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Abstract—Since manual inspection of analog instruments is
inefficient, many computer vision-based automatic reading sys-
tems have been proposed recently. However, most of them use
fixed cameras, which are costly due to the large number of used
cameras. Although some other systems adopting the pan-tilt-
zoom camera and the movable inspection robot can avoid using
plenty of cameras, they have to overcome high computational cost
in aligning the camera to the tested instrument. Meanwhile, most
existing systems are instrument type dependent, and hence cannot
handle multiple types of instruments simultaneously. In this
paper, first, based on an inspection robot, an automatic reading
system equipped with a pan-tilt-zoom camera is designed for
different types of round-shape analog instruments. Then, a fast
camera alignment algorithm based on visual servo is proposed, in
which YOLOV3 is applied and improved to locate the instrument,
and guide the camera to iteratively align to the instrument.
Finally, a monocular-vision pointer reconstruction algorithm is
proposed to accurately read the instrument. Experimental results
demonstrated that our proposed system is fast and reliable in the
camera alignment process, and is effective in reading different
types of analog instruments during the robot-based inspection.

Index Terms—Automatic Reading System, Analog Instrument,
Robot-based Inspection, Fast Camera Alignment, Monocular-
vision Pointer Reconstruction.

I. INTRODUCTION

NALOG pointer instruments of devices are widely used

in monitoring the working status of low-voltage sub-
stations, water plants, chemical plants, efc. They are gener-
ally installed at different locations, at height between 0.5m
to 1.5m. Manual inspection is the prevalent way to read
these instruments nowadays [1]. It is inefficient, costly, and
error-prone. So, the vision-based automatic analog instrument
reading system, which is more efficient, cheaper, and more
reliable, has been gaining the interest of researchers. Many
such systems have been proposed recently [2]-[16].

Most earlier systems work in condition that the camera is
fixed in front of the tested instruments [2]-[11]. Belan et
al. proposed a monocular system, in which radial sampling
projection [17], [18] and Bresenham line drawing [19], [20]
were used to locate the instrument pointer. Jaffery er al. [8]
proposed a monocular system, in which a Dynamic Sliding
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Window Algorithm (DSWA) was used to locate the instru-
ment pointer. Zheng et al. [9] also proposed a monocular
system, in which a novel Multi-Scale Retinex with Color
Restoration (MSRCR) algorithm was used to overcome light
variations in analog instrument reading. And Yang et al. [10]
proposed a binocular system using Tsai’s calibration [21]
and Scale-Invariant Feature Transform (SIFT) [22], in which
the information of two camera views was used to restore
the pointer information of the real world. However, these
automatic reading systems would be costly if there were a
large number of analog instruments to be read, because a set
of system can only read one instrument.

With the developments of robot technology [23], [24] and
Simultaneous Localization and Mapping (SLAM) technology
[1], the above issue can be solved by some other systems
[12]-[16] using the PTZ camera and combining with the
movable inspection robot. Powered by SLAM, an inspection
robot can navigate to specified locations so that those systems
can read all the analog instruments during the robot-based
inspection. However, due to the localization errors of SLAM,
the PTZ cameras of those systems need to be aligned with
the analog instrument before the automatic reading. Fang et
al. [12] proposed a visual servo system using SIFT [22] or
Speeded-Up Robust Feature (SURF) [25], in which the posture
of the PTZ camera was adjusted by repeatedly calculating
the horizontal and vertical camera deviation angles between
the image center and the instrument center and iteratively
controlling the PTZ motors. Similar systems and approaches
were also proposed by Li et al. [13], Mai et al. [14], and
Liu et al. [15]. Inspired by a face detection work [26], Song
et al. [16] proposed a visual servo system using Adaboost
and Haar-like features, in which the camera deviation angles
were first calculated from the result of Adaboost instrument
detection and were then corrected by iterative controls of the
PTZ motors. However, there are still some challenges in the
camera alignment process to be overcome, e.g., SIFT and
SUREF are time-consuming [12]-[15], and the performance of
Adaboost instrument detector is not always reliable [16].

Furthermore, nearly all existing automatic reading systems
(both those using fixed cameras and those combining with the
inspection robot) only considered one type of analog instru-
ments [2]-[16]. They cannot adequately handle the situation
where there are different types of analog instruments in low-
voltage substations, water plants, efc.

In this paper, an automatic analog instrument reading system
using computer vision and inspection robot is constructed.
This system is designed for different types of round-shape
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analog instruments. Then, a Fast Camera Alignment Algorithm
(FCAA) based on space information and visual servo instru-
ment detection is proposed in our system. Benefiting from
the proposed YOLOv3-tiny-dw detector, which improves the
state-of-the-art YOLOv3 [27] by combining it with depthwise
separable convolutions in MobileNet [28], the FCAA performs
fast and reliable camera alignment. Finally, a Monocular-
vision Pointer Reconstruction Algorithm (MPRA) based on
SUREF [25] and Random Sample Consensus (RANSAC) [29]
is proposed in our system to accurately read the readings of
different types of round-shape analog instruments.

Our main contributions are:

1) We provide a scheme of building an automatic analog
instrument reading system using computer vision and
inspection robot.

2) We propose FCAA based on the improved YOLOV3-
tiny-dw detector, which performs fast and precise cam-
era alignment.

3) We propose MPRA, which is effective in reading differ-
ent types of round-shape analog instruments.

4) We validate the above system and algorithms on a
real inspection robot platform. In addition, we confirm
the robustness to illumination changes and different
instrument heights of this system.

The remainder of this paper is organized as follows. Section-

s II~IV describe the details of our automatic reading system,
the FCAA, and the MPRA, respectively. Section V presents
the experimental results of the FCAA and the MPRA. Finally,
Section VI draws conclusions.

II. DESIGN OF THE AUTOMATIC ANALOG INSTRUMENT
READING SYSTEM

Our automatic analog instrument reading system is designed
on a SLAM inspection robot introduced in our previous work
[3]. Independently, this robot based on laser rangefinder theory
can draw a 2-D obstacle map relevant to the horizontal plane
during its movement. Thus, its location and posture can be
estimated by applying a Monte Carlo method [30] to matching
the present laser data and the obstacle map during real-time
inspections. Additionally, with the motion control, the robot
can navigate to specified locations of the space.

Automatic
reading

0.1 motor
Belt

\ Driving
wheel

Fig. 1.  The appearance of our automatic reading system. (a) The 3-D
appearance and the constitution of our automatic reading system. (b) The
inspection robot equipped with our automatic reading system.

The 3-D appearance model of our automatic analog in-
strument reading system is shown in Fig. 1(a). According to

this appearance model, our automatic reading system mainly
constitutes of a gigabit ethernet (GigE) camera which supports
image acquisition and optical zoom, a two-degrees-of-freedom
PTZ which supports horizontal and vertical posture adjust-
ments, and other mechanical components which are used to
attach the above two parts. In this system, the GigE camera is
driven by a 2.50GHz Nvidia® Denver™ CPU. Meanwhile,
the PTZ is driven by a 168MHz ARM® Cortex™ — M4
MCU. The mentioned CPU and MCU are both equipped on
the robot we used, while they were originally the controllers
of robot navigation and robot movement respectively. The
inspection robot equipped with this automatic reading system
is shown in Fig. 1(b).

