðaÞU :

Table 1
KM algorithms for computing the FWA.

Step KM algorithm for Y(a)L KM algorithm for Y(a)U

1 Sort Xi(a)L (i = 1,2, . . . ,n) in increasing order Sort Xi(a)U (i = 1,2, . . . ,n) in increasing order
2 Call the sorted Xi(a)L, i = 1,2 . . . ,n by the same name, which means

that X1(a)L
6 X2(a)L

6 � � � 6 Xn(a)L. Match the corresponding Wi(a)L,
Wi(a)U, i = 1,2 . . . ,n accordingly

Call the sorted Xi(a)U, i = 1,2 . . . ,n by the same name, which means
that X1(a)U

6 X2(a)U
6 � � � 6 Xn(a)U. Match the corresponding Wi(a)L,

Wi(a)U, i = 1,2 . . . ,n accordingly
3 Initialize wi by setting

wi ¼
WiðaÞL þWiðaÞU

2

and then compute

c0 ¼
Pn

i¼1XiðaÞLwiPn
i¼1wi

Initialize wi by setting

wi ¼
WiðaÞL þWiðaÞU

2

and then compute

c0 ¼
Pn

i¼1XiðaÞU wiPn
i¼1wi

4 Find k(1 6 k 6 n � 1) such that Xk(a)L
6 c0 6 Xk+1(a)L Find k(1 6 k 6 n � 1) such that Xk(a)U

6 c0 6 Xk+1(a)U

5 Set

wi ¼
WiðaÞU ; i6 k

WiðaÞL i> k

(

and then compute

cðkÞ ¼
Pn

i¼1XiðaÞLwiPn
i¼1wi

Set

wi ¼
WiðaÞL; i6 k

WiðaÞU i > k

(

and then compute

cðkÞ ¼
Pn

i¼1XiðaÞUwiPn
i¼1wi

6 Check if c(k) = c0. If yes, stop and set c(k) = Y(a)L and k = kL. If no, go to
Step 7

Check if c(k) = c0 . If yes, stop and set c(k) = Y(a)U and k = kU. If no, go to
Step 7

7 Set c0 = c(k) and go to Step 4
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The Karnik–Mendel algorithms are designed for finding kL and kU. Here, only the basic forms of those algorithms are used
for the FWA, and are shown in Table 1. For more details see [14,19,20,22,23].

It is proved in [22] that the KM algorithms are monotonically convergent and within the quadratic domain of conver-
gence, they are superexponentially convergent. Enhanced KM algorithms were proposed in [32] to reduce computation costs
of the KM algorithms.

In summary, using either the above linear programming problems or direct iteration methods, the solution of (1) can be
obtained for each a-cut level with a 2 [0,1]. The final fuzzy number solution Y(a) = [Y(a)L,Y(a)U](a 2 [0,1]) is usually com-
pleted by the steps in Table 2.

The above a-cut methods have the following shortcomings:

1. Total computations increase very fast, especially when N is large, e.g. if one wants the precision to have an additional
digit, such as from 0.01 to 0.001, the LP models or direct iteration methods will have to be solved 1000 times, which
is a 10-fold increase.

2. There is a large amount of repetitive computation, because the same model is used at all ai, i = 1,2, . . . ,N, independently.
We can anticipate that the solutions at ak and ak+1 should be very close, but such information is not utilized.

3. The solutions of Y(a)L and Y(a)U are obtained by connecting the discrete sampling points at a = ak (k = 1,2, . . . ,N) together,
which means we can never get the exact values of Y(a)L and Y(a)U regardless of how fine a sampling of a is taken.

4. Because we do not have mathematical expressions for the final solutions of Y(a)L and Y(a)U, it is hard to analyze the prop-
erties of the problem, such as continuity, differentiability and certain kinds of sensitivity analyses. We can only observe
these properties with usually very limited numerical simulations.

3. An analytical method for fuzzy weighted average computations

In this section, using the final solution of a KM algorithm for a specific value of a, we propose an alternative method to
determine the optimal switch points for other values of a. The essence of our new method is to connect the points with the
same optimal switch points together, so that the final solution can be expressed in an analytical way. The advantage of this
approach is that we can obtain an accurate analytical solution of the FWA as a function of a, something that is usually
unavailable for the various discrete a-cut methods. Instead of connecting the FWA values at different a-cut levels, and
observing them in an approximate way, we can use the analytical solution to perform further analyses. This approach is also
computationally efficient because the repetitive linear programming computation in the Charnes and Cooper’s transforma-
tion method, or the repetitive iteration computation in the discrete algorithms for different a-cut levels, can be avoided.

Beginning with the optimal solution forms of (14) and (15), let

uða; kÞ ,
Pk

i¼1XiðaÞLWiðaÞU þ
Pn

i¼kþ1XiðaÞLWiðaÞLPk
i¼1WiðaÞU þ

Pn
i¼kþ1WiðaÞL

; ð16Þ

wða; kÞ ,
Pk

i¼1XiðaÞUWiðaÞL þ
Pn

i¼kþ1XiðaÞUWiðaÞUPk
i¼1WiðaÞL þ

Pn
i¼kþ1WiðaÞU

: ð17Þ

Then k = kL and k = kU in (14) and (15) become the optimal solutions of (18) and (19), respectively:

YðaÞL ¼ min
k¼0;1;2;...;n

uða; kÞ; ð18Þ

YðaÞU ¼ max
k¼0;1;2;...;n

wða; kÞ: ð19Þ

The KM algorithms find the optimal value of k for each of these problems.
From Table 2, the crucial step of a-cut FWA computation methods with KM algorithms is to find the optimal switch points

k⁄ = kL(ai) and k⁄ = kU(ai) of (18) and (19) with the algorithms in Table 1, for every a = a1,a2, . . . ,aN. The results for k⁄ should be
k� ¼ k�1; k

�
2; . . . ; k�N , which correspond to a = a1,a2, . . . ,aN, respectively. In general, we usually have No n, so many of the

Table 2
The process of a-cut FWA computation methods.

Step Computation process

1 Express all fuzzy numbers in (1) with their a-cuts, as:

XiðaÞ ¼ XiðaÞL;XiðaÞU
h i

; WiðaÞ ¼ WiðaÞL;WiðaÞU
h i

2 Sample a 2 [0,1] with 0 = a1 < a2 < � � � < aN = 1, where N can be determined by the tolerance error bound of the problem, e.g. if one wants the
solution error about a to be no more than 0.01, one chooses N = 100. Generally, the more precision that is required, the bigger N becomes

3 Obtain Y(ak)L and Y(ak)U (k = 1,2, . . . ,N) with the discrete iteration algorithms, such as KM algorithms in Table 1 or by solving the linear
programming problems (7) and (8)

4 Approximate the final solution Y =
S

a2[0,1]aYa =
S

a2[0,1]a[Y(a)L, Y(a)U] with the sample values Y(ak)L and Y(ak)U for k = 1,2, . . . ,N

X. Liu et al. / Information Sciences 187 (2012) 151–170 155
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values of k⁄ should be the same and emerge repeatedly. Suppose that k�1 ¼ k�2 ¼ � � � ¼ k�r and N are large enough so that the
division of a 2 [0,1] is fine enough; then, we can anticipate that for "a 2 [a1,ar], the optimal switch point always keeps the
same value k� ¼ k�1. We can then express the final FWA results (18), (19) in the form of (16) and (17) with k = k⁄ and param-
eter a 2 [a1,ar]. This is an analytical solution of FWA (1) with no error, instead of the approximate solution that connects the
values of (18) or (19) at a = a1,a2, . . . ,ar together. The latter approach cannot guarantee that all the a values with the same
optimal switch point value have been combined together, nor can it guarantee the optimal switch point k⁄ always keeps the
same value in [ai,ai+1]. Next, we propose a method to implement our intuitive observations about combining all the a values
with the same optimal point together and expressing the solution of FWA (1) in an analytical way.

First, we give two important properties of the FWA problem that constitute the bases of our analytical method for the
FWA solution.

Theorem 1. The FWA (1), is a fuzzy number, i.e. "a 2 [0,1], YL(a) is increasing, YU(a) is decreasing, and YL(a) 6 YU(a).
Furthermore, if all Xi, Wi (i = 1,2, . . . ,n) are triangular (trapezoidal) in shape, then Y is also triangular (trapezoidal) in shape.1

Proof. See Appendix A. h

As will be seen in our numerical examples of Section 4, if all Xi, Wi (i = 1,2, . . . ,n) are triangular numbers; it is not neces-
sary that Y is also a triangular number, it only is of a triangular shape.

