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Abstract—Alzheimer's disease significantly affects the quality 

of life of patients. This paper proposes an approach to identify 

Alzheimer's disease based on transfer learning using functional 

MRI images, which is especially useful when the training dataset 

is small. Transfer learning improves the performance of the 

classifier with the help of an auxiliary dataset, which may be 

obtained from a different population group and/or machine. 

First, we used the joint distribution adaptation method to project 

the source and target domain samples into a new feature space, 

and then we built a classifier that works well in both the source 

and target domains but emphasizes the target domain. In the 

classifier, we assigned larger weights to the target domain 

samples and minimized the weighted loss in classifying the 

samples in both domains. Experimental results verify the 

effectiveness of our proposed approach and, with the help of the 

auxiliary samples, the classification accuracy of our target 

dataset has been greatly improved.  

Index Terms—Alzheimer's Disease, Brain Network, Transfer 

Learning, Joint Distribution Adaptation. 

I. INTRODUCTION 

Alzheimer's disease (AD) is a neurodegenerative disease 
that occurs in the brain and significantly affects the patient’s 
quality of life [1]. It is predicted that the number of AD patients 
will double in the next 20 years [2]. Diagnosing AD early and 
accurately can greatly benefit its treatment. 

With the rapid advance in brain-analysis technology, 
complex network analysis has become a common method for 
studying the brain. Complex brain networks are constructed 
using several brain-imaging technologies, such as PET, EEG, 
and functional-MRI (fMRI). Betty et al. studied the changes in 
the brain network of AD patients [3]. Dosenbach et al. used 
complex networks to study the growth of the brain [4]. Many 

 
 

computer-assisted AD diagnosis techniques have also been 
proposed based on brain networks. For example, Zhang et al. 
used machine learning to distinguish AD patients using brain 
networks [5]. However, these algorithms usually need a large 
amount of training samples for reliable performance, but the 
collection of AD cases is difficult. Moreover, fMRI images 
may be collected in different locations on different machines, 
whose parameters and formats are not consistent.  

The goal of transfer learning is to make use of information 
from a (large) auxiliary dataset to improve the learning on a 
(small) target dataset. It is a commonly used approach in 
machine learning when it is not possible to achieve a good 
performance in training a classifier based on a small dataset. 
Transfer learning has shown promising results in EEG-based 
brain–computer interfaces. For example, Wu et al. showed that 
transfer learning can effectively deal with individual 
differences and reduce the number of labeled subject-specific 
training samples [6]. However, there is little research on the 
applications of transfer learning to AD diagnosis based on 
fMRI data, which is more difficult and expensive to acquire 
than EEG data.  

In this work, we consider the case where the target domain 
contains a very small number of samples and propose a 
transfer learning method for the fMRI images. We use the joint 
distribution adaptation (JDA) method to find a new feature 
space in which the source and target domain data are more 
consistent and design a classifier in that space by considering 
the information in both domains. 

II. METHOD  

JDA reduces the differences between both the marginal 
and the conditional distributions between the two domains by 
projecting all samples onto a new lower-dimensional feature 
space [7]. 

The labeled source domain data 𝐷𝑠 =
{(𝑥1, 𝑦1), . . . , (𝑥𝑛𝑠 , 𝑦𝑛𝑠)} ∈ (𝑋𝑠, 𝑌𝑠)  and target domain data 

𝐷𝑡 = {(𝑥𝑛𝑠+1, 𝑦𝑛𝑠+1), . . . , (𝑥𝑛𝑠+𝑛𝑡 , 𝑦𝑛𝑠+𝑛𝑡)} ∈ (𝑋𝑡 , 𝑌𝑡)  are 

given, where 𝑛𝑠 is the number of samples in the source domain 
and 𝑛𝑡 is the number of samples in the target domain;  𝑋𝑠, 𝑋𝑡 
are multidimensional feature spaces and 𝑌𝑠 , 𝑌𝑡  are label 
spaces. It is assumed that 𝑋𝑠 = 𝑋𝑡, 𝑌𝑠 = 𝑌𝑡, 𝑃𝑠(𝑋𝑠) ≠ 𝑃𝑡(𝑋𝑡), 
𝑄𝑠(𝑌𝑠|𝑋𝑠) ≠ 𝑄𝑡(𝑌𝑡|𝑋𝑡) , where 𝑃(𝑋)  is the marginal 
probability distribution of 𝑋 , and 𝑓(𝑥) = 𝑄(𝑌|𝑋)  is the 
conditional probability distribution. JDA learns a feature 
representation in which the distribution differences are 
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explicitly reduced between 1) 𝑃𝑠(𝑋𝑠)  and 𝑃𝑡(𝑋𝑡)   2)  
𝑄𝑠(𝑌𝑠|𝑋𝑠) and 𝑄𝑡(𝑌𝑡|𝑋𝑡)  [7]. 