As the two-degrees-of-freedom PTZ shown in Fig. 1(a), its
postures in the horizontal and vertical Degrees Of Freedom
(DOF) can be respectively adjusted by No.1 and No.2 stepper
motors, where a equal-speed transmission belt is attached to
the axis of No.1 motor to drive the horizontal PTZ adjustment,
and magnetic rotary encoders are respectively used to acquire
real-time absolute angular positions of No.l and No.2 motors.
More details are described below.

Horizontal DOF
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Vertical DOF

.........
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Fig. 2. The diagrams of PTZ adjustment. (a) The illustration of horizontal
PTZ adjustment. (b) The illustration of vertical PTZ adjustment.
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Fig. 3. The control diagram of NO.1 and No.2 motors.

With real-time position feedbacks of encoders, a normal PID
speed controller is applied to control NO.1 and NO.2 motors,
so that the horizontal and vertical postures of PTZ can be
adjusted. As show in Fig. 2(a) and Fig. 2(b), assume the motor
positions pp; (i = 1,2) to be the horizontal and vertical initial
conditions respectively, the motor positions p,,; the horizontal
and vertical real outputs respectively, the motor positions pe;
the horizontal and vertical expectations respectively, and e;
the errors between p.; and p,; in different DOFs. The speed
controller will respectively calculate pulse control signals
to control NO.1 and NO.2 motors rotating from pg; to pe; in
different DOFs as the control diagram shown in Fig. 3.

Combining with the characteristics of the constructed sys-
tem and the inspection robot we used, the automatic analog
instrument reading approach is elementarily designed. First,
the robot will start navigating to the parking point relevant to

0018-9456 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on July 06,2020 at 15:10:49 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TTM.2020.2967956, IEEE

Transactions on Instrumentation and Measurement

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. XX, NO. X, 2020 3

Return

2

Real time
laser scan

1. Robot
Navigation

ojed

uaniau 72 juiod
Bunaed ayepdn

Output
3. MPRA—l
nput| - /Reading /
Reading
Camera | Input Input
driver  [imagel 2.FCAA image2 result

Fig. 4. The flowchart of our automatic reading system.

the first instrument to be read. Second, the proposed FCAA
will be performed to quickly align the PTZ camera with the
instrument to be read and acquire instrument images that
meet the requirements of the automatic reading (see details
in Section III). Third, the proposed MPRA will be performed
to accurately read the instrument (see details in Section IV).
Forth, the robot will navigate to the next parking point, while
the second and third steps will be repeated until all analog
instruments are read. Finally, all the analog instruments can
be read. This process of automatic analog instrument reading
using the movable inspection robot is illustrated in Fig. 4.

(b)

Fig. 5. The appearances of different types of analog instruments to be read.
(a) A Type-1 instrument. (b) A Type-2 instrument. (c) A Type-3 instrument.

To build our automatic reading system, three types of analog
instruments widely used in low-voltage substations are select-
ed as the reading targets. Their appearances are respectively
shown in Fig. 5(a)~Fig. 5(c), in which they are named as type-
1~type-3 instrument respectively. They are round-shape, with
thin pointers, and of similar size. Meanwhile, a configuration
file is created. For each instrument, some spatial information
(e.g., the expected robot parking point coordinate) is written
into this file, as well as the instrument type information.

III. FAST CAMERA ALIGNMENT ALGORITHM (FCAA)

It is known that the robot parking points are usually set
far forward (1-5m) from the relevant analog instruments to
reduce the complexity of robot navigation [1], [3], [12]-[16]
during the robot-based analog instrument inspections. In this
case, the general camera without ultra high resolution must
zoom in to acquire the instrument image with clear scale lines
for automatic reading. Meanwhile, it is known that the camera
always zooms in centering on the image center. And the longer
time the camera zooms in, the smaller vision field will be. In
this case, the PTZ must position the instrument center to the

image center initially so that the instrument to be read will
not be lost from the vision field after zooming in the camera.

The FCAA is then proposed based on these two ideas. At
the very beginning, a YOLOvV3-tiny-dw instrument detector
based on YOLOv3 [27] and depthwise separable convolutions
[28] is proposed and trained. In the execution of FCAA, the
PTZ is adjusted first according to some spatial information to
align the camera with the instrument elementarily. Then, with
a wide camera vision field, the PTZ is adjusted again based on
the constructed YOLOv3-tiny-dw instrument detector. Finally,
with a small camera vision field, the image of an enlarged and
clear instrument can be acquired.

A. YOLOv3-tiny-dw Instrument Detector

1) Production of dataset: To train and test a YOLOV3-
tiny-dw detector for wide-vision-field instrument detection, a
challenging instrument dataset is constructed for type-1~type-
3 analog instruments introduced in Section II.

In this paper, each robot parking point is set 2.5m right
in front of the relevant instrument. In this way, the analog
instruments are similar in size in the wide-vision-field inspec-
tion images acquired by the PTZ camera of our system. Thus,
a 64x64 window is used to label ground truth instrument
bounding boxes in different 768x432 inspection images, and
form an instrument dataset. And it is divided into a training
dataset including 2016 samples and a testing dataset including
1220 samples. Some samples are shown in Fig. 6.

Fig. 6. Some training and testing samples for YOLOvV3-tiny-dw.

This challenging dataset fully takes the influencing factors
of instrument detection into account, such as indoor and
outdoor illumination changes, different camera shooting an-
gles, different environment complexity, different degrees of
occlusion, efc. Since the instruments are generally set far away
from each other in actual operating environment, there is only
one certain type analog instrument in each 768 x432 sample.

2) Construction of YOLOv3-tiny-dw detector: You Only
Look Once version-3 (YOLOvV3) [27] is well known as the
state-of-the-art object detector. It uses a very deep and complex
convolutional neural network (DarkNet-53) to extract stronger
features than most other deep learning object detectors [31]-
[35]. However, tremendous feature computations in DarkNet-
53 made it extremely difficult to run YOLOvV3 on most embed-
ded computing platforms, such as embedded robot systems.
To alleviate this problem, YOLOv3-tiny was proposed. The
network architecture was simplified based on DarkNet-53 in
YOLOV3, making it more efficient in feature extraction [36].
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NETWORK ARCHITECTURE OF OUR YOLOV3-TINY-DW INSTRUMENT