Theorem 2. The optimal solutions of (18) and (19) with k = kL and k = kU can be determined as follows.

(a) Let

dlða; kÞ ,
Xk

i¼1

Xkþ1ðaÞL � XiðaÞL
� �

WiðaÞU þ
Xn

i¼kþ2

Xkþ1ðaÞL � XiðaÞL
� �

WiðaÞL; ð20Þ

dl(a, k) is an increasing function with respect to k (0 6 k 6 n � 1), and there exists a value of k = k⁄ (1 6 k⁄ 6 n � 1), such that
dl(a, k⁄ � 1) 6 0 and dl(a, k⁄) > 0. k⁄ is the optimal solution of (18), i.e. kL = k⁄. Furthermore, when 0 6 k 6 kL, u(a, k) is a decreasing
function of k, and when kL 6 k 6 n, u(a, k) is an increasing function of k, i.e. kL is the global minimum solution of (18) with
Y(a)L = u(a,kL).

(b) Let

drða; kÞ , �
Xk

i¼1

Xkþ1ðaÞU � XiðaÞU
� �

WiðaÞL �
Xn

i¼kþ2

Xkþ1ðaÞU � XiðaÞU
� �

WiðaÞU ; ð21Þ

dr(a, k) is a decreasing function with respect to k (0 6 k 6 n � 1), and there exists a value of k = k⁄ (1 6 k⁄ 6 n � 1), such that
dr(a, k⁄ � 1) P 0 and dr(a, k⁄) < 0. k⁄ is the optimal solution of (19), i.e. kU = k⁄. Furthermore, when 0 6 k 6 kU,w(a, k) is an increas-
ing function of k, and when kU 6 k 6 n, w(a, k) is a decreasing function of k, i.e. kU is the global maximum solution of (19) with
Y(a)L = w(a,kU).

Proof. See Appendix B. h

Remark 1. The optimal solutions of (18) and (19) may not be unique. From Theorem 2, if there are multiple optimal solu-
tions of k⁄, these optimal solutions must be located together in sequence, and have the same optimal objective value of Y(a)L

or Y(a)L, which is the final form of our FWA problem (1). In the sequel, we do not care whether the optimal solutions of (18)
and (19) are unique, as this has no effect on solving the FWA problem (1).

At first glance of Theorem 2, it appears that for every a-cut level, we need to find the corresponding values of kL and kU,
which is similar to the various current a-cut discrete algorithms; however, as we often have analytical expressions for dl(a,k)
and dr(a,k) as a function of a, we can, as explained next, determine kL and kU for some domain of a instead of for a given
specific value of a. Using Theorems 1 and 2, our new analytical FWA computation algorithms are given in Table 3.

These algorithms follow the procedure of the FWA solution method, combining the KM algorithms in Table 1 and FWA
computation process in Table 2; but, according to Theorem 2, we have changed the determination of optimal switch point k⁄

from an iterative algorithm for a specific value of a (Table 1) into inequalities by solving:

dlða; k� 1Þ 6 0 and dlða; kÞ > 0 for k ¼ k� ¼ kL; ð22Þ
drða; k� 1ÞP 0 and drða; kÞ < 0 for k ¼ k� ¼ kU : ð23Þ

1 For fuzzy number X, if XL(1) = XU(1), then it is called ‘‘triangular in shape’’, otherwise it is called ‘‘trapezoidal in shape’’. These shapes do not have to have
straight line segments.
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Because one can usually obtain mathematical expressions for the a-cut levels of the fuzzy numbers, Xi and Wi, one can
also obtain mathematical expression for dl(a,k) and dr(a,k); hence, (22) and (23) can be solved as a function of a, and there-
fore analytical solutions of the FWA, Y(a)L, Y(a)U can also be obtained (see Step 6 in Table 3).

Remark 2. For simplification, Table 3 does not give separate expressions for Xi(a)L, Xi(a)U and the corresponding Wi(a)L,
Wi(a)U when the numerical order of Xi(a)L or Xi(a)U changes for different value of a 2 [0,1], nor does it give separate
expressions for Y(a)L and Y(a)U when the optimal switch point k⁄ changes with a 2 [0,1] for the same numerical order of
Xi(a)L or Xi(a)U. If either of these changes happen, then a 2 [0,1] is divided into sub-domains for which Xi(a)L or Xi(a)U

(i = 1,2, . . . ,n) keeps the same numerical order, and the same value of k⁄ for all a values in these sub-domains, after which the
algorithms in Table 3 are applied for each of these sub-domains, until "a 2 [0,1] are covered.

The solution process and final solution form of Table 3 are very different from the various discrete methods in Table 2, and
are illustrated with Example 1 in Section 4. A comparison of these two kinds of methods is given in Table 4.

Next, we provide discussions on alternatives for determining k⁄ and its sub-domain of a 2 [0,1] according to the size of
the dimension number n in (1):

1. When n is small, e.g. n < 5, using the algorithms in Table 3, one can directly express each of the formulas of dl(a,k) and
dr(a,k) in (20) and (21) as a function of a for different k = 0,1,2, . . . ,n � 1. By observing the plots of these expressions, one
can simultaneously determine the optimal switch point value k⁄ that satisfies (22) or (23) and the corresponding sub-
domains of a; Dk� , where:

Table 3
The analytical method for computing the FWA.

Step Algorithm for Y(a)L Algorithm for Y(a)U

1 Express every fuzzy number in (1) with their a-cuts as: Xi(a) = [Xi(a)L,Xi(a)U], Wi(a) = [Wi(a)L,Wi(a)U]
2 Sort Xi(a)L (i = 1,2, . . . ,n) in increasing order Sort Xi(a)U (i = 1,2, . . . ,n) in increasing order
3 Call the sorted Xi(a)L, i = 1,2 . . . ,n by the same name, which means

that X1(a)L
6 X2(a)L

6 � � � 6 Xn(a)L. Match the corresponding
Wi(a)L, Wi(a)U, i = 1,2 . . . ,n accordingly

Call the sorted Xi(a)U, i = 1,2 . . . ,n by the same name, which means
that X1(a)U

6 X2(a)U
6 � � � 6 Xn(a)U. Match the corresponding

Wi(a)L, Wi(a)U, i = 1,2 . . . ,n accordingly
4 Using formulas for the a-cuts of the fuzzy numbers, construct the

left difference functions dl(a,k), for k = 0,1, . . . ,n � 1, as

dlða;kÞ ¼
Xk

i¼1

Xkþ1ðaÞL �XiðaÞL
� �

WiðaÞU

þ
Xn

i¼kþ2

Xkþ1ðaÞL �XiðaÞL
� �

ÞWiðaÞL

Using formulas for the a-cuts of the fuzzy numbers, construct the
right difference functions dr(a,k), for k = 0,1, . . . ,n � 1, as

drða;kÞ ¼ �
Xk

i¼1

Xkþ1ðaÞU �XiðaÞU
� �

WiðaÞL

�
Xn

i¼kþ2

Xkþ1ðaÞU �XiðaÞU
� �

ÞWiðaÞU

5 For dl(a,k) (k = 0, 1, . . . ,n � 1), and for "a 2 [0, 1], find the optimal
switch point k⁄(1 6 k⁄ 6 n � 1), such that dl(a,k⁄ � 1) 6 0 and
dl(a,k⁄) > 0

For dr(a,k) (k = 0,1, . . . ,n � 1), and for "a 2 [0, 1], find the optimal
switch point k⁄(1 6 k⁄ 6 n � 1), such that dr(a,k⁄ � 1) P 0 and
dr(a,k⁄) < 0

6 Construct Y(a)L as:

YðaÞL ¼
Pk�

i¼1XiðaÞLWiðaÞU þ
Pn

i¼k�þ1XiðaÞLWiðaÞLPk�

i¼1WiðaÞU þ
Pn

i¼k�þ1WiðaÞL

Construct Y(a)U as:

YðaÞU ¼
Pk�

i¼1XiðaÞU WiðaÞL þ
Pn

i¼k�þ1XiðaÞU WiðaÞUPk�

i¼1WiðaÞL þ
Pn

i¼k�þ1WiðaÞU

7 The final solution Y can be expressed with its a-cuts as Y =
S

a2[0,1]a Ya =
S

a2[0,1]a[Y(a)L,Y(a)U], or by its membership function

lY ðyÞ ¼

f L
Y ðyÞ a6 y< b

1 b6 y< c

f R
Y ðyÞ c 6 y6 d

0 otherwise

8>>><>>>:
where f L

Y ðyÞ : ½a;b� ! ½0;1� is the inverse of increasing function Y(a)L : [0,1] ? [a,b] with a = Y(0)L and b = Y(1)L; and f R
Y ðyÞ : ½c;d� ! ½0;1� is

the inverse of decreasing function Y(a)U : [0,1] ? [c,d] with c = Y(1)U and d = Y(0)U

Table 4
Comparison of analytical method and the discrete methods.

Process Discrete methods (Table 2) Analytical method (Table 3)

Starting point The cut level value a must be assigned a specific value in [0,1],
that only takes some sample points, with
0 = a1 < a2 < � � � < aN = 1. Only a finite number of points in [0, 1]
can be included

The cut level value a is treated as a parameter within [0,1], so
that a 2 [0,1] can be divided into some subsets. All the infinite
points in [0,1] can be included

Solution
procedure

For both KM algorithms and linear programming transformation
methods, only the optimal solutions corresponding to ai

(i = 1,2, . . . ,N) are obtained

By solving (22) and (23), the subset of a 2 [0,1] corresponding to
k = k⁄ is obtained, and the optimal solutions corresponding to
these subsets are obtained

Final solution The optimal solutions are obtained by sampling a with a finite
number of points, which can never cover [0,1]. The final
solutions are numeric and approximate

The optimal solutions are obtained by dividing a 2 [0,1] into
some subsets, which completely cover [0,1]. The final solutions
are analytic and accurate
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Dk� ¼ ajdlða; k� � 1Þ 6 0;dlða; k�Þ > 0;a 2 ½0;1�f g; for YðaÞL ð24Þ
Dk� ¼ ajdrða; k� � 1ÞP 0;drða; k�Þ < 0;a 2 ½0;1�f g; for YðaÞU ð25Þ

This method is intuitive, but is not suitable when n is somewhat large and also is not suitable for computer implemen-
tation, and is illustrated by our first numerical example when n = 3 in Section 4.

2. When n is moderate, e.g. 5 6 n < 10, one can determine the optimal switch point value k = k⁄ and the corresponding sub-
domains of a in two sequential steps: (1) select a value of a = a⁄ 2 [0,1], and determine the optimal switch point k = k⁄ at
a = a⁄ by enumerating (22) and (23) for k = 1,2, . . . ,n � 1, respectively; and (2) solving the inequalities in (24) and (25), to
determine all the a values with the same optimal switch point of k⁄ as a sub-domain of [0,1].
This method can be implemented on a computer, but the enumeration of dl(a,k) or dr(a,k) makes it inefficient for large-
dimensional problems, e.g. n P 10. This method is illustrated with our second numerical example when n = 5 in Section 4.

3. When n P 10, or one does not want to use an enumeration method to determine the optimal switch point, one can
replace the enumeration method in the first step of Item 2 with the KM algorithms in Table 1. This means one can first
select a value of a, then determine the optimal switch point of k⁄ = kL(kU) using the KM algorithms in Table 1 (or its
improved EKM [32]). Then one can obtain the corresponding sub-domain of a 2 [0,1] that has the same value k⁄ using
(24) or (25).

As mentioned earlier, the KM algorithms method seems to be the fastest method to date to determine the optimal switch
points [19]. It has been shown that even when n� 103, a KM algorithm can terminate within 4–6 iterations [19,22,32].
Although the KM method is iterative and is suitable for large dimensional problems, it is less intuitive than the direct plot
method in Item 1 and the enumeration method in Item 2, and is not necessary when n is small, e.g. n < 5. Note, also, that we
have not found a FWA example in the literature that has such a large value of n.

The algorithms in Table 3 place much emphasis on the fundamental principles that are in Theorem 2. They are intuitive but
do not give much details on the complicated cases in Remark 2, namely: when the numerical ordering of Xi(a)L or Xi(a)U is not
the same for a 2 [0,1]; and when the optimal switch point k⁄ changes with a, even for the same numerical order of Xi(a)L or
Xi(a)U. In addition, they are limited by the problem dimension, and are inappropriate for computer implementation. Table 5
gives more detailed algorithms for the FWA that resolve these issues.

The relationships between the algorithms in Tables 3 and 5 are:

1. The sorting process task of Steps 2 and 3 in Table 3 is expanded to Steps 2–6 in Table 5, using an iteration process to par-
tition ½0;1� ¼

Sk
j¼1Sj, such that for "a 2 Si the order of Xi(a)L or Xi(a)U remains the same.

2. The optimal switch-point finding task of Step 4 in Table 3 is expanded to Steps 8–12 and the initialization parameter j = 1
in Step 7 of Table 5. A second iteration process further partitions Sj into

Stj
r¼1Djr , such that for "a 2 Djr the optimal switch

point value k�jt remains the same.
3. In Table 5, Step 9, one can use either the enumeration method or the KM algorithm for different dimensional problems, as

discussed above.
4. The final solution in Step 6 of Table 3 is expanded to Steps 13–14 of Table 5, where the solutions are now expressed as

piecewise membership functions.

Next, we give some comparisons of our method with the popular a-cut FWA methods, and the available analytical meth-
ods of [13,26]:

1. Unlike the various a-cut based numerical computation methods, our algorithms always obtain the analytical results
expressed as specific formulas. Our solution is accurate and has no errors, which is very different from the approximate
methods that connect the values for different a-cut levels of the FWA together, whose accuracy is largely dependent on
the how many units one divides the a-cut domain [0,1] into.

2. For a-cut methods, the final fuzzy set of the FWA is obtained by approximately connecting the a-cut level values together.
The solution accuracy depends largely on the sampling division of the a-cut interval [0,1], e.g. 100 discrete a-level points,
for which there are 100 repeated computations corresponding to a 0.01 error bound limit. If however, we want the error
bound to be within 0.001, 1000 discrete a-level points are needed, for which there are 1000 repeated computations. This
is a 10-fold increase in computation. On the other hand, for our analytical method, increasing accuracy from 0.01 to 0.001
is only an additional digit for the solutions of the two inequalities in (24) or (25).

3. Our method is different from most a-cut based FWA solution methods in either the solution process or the final solution
forms. Unlike the current two kinds of a-cut methods, the method of this paper changes the optimal solution finding
strategy from the point-based approximate solution to a patch-based exact solution which seamlessly covers the a-cut
interval [0,1]. In general,

Pk
j¼1tj � N, so that our analytical method is more computationally efficient than the a-cut

methods. Our analytical solution is obtained with relatively simple computations, as shown in our two numerical exam-
ples in Section 4.
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4. Because our new solution can always be expressed analytically, it is useful for further studies of the local properties and
sensitivity analyses of a problem, e.g. continuity, differentiability and certain kinds of sensitivity analyses, that are heavily
reliant on analytical expressions. In a-cut approximate methods, such analysis is very limited and even difficult to
perform.

5. The method of [13] needs to enumerate the gradient sign of every variable at each a-cut level. Our method does not do
that. The method of [26] uses another enumeration and comparison method for the objective function to obtain the ana-
lytical solution. It is mainly used for triangular or trapezoidal fuzzy number cases, and the solution is expressed piecewise

Table 5
An improved analytical method implementation for computing the FWA.