TABLE 1

DETECTOR

Network input size

416 x 416 x 3
Filter type/Stride Filter shape Output size

Conv dw/1 3x3x3 416 x 416 x 3
Conv pw/1 1x1x3x16 416 x 416 x 16
Maxpool/2 2xX2x16 208 x 208 x 16
Conv dw/1 3x3x16 208 x 208 x 16
Conv pw/1 1x1x16x 32 208 x 208 x 32
Maxpool/2 2XxX2x32 104 x 104 x 32
Conv dw/1 3 x3x32 104 x 104 x 32
Conv pw/1 1x1x32x64 104 x 104 x 64
Maxpool/2 2 X2 x64 52 X 52 X 64
Conv dw/1 3 x3x64 52 X 52 X 64
Conv pw/1 1x1x64x128 52 X 52 x 128
Maxpool/2 2x2x128 26 x 26 x 128
Conv dw/1 3 x3x128 26 x 26 x 128
Conv pw/1 1x1x 128 x 256 26 x 26 x 256
Maxpool/2 2 x 2 x 256 13 x 13 x 256
Conv dw/1 3 X 3 X 256 13 x 13 x 256
Conv pw/1 1x1x256x512 13 x 13 x 512
Maxpool/1 2 x2x512 13 x 13 x 512
Conv dw/1 3 x 3 x512 13 x 13 x 512
Conv pw/l1 1x1x512x1024 13 x 13 x 1024

Conv/1 1 x1x 1024 x 256 13 x 13 x 256

Conv/1 3 X 3 x 256 x 512 13 x 13 x 512

Conv/1 1x1x512x 255 13 x 13 x 255

AvgPool Global
Connected 1024 x 1000

Softmax

Based on the network architecture of YOLOv3-tiny, a more
efficient YOLOV3-tiny-dw detector is proposed to better adapt
to embedded robot system in this paper. To further decrease
parameter computations, certain convolutional layers in the
network of YOLOv3-tiny are replaced with their correspond-
ing depthwise separable convolution units [28], forming the
network of our YOLOv3-tiny-dw detector. As shown in Fig. 7,
a depthwise separable convolution unit consists of a depthwise
convolutional layer (Conv dw) and a pointwise convolutional
layer (Conv pw). In the condition of fixed output, the general
convolutional layer (Conv) and its corresponding depthwise
separable convolution unit have equivalent feature description
ability, but the latter needs much less parameter computations
[28]. The architecture of this novel convolutional neural net-
work is given in Table 1.

Depthwise Separable

General Convolution Convolution
: Input 416 X 416X 3
Input 416 X 416 X 3 i 1
i [_Convdw3x3xs |
[ convaxaxsxis | Tstride 1
[stride 1 i [ Convpw1X1X3X16 |
Output 416X 416X 16} }stride 1
! Output 416X416X 16

Fig. 7. The schematic of depthwise separable convolution.

Referenced on what YOLOvV3-tiny did in detector construc-
tion [27], [36], the above network is pre-trained on the standard
ImageNet 1000 classes dataset first. Then, the YOLOv3-tiny-
dw instrument detector is trained using our training dataset.
For an input image in YOLOv3-tiny-dw instrument detection,

13 x 13 x 255 and 26 x 26 x 255 feature maps will be
output and used for multi-scale (13 x 13, 26 x 26) instrument
prediction. The instrument bounding boxes will be directly
predicted from the whole input image by using dimension
clusters as anchor boxes. The logistic regression will be used to
predict an objectness score for each instrument bounding box.
By setting a threshold of the above score, the best instrument
bounding box can be selected [27], [36]. This detector turned
out to be fast and reliable in instrument detection experiments.

B. PTZ Adjustment Based on Spatial Information

This is the first step in the execution of FCAA, which aims
to align the camera with the instrument elementarily by using
the spatial information previously recorded in the configuration
file (see Section II). During the robot-based inspection, it
works under the settings that the real-time robot posture v’ is
estimated centering on the camera image center P., and the

- <
default camera posture is set to be the same as v’.

P
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Fig. 8. The top view and side view of an example robot navigation result.
(a) The top view. (b) The side view.

As shown in the top view of a robot navigation result
in Fig. 8(a), the camera image center P. is theoretically

coincident with the expected parking point P. while P, is
already aligned to the instrument plane center P; in the hor-
izontal direction, where (z,1,y,1) and (z,2, y,2) respectively
represent the coordinate of P.(P)) and P; in the 2-D SLAM
coordinate system O,x,y,, o represents the expected robot
posture, and D represents the L2 distance between (2,1, Y1)

and (x,2,yr2), Which can be calculated by

D = \/(xrl - xr2)2 + (yrl - %-2)2- (1)

As shown in the side view of a robot navigation result in
Fig. 8(b), there is an deviation angle 66 to be corrected to
align P! to P; in the vertical direction, where H, and H; are
respectively the heights of P, and P;. That is, we only need
to adjust the PTZ in its vertical DOF.

For each instrument installed at different heights, (2,1, yr1),
(zr2,yr2), He, and H; are known. In this case, the vertical

deviation angle 46}, can be calculated first by

00, = arctan

H,
l)ffv Hoff:Hz*H(' (2)

The control strategy shown in Fig. 3 is applied to adjust the
vertical PTZ posture, and then §6, can be corrected. Finally,
768x432 images are acquired respectively with a short camera
focal length and a long camera focal length, shown in Fig. 9(a)
and Fig. 9(b).
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(b)

Fig. 9. Result images of PTZ adjustment based on spatial information. (a)
The image with wide vision field. (b) The image with small vision field.

Obviously, the PTZ camera is not aligned to the instrument
precisely enough by executing this PTZ adjustment. The
instrument in the wide-vision-field image is lost from the
camera vision field by zooming in the camera focal length.
There are two reasons. First, the estimation errors of Monte
Carlo method [30] always exist during the robot navigation.
Second, it is hard to find the camera image center and the
instrument plane center in the real world so that P/, P;, H,
and H; are not precise by manual calibration.

C. PTZ Adjustment Based on Visual Servo Instrument Detec-
tion

This is the second step in the execution of FCAA. According
to Fig. 9(a), the instrument to be read is already positioned in
wide camera vision field by PTZ adjustment based on spatial
information. However, the further PTZ adjustment is needed
yet to align the camera with the instrument precisely.

Oy

Instrument
plane center

P(E)f)él)

optical
center

Fig. 10. The pinhole camera system during the robot-based inspection.

Assume O;x;y; is the image plane coordinate system, and
Ojzsyy the pixel plane coordinate system. A pinhole camera
system is built in Fig. 10 based on [21]. There are camera
deviation angles 0,, 6, between the camera image center
O; and the imaging point L of the instrument center, which
respectively resulted by the horizontal and vertical image
deviations D,, D, in the image plane O;x;y;. Meanwhile,
the pixel deviations d,, and d,, in the pixel plane Ofz sy are
respectively corresponding to D, and D,, while the shortest
camera focal length f and the pixel coordinate (z;,y;) of O;
are already calibrated based on [21]. In this case, when the
pixel coordinate (z;,y;) of L is known in the pixel plane
Oz sys, the camera can be aligned to the instrument by
calculating 6, and 0,, and correcting them.