Step Algorithm for Y(a)L Algorithm for Y(a)U

1 Express every fuzzy number in (1) with their a-cuts as: Xi(a) = [Xi(a)L,Xi(a)U], Wi(a) = [Wi(a)L,Wi(a)U]
2 Set m = 0, S0 = £

3 Set m = m + 1, select am 2 ½0;1� �
Sm�1

j¼0 Sj , sort Xi(am)L, i = 1,2, . . . ,n,
in increasing order, such that

Xim1
ðamÞL 6 Xim2

ðamÞL 6 � � � 6 Ximn
ðamÞL , where ðim1 ; i

m
2 ; . . . ; imn Þ is a

permutation of (1,2, . . . ,n)

Set m = m + 1, select am 2 ½0;1� �
Sm�1

j¼0 Sj , sort Xi(am)U, i = 1,2, . . . ,n,
in increasing order, such that

Xim1
ðamÞU 6 Xim2

ðamÞU 6 � � � 6 Ximn
ðamÞU , where ðim1 ; i

m
2 ; . . . ; im

n Þ is a

permutation of (1,2, . . . ,n)
4 Find the sub-domain

Sm ¼ faja 2 ½0;1�;Xim1
ðaÞL 6 Xim2

ðaÞL 6 � � � 6 Ximn
ðaÞLg

Find the sub-domain

Sm ¼ faja 2 ½0;1�;Xim1
ðaÞU 6 Xim2

ðaÞU 6 � � � 6 Ximn
ðaÞUg

5 Call the sorted Xi(a)L, i = 1,2 . . . ,n, by the same name, which means
that X1(a)L

6 X2(a)L
6 � � � 6 Xn(a)L. Match the corresponding

Wi(a)L, Wi(a)U, i = 1,2 . . . ,n, accordingly

Call the sorted Xi(a)L, i = 1,2 . . . ,n, by the same name, which means
that X1(a)L

6 X2(a)L
6 � � � 6 Xn(a)L. Match the corresponding

Wi(a)L,Wi(a)U, i = 1,2 . . . ,n, accordingly
6 If ½0;1� �

Sm
j¼1Sj ¼£, then

Sm
j¼1Sj ¼ ½0;1�, go to Step 7, otherwise go to Step 3

7 Set j = 1. Using formulas for the a-cuts of the fuzzy numbers,
construct the left difference functions dl(a,k) for k = 0,1, . . . ,n � 1,
as

dlða;kÞ ¼
Xk

i¼1

Xkþ1ðaÞL �XiðaÞL
� �

WiðaÞU

þ
Xn

i¼kþ2

Xkþ1ðaÞL �XiðaÞL
� �

ÞWiðaÞL

Set j = 1. Using formulas for the a-cuts of the fuzzy numbers,
construct the right difference functions dr(a,k) for
k = 0,1, . . . ,n � 1, as

drða;kÞ ¼ �
Xk

i¼1

Xkþ1ðaÞU �XiðaÞU
� �

WiðaÞL

�
Xn

i¼kþ2

Xkþ1ðaÞU �XiðaÞU
� �

ÞWiðaÞU

8 Set tj = 0, Dj0 = £

9 Set tj = tj + 1, select atj
2 Sj �

Stj�1
r¼0 Djr , find the optimal switch

point k�jtj
¼ kL with the KM algorithm in Table 1 at a ¼ atj , or

enumerate dl(a,k) at a ¼ atj for k = 1,2, . . . ,n � 1 to find the

optimal switch point k ¼ k�jtj
using the inequalities

dlðatj
;k� 1Þ6 0

dlðatj
;kÞ> 0

(

Set tj = tj + 1, select atj
2 Sj �

Stj�1
r¼0 Djr , find the optimal switch

point k�jtj
¼ kU with the KM algorithm in Table 1 at a ¼ atj

, or

enumerate dr(a,k) at a ¼ atj
for k = 1,2, . . . ,n � 1 to find the

optimal switch point k ¼ k�jtj
using the inequalities

drðatj
;k�1ÞP 0

drðatj
;kÞ< 0

(

10 Find the sub-domain
Djtj
¼ faja 2 Sj; dlða; k�jtj

� 1Þ 6 0; dlða; k�jtj
Þ > 0g

Find the sub-domain
Djtj
¼ faja 2 Sj; drða; k�jtj

� 1ÞP 0; drða; k�jtj
Þ < 0g

11 If Sj �
Stj

r¼1Djr ¼£, then Sj ¼
Stj

r¼1Djr , go to Step 12, otherwise go to Step 8
12 If j = m go to Step 13, otherwise set j = j + 1, go to Step 8
13 For j = 1,2, . . . ,m,r = 1,2, . . . , tj, compute

ljrðaÞ ¼
Pk�jr

i¼1XiðaÞLWiðaÞU þ
Pn

i¼k�jrþ1XiðaÞLWiðaÞLPk�jr
i¼1WiðaÞU þ

Pn
i¼k�jrþ1WiðaÞL

For j = 1,2, . . . ,m, r = 1,2, . . . , tj, compute

rjrðaÞ ¼
Pk�jr

i¼1XiðaÞU WiðaÞL þ
Pn

i¼k�jrþ1XiðaÞU WiðaÞUPk�jr
i¼1WiðaÞL þ

Pn
i¼k�jrþ1WiðaÞU

14 Construct Y(a)L as:

YðaÞL ¼

l11ðaÞ; a 2 D11

l12ðaÞ; a 2 D12

� � � � � � ;
l1t1 ðaÞ; a 2 D1t1

� � � � � �
lktk
ðaÞ; a 2 Dmtm

8>>>>>>>><>>>>>>>>:

Construct Y(a)U as:

YðaÞU ¼

r11ðaÞ; a 2 D11

r12ðaÞ; a 2 D12

� � � � � �
r1t1 ðaÞ; a 2 D1t1

� � � � � �
rktk
ðaÞ; a 2 Dmtm

8>>>>>>>><>>>>>>>>:
15 The final solution Y can be expressed with its a-cuts Y =

S
a2[0,1]a Ya =

S
a2[0,1]a[Y(a)L,Y(a)U] or its membership function

lY ðyÞ ¼

f L
Y ðyÞ a6 y< b

1 b6 y< c

f R
Y ðyÞ c 6 y6 d

0 otherwise

8>>><>>>:
where f L

Y ðyÞ : ½a;b� ! ½0;1� is the inverse of increasing function Y(a)L : [0,1] ? [a,b] with a = Y(0)L and b = Y(1)L; f R
Y ðyÞ : ½c;d� ! ½0;1� is the

inverse of decreasing function Y(a)U : [0,1] ? [c,d] with c = Y(1)U and d = Y(0)U respectively

X. Liu et al. / Information Sciences 187 (2012) 151–170 159



Author's personal copy

in the x-axis. Our method gives an efficient and systematic process for the analytical solutions in Tables 3 and 5, with
additional theoretical proofs in Theorem 2. Our method is also applicable for large dimensional cases, especially when
KM algorithms are used.

6. By combining the direct plot and enumeration methods of dl(a,k) or dr(a,k) in Table 3, the method of this paper is very
suitable for small-dimensional problems. Such problems have a deep and rich background in the applications of both
optimization and decision making. It seems that the method of this paper can provide the best results both in precision
and amount of computation for such problems. The method can also be integrated with the current most efficient KM
algorithms, and can provide analytical solutions and more profound analyses for high-dimensional problems.

4. Numerical examples

Here, two examples are presented that are adopted from the FWA literature. The first example [5,13] has three-terms. The
second example is a five-term FWA that appeared in [16]. Kao and Liu [13] gave an analytical solution for the first example.
Van Den Broek and Noppen [26] gave the analytical solutions for these two examples. In our paper, Example 1 uses the algo-
rithms in Table 3 to illustrate the main basic principles, whereas Example 2 uses the algorithms in Table 5.

Example 1. The three-term FWA example found in [5,13] is described by:

lX1
ðx1Þ ¼

x1 0 6 x1 < 1;

2� x1 1 6 x1 6 2;

(

lX2
ðx2Þ ¼

x2 � 2 2 6 x2 < 3;
4� x2 3 6 x2 6 4;

�

lX3
ðx3Þ ¼

x3 � 4 4 6 x3 < 5;
6� x3 5 6 x3 6 6;

�

lW1
ðw1Þ ¼

w1=0:3 0 6 w1 < 0:3;
ð0:9�w1Þ=0:6 0:3 6 w1 6 0:9;

�

lW2
ðw2Þ ¼

ðw2 � 0:4Þ=0:3 0:4 6 w2 < 0:7;
ð1�w2Þ=0:3 0:7 6 w2 6 1;

�

lW3
ðw3Þ ¼

ðw3 � 0:6Þ=0:2 0:6 6 w3 < 0:8;
ð1�w3Þ=0:2 0:8 6 w2 6 1:

�

Using the algorithms in Table 3, set n = 3, and compute Y(a)L as:

Step 1: The a-cuts of the above fuzzy numbers are:

X1ðaÞ ¼ X1ðaÞL;X1ðaÞU
h i

¼ ða;2� aÞ;

X2ðaÞ ¼ X2ðaÞL;X2ðaÞU
h i

¼ ð2þ a;4� aÞ;

X3ðaÞ ¼ X3ðaÞL;X3ðaÞU
h i

¼ ð4þ a;6� aÞ;

W1ðaÞ ¼ W1ðaÞL;W1ðaÞU
h i

¼ ð0:3a;0:9� 0:6aÞ;

W2ðaÞ ¼ W2ðaÞL;W2ðaÞU
h i

¼ ð0:4þ 0:3a;1� 0:3aÞ;

W3ðaÞ ¼ W3ðaÞL;W3ðaÞU
h i

¼ ð0:6þ 0:2a;1� 0:2aÞ:

Steps 2 and 3: It is obvious that for 8a 2 ½0;1�; XL
1ðaÞ 6 XL

2ðaÞ 6 XL
3ðaÞ, so no re-ordering of the XL

i ðaÞ is need.
Step 4: Using the Step 1 formulas for the a-cuts of the fuzzy numbers, construct the left difference functions dl(a,k)

for k = 0,1,2, as:

dlða; 0Þ ¼ X1ðaÞL � X2ðaÞL
� �

W2ðaÞL þ X1ðaÞL � X3ðaÞL
� �

W3ðaÞL ¼ �3:2� 1:4a;

dlða;1Þ ¼ X2ðaÞL � X1ðaÞL
� �

W1ðaÞU þ X2ðaÞL � X3ðaÞL
� �

W3ðaÞL ¼ 0:6� 1:6a;

dlða;2Þ ¼ X3ðaÞL � X1ðaÞL
� �

W1ðaÞU þ X3ðaÞL � X2ðaÞL
� �

W2ðaÞU ¼ 5:6� 3:0a:
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Step 5: Plot these three functions, as in Fig. 1. Observe that for "a 2 [0,0.375), dl(a,0) 6 0, dl(a,1) > 0, and for
"a 2 [0.375,1], dl(a,1) 6 0, dl(a,2) > 0; hence, for "a 2 [0,0.375), k⁄ = 1, and for "a 2 [0.375,1], k⁄ = 2.

Step 6: Construct Y(a)L as:
For "a 2 [0,0.375),

YðaÞL ¼ X1ðaÞLW1ðaÞU þ X2ðaÞLW2ðaÞL þ X3ðaÞLW3ðaÞL

W1ðaÞU þW2ðaÞL þW2ðaÞL
¼ 32þ 33a� a2

19� a
:

For "a 2 [0.375,1],

YðaÞL ¼ X1ðaÞLW1ðaÞU þ X2ðaÞLW2ðaÞU þ X3ðaÞLW3ðaÞL

W1ðaÞU þW2ðaÞL þW2ðaÞU
¼ 44þ 27a� 7a2

25� 7a
:

Collecting these results together, we obtain the following closed-form solution for Y(a)L:

YðaÞL ¼
32þ33a�a2

19�a 0 6 a < 0:375;
44þ27a�7a2

25�7a 0:375 6 a 6 1:

(
ð26Þ

Proceeding in a similar manner for Y(a)U:

Step 1: Same as Step 1 for Y(a)L.
Steps 2 and 3: One finds 8a 2 ½0;1�; XU

1 ðaÞ 6 XU
2 ðaÞ 6 XU

3 ðaÞ, so no re-ordering of the XU
i ðaÞ is need.

Step 4: Using the above formulas for the a-cuts of the fuzzy numbers, construct the right difference functions
dl(a,k) for k = 0,1,2, as

drða;0Þ ¼ � X1ðaÞU � X2ðaÞU
� �

W2ðaÞU � X1ðaÞU � X3ðaÞU
� �

W3ðaÞU ¼ 6� 1:4a;

drða;1Þ ¼ � X2ðaÞU � X1ðaÞU
� �

W1ðaÞL � X2ðaÞU � X3ðaÞU
� �

W3ðaÞU ¼ 2� a;

drða;2Þ ¼ � X3ðaÞU � X1ðaÞU
� �

W1ðaÞL � X3ðaÞU � X2ðaÞU
� �

W3ðaÞL ¼ �0:8� 1:8a:

Step 5: Plot these three functions, as in Fig. 2. Observe, that for "a 2 [0,1], dr(a,1) P 0, dr(a,2) < 0; hence, for
"a 2 [0,1], k⁄ = 2.

Step 6: Construct Y(a)U as:
For "a 2 [0,1],

YðaÞU ¼ X1ðaÞUW1ðaÞL þ X2ðaÞUW2ðaÞL þ X3ðaÞUW3ðaÞU

W1ðaÞL þW2ðaÞL þW3ðaÞU
¼ 2ð19� 2a� a2Þ

7þ 2a
:

So, the final closed-form solution for Y(a)U is

YðaÞU ¼ 2ð19� 2a� a2Þ
7þ 2aþ 7

; a 2 ½0;1�: ð27Þ

Fig. 1. The plots of dl(a,k).
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Step 7: The FWA final solution Y can be expressed with its a-cuts Y =
S

a2[0,1]a Ya =
S

a2[0,1]a[Y(a)L,Y(a)U] where
Y(a)L and Y(a)U are expressed with (26) and (27). By computing the inverse functions of Y(a)L and Y(a)U

in (26) and (27), respectively, the closed form membership function solution of Y is

lYðyÞ ¼

16:5þ 0:5y� 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1217� 10yþ y2

p
1:684 6 y < 2:375;

1:929þ 0:5y� 0:071
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1961� 322yþ 49y2

p
2:375 6 y < 3:556;

�1� 0:5yþ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
80� 10yþ y2

p
3:556 6 y 6 5:429;

0 otherwise:

8>>>><>>>>: ð28Þ

Our formulas for Y(a)L and Y(a)U are the same as the ones in [13,26]; however, our solution process is easier and more
clear. From (26) and (27), our formulas are also consistent with the results of [5] at a = 0,0.5,1, for which
Y(0) = [1.68,5.43], Y(0.5) = [2.59,5.44], and Y(1) = [3.56,3.56], respectively.

Example 2. The five-term FWA example founded in [16] is described by:

lX1
ðx1Þ ¼

x1 � 1 1 6 x1 < 2;
3� x1 1 6 x1 6 3;

�

lX2
ðx2Þ ¼

ðx2 � 2Þ=3 2 6 x2 < 5;
ð7� x2Þ=2 5 6 x3 6 7;

�

lX3
ðx3Þ ¼

ðx3 � 6Þ=2 6 6 x3 < 8;
9� x3 8 6 x3 6 9;

�

lX4
ðx4Þ ¼

ðx4 � 7Þ=2 7 6 x4 < 9;
10� x4 9 6 x4 6 10;

�

lX5
ðx4Þ ¼

x5 � 10 10 6 x5 < 11;
12� x5 11 6 x5 6 12;

�

lW1
ðw1Þ ¼

w1 � 1 1 6 w1 < 2;
ð5�w1Þ=3 2 6 w1 6 5;

�

lW2
ðw2Þ ¼

ðw2 � 2Þ=0:5 2 6 w2 < 2:5;
ð3�w2Þ=0:5 2:5 6 w1 6 3;

�

lW3
ðw3Þ ¼

ðw3 � 4Þ=3 4 6 w3 < 7;
ð9� x3Þ=2 7 6 w1 6 9;

�

Fig. 2. The plots of dr(a,k).
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lW4
ðw4Þ ¼

w4 � 3 3 6 w4 < 4;
ð7� x4Þ=3 4 6 w1 6 7;

�

lW5
ðw5Þ ¼

w5 � 2 2 6 w5 < 3;
4� x5 3 6 w1 6 4

�

The membership functions of these fuzzy numbers are shown in Figs. 3 and 4.

The computation process is based on the algorithms in Table 5.
The computation of Y(a)L:

Fig. 3. The fuzzy numbers Xi.