(a) (b)

Fig. 11.  Results of the YOLOv3-tiny-dw instrument detection. (a) The
detection result without threshold selection. (b) The detection result selected
by an objectness score threshold of 0.5.

First, the YOLOV3-tiny-dw instrument detector proposed
previously is applied to the original image. Take an example as
Fig. 9(a), the results are shown in Fig. 11(a) and Fig. 11(b).
They are respectively the detection result without threshold
selection and the ultimate predicted instrument bounding box
selected by an objectness score threshold of 0.5, in which
(z1,y;) is represented by the pixel coordinate of the center of
that bounding box. Next, the pixel deviations d,, d, and the
image deviations D,, D, are calculated by

dy =31 — 24, Dy = dy - Ry, 3)
dy:yl — Yi, Dy :dy'Ry7 4

where R, and R, are respectively the physical height and
physical width of one pixel, and they are determined by the
camera used. Then, the camera deviation angles 0, and 6, can
be calculated by

0, = arctan(D,/f), 6, = arctan(D,/f). 5)

As shown in Fig. 2(a) and Fig. 2(b), the settings of positive
directions in PTZ’s horizontal and vertical DOFs are the same
as that in the image plane O;z;y; and the pixel plane Oz y;.
In this way, the control strategy shown in Fig. 3 is applied to
adjust the horizontal and vertical PTZ postures respectively,
and the camera deviation angles 6, and 6, can be corrected
in the end.

Theoretically, the camera will be aligned with the instru-
ment by applying the above method, in which the instrument
detection is performed only once. However, the performance
of this PTZ adjustment based on one-time instrument detection
can be unreliable in practice. First, motion errors of the motors
and position errors of the encoders will both influence the
motion precision of the PTZ. Second, some unintended wrong
classifications of the instrument detection will lead to a wrong
posture of the PTZ.

To reduce the influence of the above factors, a PTZ adjust-
ment based on visual servo instrument detection is adopted in
practice. Its main idea is to apply the PTZ adjustment based on
one-time instrument detection iteratively, in which the result
image similar to Fig. 9(a) will be acquired with a wide vision
field at the end of each iteration, the result image of the former
iteration will be input to the next iteration, and those iterations
will be stopped when the calculated camera deviation angles
0, and 0, satisfy

|993| S T9m7 |9y| S T0y7 (6)
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where Ty, and Ty, are respectively the maximum tolerable
limits of 6, and 0, summarized from plenty of experiments.

(@) (b)

Fig. 12. Result images of PTZ adjustment based on visual servo instrument
detection. (a) The image with wide vision field. (b) The image with small
vision field.

768x432 result images are acquired respectively with a
short camera focal length and a long camera focal length,
shown in Fig. 12(a) and Fig. 12(b). It can be seen that the
instrument to be read is basically in the middle of the wide
camera vision field, and the main body of that instrument is
still in the camera vision field after zooming in the camera
focal length. Meanwhile, the image shown in Fig. 12(b)
contains sufficient details of the scale lines and the pointer,
so that it can satisfy the requirements of automatic analog
instrument reading in MPRA.

In experiments of the camera alignment using our FCAA,
the FCAA was shown to be effective for type-1~type-3 analog
instruments, while the FCAA using visual servo instrument
detection was shown to perform better than the FCAA using
one-time instrument detection, according to the success rate
and precision of the camera alignment.

IV. MONOCULAR-VISION POINTER RECONSTRUCTION
ALGORITHM (MPRA)

According to previous sections, the round-shape analog
instruments to be read may be installed at different heights.
Meanwhile, a series of errors always exist during the camera
alignment using FCAA. These factors will lead to different
degrees of instrument deformation during the FCAA process,
as shown in Fig. 13, which may further influence the accuracy
of the instrument reading.

(b)

Fig. 13. The instrument deformation caused in FCAA process. (a) The first
example. (b) The second example.

To this end, an universal and precise Monocular-vision
Pointer Reconstruction Algorithm (MPRA) is proposed for
the automatic reading of different types of analog instruments.
Its main idea is to remove the influence of that deformation
by reconstructing the pointer pixels onto the strict forward-
looking scale region of the instrument to be read, and precisely
calculating the reading based on polar transform [6], [9].

A. Preparation

To realize the MPRA for monocular vision, template images
of the forward-looking instrument scale region are prepared for
type-1~type-3 analog instruments, in which a color template
image and a black-white template image with scale lines
only are prepared for each type of instrument, as shown in
Fig. 14(a)~Fig. 14(f).

(d) (e) (f)

Fig. 14. Template images used in MPRA. (a) Type-1 color template. (b) Type-
2 color template. (c) Type-3 color template. (d) Type-1 black-white template.
(e) Type-2 black-white template. (f) Type-3 black-white template.

Since the type information of different analog instruments to
be read is already known in the configuration file, the relevant
template images can be selected according to this information
at the beginning when a certain type of instrument is supposed
to be read, and then applied to the MPRA process.

B. Determination of Actual Scale Region

This is the first step of MPRA. By using a template
matching-based search method, it aims to determine the actual
scale region with different degrees of deformation in the result
image of FCAA, so that there will be less computations in the
further steps of MPRA.

First, Circle Hough Transform (CHT) [37] is applied to
locate the round-shape instrument in the 768x432 image
shown as Fig. 12(b), so that the range of searching the actual
scale region can be narrowed. The result is shown in Fig. 15(a),
in which the detected circle edge is indicated in red, and the
detected circle center in blue. Based on this result, a square
instrument region shown in Fig. 15(b) can be cropped out, and
prepared for scale region search.

Fig. 15. Determination of the instrument region. (a) The result of CHT. (b)
The instrument region cropped based on (a).

Second, a searching window of the same size as the relevant
color template image is applied to scan across the prepared
instrument region at different locations, while the Normalized
Cross Correlation (NCC) is applied to evaluate the matching
degrees between each scanned image region and the above
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template image, in which a NCC coefficient o,.. can be
calculated over a scanned image region by

o Sl - TTGg) T o

VS G,5) T2 X, 5,76, 5) — T2

where I(i,j) and I are respectively the gray-scale pixel
intensity relevant to the ith row and the jth column in this
image region and the mean gray-scale pixel intensity in this
region, while the meanings of 7'(i,j) and T are similar for
the relevant template image. According to the properties of
the NCC coefficient, the scanned image region relevant to
the o,,.. closest to 1 is considered to be the most similar
to the relevant template image and is regarded as the actual
scale region in the end. It should be noted that the searching
window will be scanned at multiple scales with a sliding
stride of four pixels to ensure good performances on both
the precision and computational cost of the above template
matching-based search, in which the rescaling factors of the
original template image are respectively 0.8, 0.9, 1.0, 1.1, 1.2.
The results are shown in Fig. 16, where Fig. 16(a) shows the
result of the determined actual scale region, and Fig. 16(b)
shows the cropped actual scale region which is prepared for
the further steps.