Fig. 4. The fuzzy weights Wi.
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Step 1: The a-cuts of the above fuzzy numbers and fuzzy weights are:

X1ðaÞ ¼ X1ðaÞL;X1ðaÞU
h i

¼ ð1þ a;3� aÞ;

X2ðaÞ ¼ X2ðaÞL;X2ðaÞU
h i

¼ ð2þ 3a;7� 2aÞ;

X3ðaÞ ¼ X3ðaÞL;X3ðaÞU
h i

¼ ð6þ 2a;9� aÞ;

X4ðaÞ ¼ X4ðaÞL;X4ðaÞU
h i

¼ ð7þ 2a;10� aÞ;

X5ðaÞ ¼ X5ðaÞL;X5ðaÞU
h i

¼ ð10þ a;12� aÞ;

W1ðaÞ ¼ W1ðaÞL;W1ðaÞU
h i

¼ ð1þ a;5� 3aÞ;

W2ðaÞ ¼ W2ðaÞL;W2ðaÞU
h i

¼ ð2þ 0:5a;3� 0:5aÞ;

W3ðaÞ ¼ W3ðaÞL;W3ðaÞU
h i

¼ ð4þ 3a;7� 3aÞ;

W4ðaÞ ¼ W4ðaÞL;W4ðaÞU
h i

¼ ð3þ a;7� 3aÞ;

W5ðaÞ ¼ W5ðaÞL;W5ðaÞU
h i

¼ ð2þ a;4� aÞ:

Step 2: Set m = 0, I = [0,1], S0 = £.
Step 3: Set m = 1, select a1 = 0 2 I � S0 = [0,1], it is obvious that X1(0)L

6 X2(0)L
6 X3(0)L

6 X4(0)L, so
ði1

1; i
1
2; . . . ; i1

5Þ ¼ ð1;2;3;4;5Þ.
Step 4: It is also obvious that S1 = {aja 2 [0,1], X1(a)L

6 X2(a)L
6 X3(a)L

6 X4(a)L} = [0,1].
Step 5: Because ði1

1; i
1
2; . . . ; i1

5Þ ¼ ð1;2;3;4;5Þ, no matching of WL
i ðaÞ; WU

i ðaÞ; i ¼ 1;2 . . . ;5 is needed.
Step 6: Because S1 = [0,1], no further partitioning of [0,1] is needed.
Step 7: Set j = 1 for the further possible partition of S1. Using formulas for the a-cuts of the fuzzy numbers, construct the

left difference functions dl(a,k) for k = 0,1, . . . ,4 using its formula given in Table 5.
Step 8: Set t1 = 0, D10 = £.
Step 9: Set t1 = 1, select a1 = 0 2 S1 � D10 = [0,1]. Because n = 5, we use the enumeration method to determine the optimal

switch point k⁄. Setting a = a1 = 0 in dl(a,k), k = 0,1,2, . . . ,4 at Step 7, compute dlð0;0Þ ¼
P5

i¼2ðX1ð0ÞL � Xið0ÞLÞÞ
Wið0ÞL ¼ �58. In the same way, it follows that dl(0,1) = �42 and dl(0,2) = 26. Because dl(0,2) > 0, dl(0,3) and
dl(0,4) do not have to be computed. With dl(0,1) 6 0, dl(0,2) > 0, it follows that k�11 ¼ 2.

Step 10: It is straight forward to show that:

dlða;1Þ ¼ �34� 5a� a2; dlða;2Þ ¼ 26� 18a� 1:5a2;

from which it follows that:

D11 ¼ ajdlða;1Þ 6 0; dlða;2Þ > 0; a 2 S1 ¼ ½0;1�f g ¼ ½0;1�: ð29Þ

Step 11: Because S1 � D11 = £, no further partition of S1 is needed.
Step 12: Because m = 1, S1 = [0,1], no other sub-domain has to be partitioned.
Step 13: With k�11 ¼ 2; D11 ¼ ½0;1�, so that,

l11ðaÞ ¼
P2

i¼1XiðaÞLWiðaÞU þ
P5

i¼3XiðaÞLWiðaÞLP2
i¼1WiðaÞU þ

P5
i¼3WiðaÞL

¼ 152þ 122aþ 9a2

34þ 3a
: ð30Þ

Step 14: The final result of Y(a)L for a 2 [0,1] is

YðaÞL ¼ 152þ 122aþ 9a2

34þ 3a
: ð31Þ

The computation of Y(a)U is given next. Some initialization parameters, such as m, tj and S0 are omitted, and some steps
can be combined because our calculations are not implemented on a computer.

Step 1 : Same as Step 1 for Y(a)L.
Steps 2–6 : It is also obvious that X1(a)U

6 X2(a)U
6 X3(a)U

6 X4(a)U for a 2 [0,1]; hence, S1 = [0,1].
Step 7 : With n = 5, using formulas for the a-cuts of the fuzzy numbers, construct the right difference functions dr(a,k)

for k = 0,1, . . . ,4 using its formula given in Table 5.
Steps 8–12 : Set t1 = 1, for S1 = [0,1], selecting a1 = 0 2 S1, using the enumeration method for the optimal switch point, com-

pute dr(0,0) = 151, dr(0,1) = 43, dr(0,2) = 9, dr(0,3) = �9. Because dr(0,3) < 0, dl(0,4) does not have to be com-
puted. With dr(0,2) P 0, dr(0,3) < 0, it follows that k�11 ¼ 3.

It is straight forward to show that
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drða;2Þ ¼ 9� 15a� 0:5a2; drða;3Þ ¼ �9� 15:5a� 0:5a2;

from which it follows that

D11 ¼ ajdrða;2ÞP 0; drða;3Þ < 0; a 2 S1 ¼ ½0;1�f g ¼ ½0;0:588�: ð32Þ
Set t1 = 2, for a 2 S1 � D11 = (0.588,1], select a2 = 1, then dr(1,0) = 104.5, dr(1,1) = 40, dr(1,2) = �6.5. Because dr(1,2) < 0,
dl(1,3) and dl(1,4) do not have to be computed. With dr(1,1) P 0, dr(1,2) < 0, it follows that k�12 ¼ 2.
It is straight forward to show that

drða;1Þ ¼ 43þ 2a� 5a2; drða;2Þ ¼ 9� 15a� 0:5a2;

it follows that

D12 ¼ ajdrða;2ÞP 0; drða;3Þ < 0; a 2 S1f g ¼ ð0:588;1�: ð33Þ

Because D11
S

D12 = S1 = [0,1], no further partition of S1 is needed and no other sub-domain has to be partitioned. The
optimal switch values and their corresponding domains are k�11 ¼ 3; D11 ¼ ½0;0:588�; k�12 ¼ 2; D12 ¼ ð0:588;1�.

Step 13 : Consequently,

r11 ¼
P3

i¼1XiðaÞUWiðaÞL þ
P5

i¼4XiðaÞUWiðaÞUP3
i¼1WiðaÞL þ

P5
i¼4WiðaÞU

¼ ��342þ 57aþ 2a2

36þ a
; ð34Þ

r12 ¼
P2

i¼1XiðaÞUWiðaÞL þ
P5

i¼3XiðaÞUWiðaÞUP2
i¼1WiðaÞL þ

P5
i¼3WiðaÞU

¼ �432� 157aþ 8a2

�46þ 9a
ð35Þ

Step 14 : The final result of Y(a)U for a 2 [0,1] is:

YðaÞU ¼
��342þ57aþ2a2

36þa 0 6 a < 0:588;

� 432�157aþ8a2

�46þ9a 0:588 6 a 6 1:

(
ð36Þ

Step 15 : The FWA final solution Y can be expressed with its a-cuts Y =
S

a2[0,1]a Ya =
S

a2[0,1]a[Y(a)L,Y(a)U] where Y(a)L

and Y(a)U are expressed with (31) and (36). By computing the inverse functions of Y(a)L and Y(a)U in (26) and
(27), respectively, the closed form membership function solution of Y is

lYðyÞ ¼

�6:778þ 0:167yþ 0:056
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9412þ 492yþ 9y2

p
4:471 6 y < 7:649;

9:813� 0:563y� 0:063
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10825� 1354yþ 81y2

p
7:649 6 y < 8:412;

�14:25� 0:25yþ 0:25
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5985� 174yþ y2

p
8:412 6 y 6 9:5;

0 otherwise:

8>>>>>><>>>>>>:
ð37Þ

Fig. 5. The final FWA result.
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From our formulas for Y(a)L and Y(a)U, it follows that Y(0) = [4.47,9.5] and Y(1) = [7.65,7.65]. The final results for the
FWA are plotted in Fig. 5. The results are the same as those in [26]. Both Y(0), Y(1) and Fig. 5 are also the same as those
in [16].