(b)

Fig. 16. Determination of the actual scale region. (a) The result of the
template matching-based search. (b) The actual scale region cropped based
on (a).

C. Reconstruction of Pointer Pixels

This is the second step of MPRA. By using SURF [25], it
aims to reconstruct the pixel pointers in the actual scale region
plane onto its relevant template image plane which represent
the strict forward-looking scale region, so that the influence
of the instrument deformation can be removed.

First, the coordinate mapping relationship between the ac-
tual scale region plane shown in Fig. 16(b) and its relevant
color template image plane is calculated to prepare for the
reconstruction of pointer pixels, in which SURF [25] is applied
to detect and match the feature points respectively belonged to
the actual scale region and its relevant color template image,
RANSAC is applied to further exclude those mismatched pairs
of feature points, and the coordinate mapping relationship
represented by a homography matrix

ail aiz ais
T3x3=| az1 a2 a3 (®)
asy as2 as3

can be calculated by plugging the homogeneous pixel coordi-
nates of multiple matched pairs of feature points into

[xs Ys 1]T =Tsx3- [(E; y; 1]T 9

where [z ys 1]T and [2, 3. 1]T are the homogeneous pixel
coordinates of a matched pair of feature points respectively
belonging to the color template image plane and the actual
scale region plane, and then performing the least square fitting.
As shown in Fig. 17, these are the best matched pairs of SURF
points between the actual scale region and its relevant color
template image.

Fig. 17. The matched pairs of SURF points in the MPRA process.

(W)

Fig. 18. Reconstruction of the pointer pixels. (a) The pointer pixels
determined by HT. (b) The result of the pointer reconstruction.

()

Next, the pointer pixels of the actual scale region can be
determined by Hough Transform (HT) [3], [7], [9]. As shown
in Fig. 18(a), we determine the pointer pixels by locating the
pointer pixel line (indicated in red) which is the mean of the
pixel lines (indicated in blue) detected by HT.

The fact is that the coordinate system of a color template
image is in coincidence with that of its relevant black-white
template image. In this case, finally, the pointer pixels of
the actual scale region plane can be reconstructed onto its
relevant black-white template image plane by the matrix T3,
in which the reconstructed pointer pixels are assigned black
on this template image plane. Thus, the influence of the
deformation is removed, and the computations in further steps
will be reduced. The result is shown in Fig. 18(b).

D. Determination of Analog Instrument Reading

This is the final step of MPRA, in which the reading
of a certain type (type-1~type-3) analog instrument can be
determined by the method proposed in our previous work [3].

[ e M mmm‘.ulm dlsnalgnl ) )

() (b)

Fig. 19. Result images of the polar transform and the image thinning. (a)
The result of the polar transform. (b) The result of the image thinning.

First, the polar transform [6], [9] is applied to the result of
the pointer reconstruction shown in Fig 18(b). As shown in
Fig. 19(a), the arc belonged to the scale lines is converted to
a straight line, so that the issue of determining the reading is
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simplified. Then, an image thinning algorithm [38] is applied
to Fig. 19(a). As shown in Fig. 19(b), the one-pixel-width
skeleton is extracted, so that it is easier to locate each scale line
and the pointer. Next, each scale line and the pointer are locat-
ed by counting black pixels over each column in Fig. 19(b),
in which the column have the largest number of black pixels
is regarded the pointer location. There are different designs
of the scale marks of type-1~type-3 analog instruments. To
read a certain type instrument, the configuration file is used
again here to further acquire some other type information, e.
g., the unit scale value, the number of scale lines, and the
maximum scale value. In this case, finally, the reading of the
instrument can be calculated based on the relative location
relationship between the pointer line and the scale lines, just
like the method in [3].

In experiments of the MPRA, the MPRA was shown to be
effective and precise for the automatic reading of type-1~type-
3 analog instruments during the robot-based inspection.

V. PERFORMANCE OF OUR AUTOMATIC RECOGNITION
SYSTEM

To evaluate the performance of the automatic analog instru-
ment reading system during complex real-world inspections,
similar indoor and outdoor experimental scenes were set
up to simulate the actual operating environments of low-
voltage substations, water plants, chemical plants, efc. They
are respectively shown in Fig. 20(a) and Fig. 20(b).

» ‘No.1l
cation location

AN
N\

/
: No.l
location__ location|

N
No.3
location

(b)

Fig. 20. The experimental scenes. (a) Indoor scene. (b) Outdoor scene.

In both scenes of Fig. 20, three locations named NO.1~3
were set to put the instruments to be read, where each robot
parking point was set 2.5m in front of the corresponding
instrument location. As mentioned in Section I, the analog
instruments are generally installed at 0.5~1.5m height in
actual operating environments, so that workers can read during
manual inspections. Hence, different heights were selected
for instrument installations at NO.1~3 locations, which were

1.1m, 1.3m, and 1.5m respectively. In this case, the evaluation
experiments of the YOLOv3-tiny-dw detector, the FCAA, and
the MPRA were designed and carried out respectively.

A. Performance of YOLOv3-tiny-dw Instrument Detector

In the camera alignment process using FCAA, positioning
the instrument plane center to the image center relies on
the instrument detection, in which the instrument detection
is carried out by our YOLOv3-tiny-dw detector. Therefore,
the detection performance of our YOLOv3-tiny-dw detector
largely determines the performance of the camera alignment
process during robot-based inspections. To evaluate the instru-
ment detection performance of the proposed detector, first,
several common-used object detectors were tested on the
challenging testing dataset we produced and compared with
the proposed detector. Then, the proposed detector was also
evaluated in the condition of instrument occlusion.

1) Comparison of instrument detectors: First, several clas-
sic object detectors including the Cascade Adaboost [26], [39],
the Dual Cascade Adaboost [40], the HOG-SVM [41] were
constructed and tested as comparative detectors. Meanwhile,
a Faster HOG-SVM detector was proposed in the experiments,
and also tested as a comparative detector. The default config-
urations of the detectors are described below.

Comparative detector I. Cascade Adaboost: The local fea-
ture classifier contained 20 levels of Haar-like features. The
most discriminative features were selected by Adaboost to
build strong classifiers. And the detector detected at all scales
from 48x48 to 82x82 with a rescaling factor of 1.2 and a
sliding stride of 4 [39].

Comparative detector II. Dual Cascade Adaboost: The local
feature classifier contained 8 levels of Haar-like features and
12 levels of MS-LBP blocks. The most discriminative features
were selected by Adaboost to build strong classifiers. And the
detector detected at all scales from 48x48 to 82x82 with a
rescaling factor of 1.2 and a sliding stride of 4 [40].

Comparative detector III. HOG-SVM: The local feature
classifier was trained using the HOG feature and the linear
soft-margin SVM. The detector was divided into 8 x8 grids to
calculate the HOG feature. And the detector detected at scales
48x48, 64x64, 80x80 with a sliding stride of 8 [41].

Comparative detector IV. Faster HOG-SVM: Only the dif-
ferences between the standard HOG-SVM are listed below. It
is known that, an instrument to be detected usually occupies
a small Region Of Interest (ROI) in the wide-vision-field
inspection image. It would be a waste of time if global
detection is performed. In this case, Selective Search [42], [43]
were applied to suggest small instrument region proposals first,
and then the detector merely detected in region proposals to
avoid redundant computations [39]-[41].

It should be noted that, the above four detectors are sup-
posed to train local feature classifiers first, and then detect
objects by using sliding window strategy. Hence, based on
ground truth labels in our training dataset, patches were
cropped for their classifier training. Since the limitation of
Nvidia® acceleration, they are tested by only the Nvidia®
Denver™ CPU.
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TABLE 11
INTERPOLATED TPR VALUES FOR DIFFERENT FPR VALUES ON THE ROC CURVES

TPR (%) False Positive Rate (FPR) CPU time/s GPU time/s
Detector 0.005 0.010 0.015 0.020 0.025 0.030 0.035

Comparative 1. Cascade Adaboost 7789  81.50  83.80 86.58  87.89 8839  88.55 0.240(~41ps) -
Comparative II. Dual Cascade Adaboost 83.98 87.59 89.39  90.70  91.03 91.52 9152 0.605(< 1fps) -
Comparative III. HOG-SVM 91.80 9328 9426 9475 9557  96.07  96.07 1.439(< 1fps) -
Comparative IV. Our Faster HOG-SVM 90.28 92.41 94.05 94.54 9520 9520 9552 0.173(~6fps) -
Comparative V. YOLOV3 99.84  100.00 100.00 100.00 100.00 100.00 100.00  2.958(<1fps) 0.096(=10fps)
Comparative VI. YOLOvV3-tiny 99.34 99.34 99.34 99.34 99.34 99.34 99.34 0.672(~2fps) 0.082(=12fps)
Our YOLOv3-tiny-dw 99.84  100.00 100.00 100.00 100.00 100.00 100.00  0.463(~2fps) 0.066(~16fps)

Then, the latest and the state-of-the-art YOLOv3 [27] and
YOLOV3-tiny [36] were constructed on our training dataset
and tested as comparative detectors. The default configurations
of the detectors are described below.

Comparative detector V. YOLOv3: A 53-layer convolutional
neural network was used to extract features. The instrument
bounding boxes were predicted at three scales (13x 13, 26 x 26,
52 x 52) by adding two passthrough layers into DarkNet-53,
as well as using K-means clusters and logistic regression [27].
Meanwhile, the objectness score threshold was set to 0.5.

Comparative detector VI. YOLOv3-tiny: A 16-layer convo-
lutional neural network was used to extract features. The in-
strument bounding boxes were predicted at two scales (13 x 13,
26 x 26) by adding a passthrough layer into its network, as
well as using K-means clusters and logistic regression [36].
Meanwhile, the objectness score threshold was set to 0.5.

Since the Nvidia® acceleration is available to YOLOV3
and YOLOv3-tiny, they (plus our YOLOv3-tiny-dw) were
tested by both the Nvidia® Denver™ CPU and the Nvidia®
Kepler™ GPU in our robot system.

ROC Curves of the Instrument Detection
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Fig. 21. The ROC curves which show the performances of seven different

instrument detectors on our testing dataset.

These six comparative instrument detectors together with
our YOLOv3-tiny-dw were tested on our challenging testing
dataset, which included 1220 images. Referenced on the
PASCAL VOC criteria [44], seven Receiver Operating Charac-
teristic (ROC) curves are drawn in Fig. 21 to show the overall

performances of these instrument detectors, in which the x-
axis and y-axis of the ROC coordinate system are respectively
corresponding to the False Positive Rate of detection (FPR)
and True Positive Rate of detection (TPR). Meanwhile, a group
of FPR values are sampled evenly from the x-axis of the ROC
coordinate system to intuitively show their corresponding TPR
values for each ROC curve, as presented in Table II.

Combining the results shown in Fig. 21 and Table II,
conclusions can be made as below. From the perspective
of the overall detection performance, the YOLOvV3-tiny-dw
instrument detector proposed in our robot system was much
better than the Cascade Adaboost, the Dual Cascade Adaboost,
the HOG-SVM, and the Faster HOG-SVM. And it performed
almost the same as the state-of-the-art YOLOv3 and YOLOV3-
tiny. From the perspective of the mean detection time, the
proposed YOLOV3-tiny-dw was the fastest (16fps) when GPU
was available. And it was always the fastest compared with
YOLOv3 and YOLOv3-tiny, both on CPU and on GPU.
That is to say, the application of depthwise separable con-
volutions [28] does promote the efficiency of YOLOv3 and
YOLOvV3-tiny. Meanwhile, the Faster HOG-SVM proposed
in our experiments was found the fastest (5fps) when only
CPU was available. In summary, with the GPU acceleration,
the proposed YOLOv3-tiny-dw is fast and accurate. It can
meet the application requirements of indoor and outdoor robot-
based inspections, and is also the reason why the FCAA can
work efficiently.

2) Discussion on instrument occlusion: In the indoor and
outdoor inspection scenes, some unexpected occlusion (e.g.,
leaves, dirt accumulated on instrument plane, the occlusion
caused by different visual angles, efc.) would affect the in-
strument detection performances. Hence, it is meaningful to
discuss the performance of our YOLOv3-tiny-dw instrument
detector on the instrument occlusion.

TABLE III
HIT RATES ON DATASETS WITH DIFFERENT DEGREES OF INSTRUMENT
OCCLUSION
Occlusion degree  Hit  Miss  Total  Hit rate (%)
Slight 197 3 200 98.5
Serious 19 111 200 9.5

Additionally, a special dataset of 200 images with slight
instrument occlusion and a special dataset of 200 images with
significant instrument occlusion were constructed in the same
way as the previous testing dataset. The hit rates of type 1~3
analog instruments in YOLOv3-tiny-dw detection are listed in
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Table III. YOLOv3-tiny-dw demonstrated excellent robustness
to slight instrument occlusion (a hit rate of 98.5%), but it is
vulnerable to significant instrument occlusion (only a hit rate
of 9.5%). Some detection examples are shown in Fig. 22.

Fig. 22.  Some example detection results on special datasets with different
degrees of instrument occlusion. (a), (b) Success detections in slight occlusion
condition. (¢), (d) Failed detections in serious occlusion condition.

In fact, in actual low-voltage substations, water plants,
chemical plants, etc., cleaning different kinds of instrument
occlusion is also an important work to be performed regularly.
The reason is that, it is unavailable and meaningless to read
an analog instrument whose main indication region is invisible
in the inspection. In this case, the proposed YOLOvV3-tiny-dw
instrument detector satisfies indoor and outdoor application
requirements on occlusion robustness, and can handle slight
occlusion with excellent performances.

B. Comparison of FCAA Based on Visual Servo Instrument
Detection and FCAA Based on One-time Instrument Detection

In Section III, one-time instrument detection and visual
servo instrument detection were proposed as two execution
methods of the FCAA. Via the error analysis of our robot
system, we believed that the latter would present higher
success rate and better precision on camera alignment.