If the computations are implemented using the a-cut approximation methods in Table 2, in order to get approximate
results similar to the analytical method to three decimal digits, one would have to divide a 2 [0,1] using a discretization
unit size of 0.001, and compute Y(a)L, Y(a)U repeatedly 1000 times. It is obvious that the analytical method is more
accurate and computationally efficient. The nonlinear expressions in (31) and (36) are also difficult to observe just by
viewing Fig. 5. Compared with the analytical method of [26], our method is also computationally efficient and does
not need to enumerate and compare the algebraic formulas over the whole domain a 2 [0,1], which is hard to do in
complicated cases.

5. Conclusions

This paper has proposed an analytical solution method for the FWA problem that is based on solution expressions that use
KM algorithms. Compared with various existing discrete numerical methods and the few available analytical methods, the
method of this paper has a good structure and is simple for computations. It seems that the proposed method is the best solution
method for small size FWA problems. Such problems have a deep and rich background in optimization and decision making. Our
method can also be extended to large size FWA problems and has an open structure for various improvement techniques for
different conditions.

It may also be interesting to connect our new method with the computation of the linguistic weighted average (LWA) that
is used in perceptual computing [33,35], where the problems are formulated using interval type-2 fuzzy sets, because the
LWA is computed by computing two FWAs.
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Appendix A

Proof of Theorem 1. Using the definition of fuzzy numbers, it follows that, for "a 2 [0,1], and i = 1,2, . . . ,n,

XiðaÞL 6 XiðaÞU ;

WiðaÞL 6WiðaÞU :

Additionally, for a1,a2 2 [0,1], a1 6 a2, it follows that

Xiða1ÞL 6 Xiða2ÞL; and Xiða1ÞU P Xiða2ÞU ; ðA:1Þ

Wiða1ÞL 6Wiða2ÞL; and Wiða1ÞU P Wiða2ÞU : ðA:2Þ

From (A.1),Pn
i¼1Xiða1ÞLwiPn

i¼1wi
6

Pn
i¼1Xiða2ÞLwiPn

i¼1wi
; ðA:3Þ

Pn
i¼1Xiða1ÞUwiPn

i¼1wi
P
Pn

i¼1Xiða2ÞUwiPn
i¼1wi

: ðA:4Þ

Let

Dða1Þ ¼ w ¼ ðw1;w2; . . . ;wnÞjwi 2 Wiða1ÞL;Wiða1ÞU
h i

; i ¼ 1;2; . . . ;n
n o

;

Dða2Þ ¼ w ¼ ðw1;w2; . . . ;wnÞjwi 2 Wiða2ÞL;Wiða1ÞU
h i

; i ¼ 1;2; . . . ;n
n o

:

Then, because of (A.2), it follows that

Dða2Þ# Dða1Þ: ðA:5Þ
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From (5) and (6),

Yða1ÞL ¼ min
w2Dða1Þ

Pn
i¼1Xiða1ÞLwiPn

i¼1wi
; ðA:6Þ

Yða2ÞL ¼ min
w2Dða2Þ

Pn
i¼1Xiða2ÞLwiPn

i¼1wi
; ðA:7Þ

Yða1ÞU ¼ max
w2Dða1Þ

Pn
i¼1Xiða1ÞUwiPn

i¼1wi
; ðA:8Þ

Yða2ÞU ¼ max
w2Dða2Þ

Pn
i¼1Xiða2ÞUwiPn

i¼1wi
: ðA:9Þ

Consider A.3, A.5, A.6 and A.7 together, it must be true that Y(a1)L
6 Y(a2)L. In a similar way, consider A.4, A.5, A.8 and A.9,

one can get Y(a1)U P Y(a2)U. This means Y(a1)L is increasing with a and Y(a1)U is decreasing with a. Additionally, if all Xi, Wi

(i = 1,2, . . . ,n) are of triangular shape, then (5) and (6) become the same problem for a = 1, so that Y(1)L = Y(1)U, i.e. Y is tri-
angular in shape. The trapezoidal shape conclusion is obvious.

Appendix B

Proof of Theorem 2. For notational simplification of our conclusions, we denote Xi(a)L and Xi(a)U as xi(a) and �xiðaÞ; similarly,
Wi(a)L and Wi(a)U are also denoted as wi(a) and �wiðaÞ. Furthermore, because a always keeps the same value, we will use a
implicitly and omit it in the expressions in our proof, e.g. xi(a) is shortened to xi.

As required for both KM algorithms, both Xi(a)L and Xi(a)U are ordered in advance with X1(a)L
6 X2(a)L

6 � � � 6 Xn(a)L and
X1(a)U

6 X2(a)U
6 � � � 6 Xn(a)U, that is x1 6 x2 6 � � � 6 xn, and �x1 6 �x2 6 � � � 6 �xn. The KM algorithms can be summarized as the

solutions for kL and kU of the following problems (B.1) and (B.2), which are the re-statements of (14) and (15), using our
simplified notations:PkL

i¼1xi �wi þ
Pn

i¼kLþ1xiwiPkL
i¼1

�wi þ
Pn

i¼kLþ1wi

¼ min
wi2½wi ; �wi �

Pn
i¼1xiwiPn

i¼1wi
¼ YL; ðB:1Þ

PkU
i¼1

�xiwi þ
Pn

i¼kUþ1�xi �wiPkU
i¼1wi þ

Pn
i¼kUþ1 �wi

¼ max
wi2½wi ;�wi �

Pn
i¼1�xiwiPn

i¼1wi
¼ YU : ðB:2Þ

Similarly, using our simplified notations (16) and (17) become

uðkÞ ¼
Pk

i¼1xi �wi þ
Pn

i¼kþ1xiwiPk
i¼1 �wi þ

Pn
i¼kþ1wi

; ðB:3Þ

wðkÞ ¼
Pk

i¼1�xiwi þ
Pn

i¼kþ1�xi �wiPk
i¼1wi þ

Pn
i¼kþ1 �wi

; ðB:4Þ

(18) and (19) become

YL ¼ min
k¼0;1;2;...;n

uðkÞ; ðB:5Þ

YU ¼ max
k¼0;1;2;...;n

wðkÞ; ðB:6Þ

(20) and (21) become

dlðkÞ ¼
Xk

i¼1

ðxkþ1 � xiÞ �wi þ
Xn

i¼kþ2

xkþ1 � xið Þwi; ðB:7Þ

drðkÞ ¼ �
Xk

i¼1

�xkþ1 � �xið Þwi �
Xn

i¼kþ2

�xkþ1 � �xið Þ �wi: ðB:8Þ

1. Proof of part (a). To begin, we obtain dl(k) in (B.7) by means of the following analysis. For u(k) in (B.3), and 0 6 k 6 n � 1,

uðkÞ ¼
Pk

i¼1xi �wi þ
Pn

i¼kþ1xiwiPk
i¼1 �wi þ

Pn
i¼kþ1wi
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and

uðkþ 1Þ ¼
Pkþ1

i¼1 xi �wi þ
Pn

i¼kþ2xiwiPkþ1
i¼1 �wi þ

Pn
i¼kþ2wi

:

Consequently,

uðkþ1Þ�uðkÞ

¼

Xkþ1

i¼1
xi �wiþ

Xn

i¼kþ2
xiwiPkþ1

i¼1 �wiþ
Pn

i¼kþ2wi

�
Pk

i¼1xi �wiþ
Pn

i¼kþ1xiwiPk
i¼1 �wiþ

Pn
i¼kþ1wi

¼
Xkþ1

i¼1

xi �wiþ
Xn

i¼kþ2

xiwi

 ! Xk

i¼1

�wiþ
Xn

i¼kþ1

wi

 !
�

Xk

i¼1

xi �wiþ
Xn

i¼kþ1

xiwi

 ! Xkþ1

i¼1

�wiþ
Xn

i¼kþ2

wi

 !! , Xk

i¼1

�wiþ
Xn

i¼kþ1

wi

 !
umkþ1

i¼1
�wiþ

Xn

i¼kþ2

wi

 ! !
:

ðB:9Þ

We will simplify the numerator of (B.9), i.e.Xkþ1

i¼1

xi �wi þ
Xn

i¼kþ2

xiwi

 ! Xk

i¼1

�wi þ
Xn

i¼kþ1

wi

 !
�

Xk

i¼1

xi �wi þ
Xn

i¼kþ1

xiwi

 ! Xkþ1

i¼1

�wi þ
Xn

i¼kþ2

wi

 !

¼ xkþ1 �wkþ1 þ
Xk

i¼1

xi �wi þ
Xn

i¼kþ2

xiwi

 ! ! Xk

i¼1

�wi þ
Xn

i¼kþ2

wi

 !
þwkþ1

 !