TABLE IV
CONFIGURATIONS OF FCAA COMPARISON EXPERIMENTS FOR A
CERTAIN-TYPE ANALOG INSTRUMENT

Object: type-1~3 instrument Instrument height: 1.3m

Total FCAA Experimental Inspection
inspection type scene time

Indoor 10
40 One-time Outdoor 9:00 am 10
detection Outdoor 12:00 am 10
Outdoor 4:00 pm 10
Indoor 10
40 Visual servo Outdoor 9:00 am 10
detection Outdoor 12:00 am 10
Outdoor 4:00 pm 10

In this part, comparison experiments were designed for type-
1~type-3 analog instrument to confirm the above argument.
For each type of instrument, the FCAA-based camera align-
ment was executed during 80 different inspections, in which

the one-time way was adopted during 40 inspections, and the
visual servo way was adopted during the other 40 inspections.
To make our experiment results more persuasive and general,
we also considered disturbations possibly caused by variable
experiment scenes (e.g., illumination changes, environmental
changes, efc.). Hence, the above experiments were carried out
in four different scenes. Meanwhile, to follow the variable-
controlling principle, 1.3m height (i.e. the NO.2 locations in
both Fig. 20(a) and Fig. 20(b)) was adopted for each type of
instrument. The detailed experimental configurations are listed
in Table IV.

For easy to compare, some definitions were made first.
Refer to a result image of FCAA shown in Fig. 12(b), the
FCAA process was considered successful when the actual
scale region of a certain type instrument (see Fig. 16(b))
was totally positioned in this small-vision-field image, and the
camera alignment precision was represented by the Euclidean
distance between instrument center and image center. In this
case, the experimental results respectively corresponded to
type-1 instrument, type-2 instrument, and type-3 instrument
were recorded and the performances of two types of FCAA
were compared.

TABLE V
SUCCESS RATES OF FCAA (ONE-TIME DETECTION)

Instrument type  Success  Failure  Total  Success rate (%)
Type-1 28 12 40 70
Type-2 29 11 40 72.5
Type-3 31 9 40 71.5

TABLE VI
SUCCESS RATES OF FCAA (VISUAL SERVO DETECTION)

Instrument type ~ Success  Failure  Total ~ Success rate (%)
Type-1 38 2 40 95
Type-2 37 3 40 925
Type-3 40 0 40 100

As the results presented in Table V and Table VI, the overall
camera alignment success rates of type-1~type-3 instruments
were found respectively 70%, 72.5%, 77.5% by using the F-
CAA based on one-time detection, and those rates dramatically
increased to 95%, 92.5%, 100% by using the FCAA based on
visual servo detection. As the results shown in Fig. 23(a), Fig.
23(c), and Fig. 23(e), the instrument centers positioned by the
FCAA based on visual servo detection generally converged
much closer to the image center than those positioned by the
FCAA based on one-time detection. Meanwhile, the overall
camera alignment precision distributions of type-1~type-3
instruments shown in Fig. 23(b), Fig. 23(d), and Fig. 23(f)
indicated that, the median precision values acquired by using
the FCAA based on one-time detection were respectively 194,
239, 186 pixels, and those values acquired by using the FCAA
based on visual servo detection dramatically improved to 69,
82, 96 pixels. Also, the distribution section of the precision
values was generally much smaller in the latter situation.

In summary, the FCAA with visual servo instrument de-
tection did achieve higher success rate and higher precision
than the FCAA with one-time instrument detection during the
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The comparison of two types of the FCAA. (a) The comparison of camera alignment results for type-1 instrument. (b) The comparison of camera

alignment precision box plots for type-1 instrument. (¢) The same meaning to (a) but for type-2 instrument. (d) The same meaning to (b) but for type-2
instrument. (e) The same meaning to (a) but for type-3 instrument. (f) The same meaning to (b) but for type-3 instrument.

camera alignment process of the robot-based inspection. This
is why we adopted visual servo instrument detection in the
FCAA-based camera alignment process rather than one-time
instrument detection. Meanwhile, the FCAA was found steady
and effective for type-1~type-3 analog instruments, whether
indoor, outdoor or scenes with complex illumination changes.

C. Performance of MPRA

It is known that illumination changes and different in-
strument heights are two influential factors to the reading

accuracy of MPRA. The former always leads to intensity
distribution changes in the image, which may affect the SURF-
Matching stage in MPRA. The latter brings different degrees
of instrument deformation (see Fig. 13), which may affect
the pointer reconstruction stage in MPRA. Hence, in our
robot system, it is necessary and meaningful to discuss the
robustness of MPRA to illumination changes and different
instrument heights respectively.

In this case, groups of FCAA-MPRA union experiments
were designed and carried out for type-l~type-3 analog
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instruments. For the convenience of discussion, some general
experimental configurations were specified first. The reading
accuracy was represented by the absolute error between the
reading acquired by MPRA and the corresponding real read-
ing. The real reading of each instruments to be read was
calibrated by adjusting a DC adjustable steady current supply
with the help of human eyes. Meanwhile, it should be noted
that the unit scale values of type-1~type-3 analog instruments
were respectively 0.020mA, 0.20mA, and 0.20mA.

TABLE VII
EXPERIMENTAL CONFIGURATIONS AND RESULTS OF MPRA IN
DISCUSSION ON ILLUMINATION CHANGES

Object: type-1~3 Instrument height: reading unit:

instrument 1.3m mA

Instrument  Illumination Inspection  Real MPRA  Absolute

type level time reading reading  error

0.330 0.3271 0.0029

Indoor 3 0.470 04617 0.0083

0.620  0.6119 0.0081

0.330  0.336I 0.0061

Outdoor 9:00 am 3 0.470  0.4657 0.0043

Type-1 0.620  0.6109 0.0091

0.330  0.3310 0.0010

Outdoor 12:00 am 3 0.470  0.4792 0.0092

0.620  0.6132  0.0068

0.330  0.3301  0.0001

Outdoor 4:00 pm 3 0.470 04771 0.0071

0.620  0.6259  0.0059

0.45 0.439 0.011

Indoor 3 1.50 1.533 0.033

2.60 2.584 0.016

0.45 0.437 0.013

Outdoor 9:00 am 3 1.50 1.442 0.058

Type-2 2.60 2.675 0.075

0.45 0.531 0.081

Outdoor 12:00 am 3 1.50 1.490 0.010

2.60 2.554 0.046

0.45 0.498 0.042

Outdoor 4:00 pm 3 1.50 1.479 0.021

2.60 2.595 0.065

1.15 1.163 0.013

Indoor 3 5.00 4.928 0.072

9.05 9.104 0.054

1.15 1.197 0.047

Outdoor 9:00 am 3 5.00 4.961 0.039

Type-3 9.05 8.995 0.055

I.15 1.108 0.042

Outdoor 12:00 am 3 5.00 4.992 0.008

9.05 9.101 0.051

1.15 1.104 0.046

Outdoor 4:00 pm 3 5.00 5.089 0.089

9.05 9.092 0.042

1) Discussion on illumination changes: In this part, exper-
iments were designed for type-1~type-3 analog instruments
to study the robustness of MPRA to illumination changes.
To obtain comparative experimental results, four differen-
t illumination levels were configured based on the indoor
and outdoor experimental scenes shown in Fig. 20(a) and
Fig. 20(b). These four levels include the indoor case, and the
outdoor cases at 9:00 am, 12:00 am, and 4:00 pm respectively.
To follow the variable-controlling principle, 1.3m height (i.e.
the NO.2 locations in both indoor and outdoor experimental
scenes) was adopted to install the analog instruments to be
read. In the experiments, for each type of instrument, we
designed twelve inspection trials for the MPRA-based analog
instrument reading. These twelve trials were divided equally

into four groups. Each group contains three trials, which were
carried out at the same illumination level.

The detailed experimental configurations are presented in
Table VII, as well as the experimental results. As can be
calculated, for type-1 instrument, the mean absolute reading
errors of MPRA in four different illumination levels were
respectively 0.0064, 0.0065, 0.0057, and 0.0044 mA (merely
32%, 32.5%, 28.5%, and 22% of the unit scale value of 0.020
mA). For type-2 instrument, those errors were respectively
0.020, 0.049, 0.046, and 0.043 mA (merely 10%, 24.5%, 23%,
and 21.5% of the unit scale value of 0.20 mA). And for type-3
instrument, those errors were respectively 0.046, 0.047, 0.033,
and 0.059 mA (merely 23%, 23.5%, 16.5%, and 29.5% of
the unit scale value of 0.20 mA). The mean absolute reading
errors of MPRA had little change when the illumination levels
changed randomly. In summary, the MPRA was robust to
illumination changes. Meanwhile, it was universal to automatic
readings of type-1~type-3 analog instruments, and with a high
reading accuracy.

TABLE VIII
EXPERIMENTAL CONFIGURATIONS AND RESULTS OF MPRA IN
DISCUSSION ON DIFFERENT INSTRUMENT HEIGHTS

Object: type-1~3 Illumination level: reading unit:
instrument indoor mA

Instrument Instrument  Inspection Real MPRA  Absolute

type height number reading  reading error

1 0.330 0.3251 0.0049

I.1m 2 0.470 0.4700  0.0000

3 0.620 0.6279  0.0079

1 0.330 0.3355  0.0055

Type-1 1.3m 2 0.470 0.4758  0.0058

3 0.620 0.6134  0.0066

1 0.330 0.3378  0.0078

1.5m 2 0.470 0.4798  0.0098

3 0.620 0.6231 0.0031

1 0.45 0.461 0.011

1.Im 2 1.50 1.579 0.079

3 2.60 2.633 0.033

1 0.45 0.397 0.053

Type-2 1.3m 2 1.50 1.470 0.030

3 2.60 2.678 0.078

1 0.45 0.527 0.077

1.5m 2 1.50 1.564 0.064

3 2.60 2.673 0.073

1 1.15 1.195 0.045

1.Im 2 5.00 5.007 0.007

3 9.05 8.997 0.053

I 1.15 1.203 0.053

Type-3 1.3m 2 5.00 5.072 0.072

3 9.05 9.081 0.031

I 1.15 1.085 0.065

1.5m 2 5.00 5.033 0.033

3 9.05 9.130 0.080

2) Discussion on different instrument heights: In this part,
experiments were designed for type-1~type-3 analog instru-
ments to discuss the robustness of MPRA to different in-
strument heights. To obtain comparative experimental results,
1.1m, 1.3m, 1.5m heights (i.e. the NO.1, NO.2, and NO.3
locations shown in Fig. 20(a)) were adopted to install analog
instruments of the same type which need to be read. To follow
the variable-controlling principle, this part of experiments
were all developed in the indoor experimental scene shown
in Fig 20(a) to maintain constant illumination distributions.
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In the experiments, for each type of instrument, we designed
three inspection trials for the MPRA-based analog instrument
reading. In each trial, the instruments of same type installed
at 1.1m, 1.3m, 1.5m heights were read in order.

The detailed experimental configurations are presented in
Table VIII, as well as the experimental results. As can be
calculated, for type-1 instruments installed at 1.1m, 1.3m, and
1.5m heights, the mean absolute reading errors of MPRA were
respectively 0.0043, 0.0060, and 0.0069 mA (merely 21.5%,
30%, and 34.5% of the unit scale value of 0.020 mA). For
type-2 instrument installed at 1.1m, 1.3m, and 1.5m heights,
those errors were respectively 0.041, 0.054, and 0.071 mA
(merely 20.5%, 27%, and 35.5% of the unit scale value of
0.20 mA). And for type-3 instrument installed at 1.1m, 1.3m,
and 1.5m heights, those errors were respectively 0.035, 0.052,
0.059 mA (merely 17.5%, 26%, and 29.5% of the unit scale
value of 0.20 mA). The mean absolute reading errors of MPRA
increased slightly when the instruments were installed higher.
Meanwhile, all the errors in Table VIII never exceeded half
of the corresponding unit scale values. As a result, we can
conclude that the MPRA was robust to different instrument
heights.

In summary, our automatic reading system using the FCAA
and MPRA was effective to different types of analog instru-
ments, robust to illumination changes and different instrument
heights, and precise in the process of analog instrument read-
ing. During the robot-based inspection, this system performed
much better than those discussed on only one type of analog
instruments [2]-[16], while it performed much better than
human eyes on the reading accuracy.

VI. CONCLUSION

In this paper, concerning about the automatic reading of
different types of analog instruments, an novel automatic
analog instrument reading system using computer vision and
an inspection robot has been presented. Through integrated
application of the proposed FCAA and MPRA, the PTZ
camera can be aligned to the instrument to be read, and
the instrument reading can be then accurately calculated by
removing the influence of the instrument deformation. In the
process of FCAA, the location of the instrument to be read
is first detected by an improved YOLOV3-tiny-dw instrument
detector. Then, the camera deviation angles are calculated.
Finally, the camera is aligned to the instrument by visual
servo PTZ adjustments. In the process of MPRA, the pointer
pixels are first detected by Hough Transform. Then, those
pixels are reconstructed onto the front-view instrument scale
region to remove the influence of instrument deformation.
Finally, the reading is acquired based on the polar transform.
Experimental results indicated that our system achieved high
speed, high precision, and high success rate during the camera
alignment process. Meanwhile, this system was capable of
automatic reading of different types of analog instruments,
with a reading accuracy higher than that achieved by human
eyes. More importantly, the robustness to illumination changes
and different instrument heights of our system was also
confirmed, both in indoor and outdoor scenes. It can meet the

application requirements of both indoor and outdoor robot-
based inspections.
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