�
Xk

i¼1

xi �wi þ
Xn

i¼kþ2

xiwi

 !
þ xkþ1wkþ1

 !
�wkþ1 þ

Xk

i¼1

�wi þ
Xn

i¼kþ2

wi

 ! !

¼ xkþ1 �wkþ1

Xk

i¼1

�wi þ
Xn

i¼kþ2

wi

 !
þ

Xk

i¼1

xi �wi þ
Xn

i¼kþ2

xiwi

 !
wkþ1

�
Xk

i¼1

xi �wi þ
Xn

i¼kþ2

xiwi

 !
�wkþ1 þ xkþ1wkþ1

Xk

i¼1

�wi þ
Xn

i¼kþ2

wi

 ! !

¼ xkþ1 �wkþ1 �wkþ1ð Þ
Xk

i¼1

�wi þ
Xn

i¼kþ2

wi

 !
�

Xk

i¼1

xi �wi þ
Xn

i¼kþ2

xiwi

 !
�wkþ1 �wkþ1ð Þ

¼ �wkþ1 �wkþ1ð Þ xkþ1

Xk

i¼1

�wi þ
Xn

i¼kþ2

wi

 !
�

Xk

i¼1

xi �wi þ
Xn

i¼kþ2

xiwi

 ! !

¼ �wkþ1 �wkþ1ð Þ
Xk

i¼1

xkþ1 � xið Þ �wi þ
Xn

i¼kþ2

xkþ1 � xið Þwi

 !
:

Consequently, (B.9) becomes

uðkþ 1Þ �uðkÞ ¼
�wkþ1 �wkþ1ð Þ

Pk
i¼1ðxkþ1 � xiÞ �wi þ

Pn
i¼kþ2ðxkþ1 � xiÞwi

� �
Pk
i¼1

�wi þ
Pn

i¼kþ1wi


 � Pkþ1
i¼1 �wi þ

Pn
i¼kþ2wi

� � : ðB:10Þ

Because �wkþ1 > wkþ1 and all the values of wi; �wi P 0, whether u(k + 1) P u(k) or u(k + 1) 6 u(k) is determined by the sign
of Xk

i¼1

xkþ1 � xið Þ �wi þ
Xn

i¼kþ2

xkþ1 � xið Þwi: ðB:11Þ

To simplify the notation in the rest of the proof, dl(k) is defined, as in (B.7), i.e.

dlðkÞ ,
Xk

i¼1

xkþ1 � xið Þ�wi þ
Xn

i¼kþ2

xkþ1 � xið Þwi: ðB:12Þ

Because x1 6 x2 6 � � � 6 xn, it follows from (B.12) that
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dlðkÞ � dlðk� 1Þ ¼
Xk

i¼1

xkþ1 � xið Þ �wi þ
Xn

i¼kþ2

xkþ1 � xið Þwi

 !
�

Xk�1

i¼1

xk � xið Þ �wi þ
Xn

i¼kþ1

xk � xið Þwi

 !

¼ xkþ1 � xkð Þ �wk þ
Xk�1

i¼1

xkþ1 � xið Þ �wi þ
Xn

i¼kþ2

xkþ1 � xið Þwi

 !

�
Xk�1

i¼1

xk � xið Þ �wi þ
Xn

i¼kþ2

xk � xið Þwi þ xk � xkþ1ð Þwkþ1

 !

¼ xkþ1 � xkð Þ �wk þwkþ1ð Þ þ
Xk�1

i¼1

xkþ1 � xkð Þ �wi þ
Xn

i¼kþ2

xkþ1 � xkð Þwi ¼ xkþ1 � xkð Þ
Xk

i¼1

�wi þ
Xn

i¼kþ1

wi

 !
P 0:

So dl(k) in (B.12) is an increasing function with respect to k.
Next, we study the behavior of u(k + 1) � u(k), which can be re-expressed by substituting (B.12) into (B.10), as

uðkþ 1Þ �uðkÞ ¼ clðkÞdlðkÞ; ðB:13Þ

where

clðkÞ ¼
�wkþ1 �wkþ1Pk

i¼1 �wi þ
Pn

i¼kþ1wi

� � Pkþ1
i¼1 �wi þ

Pn
i¼kþ2wi

� �P 0: ðB:14Þ

Because dlð0Þ ¼
Pn

i¼2ðx1 � xiÞwi < 0 and dlðn� 1Þ ¼
Pn�1

i¼1 ðxn � xiÞ �wi > 0, with the increasing property of dl(k) for k, there
must exist k = k⁄(1 6 k⁄ 6 n � 1), such that dl(k⁄ � 1) 6 0 and dl(k⁄) > 0. We also have for all 0 6 k < k⁄, dl(k) 6 0, and for
all k⁄ 6 k 6 n � 1, dl(k⁄) > 0. Using (B.13), it follows that for all 0 6 k < k⁄, u(k + 1) � u(k) 6 0, and for all k⁄ 6 k 6 n � 1,
u(k + 1) � u(k) P 0. Consequently, u(0) P u(1) P � � �P u(k⁄ � 1) P u(k⁄) and u(k⁄) 6 u(k⁄ + 1) 6 � � � 6 u(n � 1) 6u(n).
This means k⁄ must be the global minimum point of u(k), and k⁄ = kL.

2. Proof of part (b)
Similarly to (B.10), we can prove that for w(k) in (B.4), and 0 6 k 6 n � 1,

wðkþ 1Þ � wðkÞ ¼
wkþ1 � �wkþ1ð Þ

Pk
i¼1ð�xkþ1 � �xiÞwi þ

Pn
i¼kþ2ð�xkþ1 � �xiÞ �wi

� �
Pk

i¼1wi þ
Pn

i¼kþ1 �wi

� � Pkþ1
i¼1 wi þ

Pn
i¼kþ2 �wi

� �
¼ �

�wkþ1 �wkþ1ð Þ
Pk

i¼1ð�xkþ1 � �xiÞwi þ
Pn

i¼kþ2ð�xkþ1 � �xiÞ �wi

� �
Pk

i¼1wi þ
Pn

i¼kþ1 �wi

� � Pkþ1
i¼1 wi þ

Pn
i¼kþ2 �wi

� � : ðB:15Þ

Because �wkþ1 > wkþ1 and all the values of wi; �wi P 0, whether w(k + 1) P w(k) or w(k + 1) 6w(k) is determined by the sign
of

�
Xk

i¼1

ð�xkþ1 � �xiÞwi þ
Xn

i¼kþ2

ð�xkþ1 � �xiÞ �wi

 !
: ðB:16Þ

Let

drðkÞ , �
Xk

i¼1

ð�xkþ1 � �xiÞwi �
Xn

i¼kþ2

ð�xkþ1 � �xiÞ�wi: ðB:17Þ

In a similar way, because x1 6 x2 6 � � � 6 xn, we can prove that dr(k) is a decreasing function with respect to k.
Next, we study the behavior of w(k + 1) � w(k), which can be represented by substituting (B.17) into (B.15), as

wðkþ 1Þ � wðkÞ ¼ crðkÞdrðkÞ; ðB:18Þ

where

crðkÞ ¼
�wkþ1 �wkþ1Pk

i¼1wi þ
Pn

i¼kþ1 �wi

� � Pkþ1
i¼1 wi þ

Pn
i¼kþ2 �wi

� �P 0: ðB:19Þ

Because drð0Þ ¼ �
Pn

i¼2ð�x1 � �xiÞ �wi > 0 and drðn� 1Þ ¼ �
Pn�1

i¼1 ð�xn � �xiÞwi < 0, there must exist k = k⁄(1 6 k⁄ 6 n � 1), such
that dr(k⁄ � 1) P 0 and dl(k⁄) < 0. Furthermore, for all 0 6 k < k⁄, dr(k) P 0, and for all k⁄ 6 k 6 n � 1, dr(k⁄) < 0. Using
(B.18), it follows that for all 0 6 k < k⁄, w(k + 1) � w(k) P 0, and for all k⁄ 6 k 6 n � 1, w(k + 1) � w(k) 6 0. Consequently,
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w(0) 6 w(1) 6 � � � 6w(k⁄ � 1) 6 w(k⁄) and w(k⁄) P w(k⁄ + 1) P � � �P w(n � 1) P w(n). This means k⁄ must be the global
maximum point of w(k), and k⁄ = kU.
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