Let 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛] be the combined data matrix from 
both domains, where 𝑛 = 𝑛𝑠 + 𝑛𝑡 . The JDA optimization 
problem is as follows:  

 
min

ATXHXTA=I
∑ tr(ATXMcX

TA)C
c=0 + a‖A‖F

2

 
      (1) 

where 𝐻 = 𝐼 −
1

𝑛
1 is the centering matrix, 1 is the matrix of 

ones, 𝑎  is the regularization parameter, and 𝑀𝑐 is the 
maximum mean discrepancy matrix defined as  

(𝑀𝑐|𝑐 = 0)𝑖𝑗 =

{
 
 

 
 

1

𝑛𝑠𝑛𝑠
, 𝑥𝑖 , 𝑥𝑗 ∈ 𝐷𝑠

1

𝑛𝑡𝑛𝑡
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−1

𝑛𝑠𝑛𝑡
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                       (2) 

 (𝑀𝑐|𝑐 = 1,… , 𝐶)𝑖𝑗 =

{
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(𝑐), 𝑥𝑗 ∈ 𝐷𝑡
(𝑐)

𝑥𝑗 ∈ 𝐷𝑠
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(𝑐)

   0      ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               

   (3) 

in which 𝐷𝑠
(𝑐) = {𝑥𝑖 : 𝑥𝑖 ∈ 𝐷𝑠 , 𝑦(𝑥𝑖) = 𝑐}  is the set of all 

samples from the c-th class in the source domain and, Dt
(c) is 

the set of all samples from the c-th class in the target domain, 
c=0 means M0 is not related to the label. y(xi) is the true or 
predicted label of 𝑥𝑖.  

When 𝑐 = 0 , the difference between the marginal 
probability distributions of the two domains is reduced. When 
𝑐 = 1,2, . . . , 𝐶  the difference between the conditional 
probability distributions of the c-th class of the two domains is 
reduced. The optimal fitness matrix A can be found by solving 
(4) to obtain the eigenvectors corresponding to the k smallest 
eigenvalues [7]. 

(𝑋 ∑ 𝑀𝑐𝑋
𝑇𝐶

𝑐=0 + 𝑎𝐼)𝐴 = 𝑋𝐻𝑋𝑇𝐴𝜙            (4) 

JDA maps the source and target domain samples to a more 
consistent new feature space, and then we build a classifier in 
this feature space. However, because the source domain has 
much more data than the target domain, whereas the classifier 
will be used in the target domain, we need to properly balance 
the two domains so that the target domain will not be 
overwhelmed by the source domain. Sometimes a single 
sample of the source domain contains less effective 
information than the target domain.  

An intuitive representation of the algorithm is shown in 
Figure. 1. As the figure shows, the classification accuracy is 
low when we use only the target data and, with the help of the 
auxiliary samples, the classification boundaries are clearer. 
However, if the source domain sample distribution is slightly 
different from the target domain, as shown in Figures. 1c and 
1d, then the target domain samples should be of greater 
importance. 

The optimization problem of our classifier is  

 

Figure 1.  Intuitive representation of the improved JDA algorithm. 
Different colors represent different categories, the white balls represent the 

positive samples and the black balls are the negetive samples; different sizes 

represent different levels of importance, and the larger balls represent the 
target domain samples, while the smaller ones represent the source domain 

samples. 

𝑓 = 𝑎𝑟𝑔𝑚𝑖𝑛∑ 𝑤𝑠,𝑖𝑙(𝑓(𝑥𝑖), 𝑦𝑖)
𝑛𝑠

𝑖=1
                                          

+ 𝑤𝑡 ∑ 𝑤𝑡,𝑖𝑙(𝑓(𝑥𝑖), 𝑦𝑖)
𝑛𝑠+𝑛𝑡,𝑙
𝑖=𝑛𝑠+1

+ 𝜎‖𝑓‖𝐾
2      (5) 

where 𝑛𝑡,𝑙  and 𝑛𝑡,𝑢  are the number of labeled and unlabeled 

samples in the target domain, respectively;  l(⋅) is the loss 
function; σ is a regularization parameter; wt  is the overall 
weight for all target domain samples; ws,i  and 𝑤𝑡,𝑖   are the 

weights for the i-th sample in the source and target domain, 
respectively, whose purpose is to balance the positive and 
negative samples. 

There are three terms in (5), the 1-st term minimizes the 
weighted loss on fitting the samples in the source domain; the 
2-nd term minimizes the weighted loss of the target domain; 
and the 3-rd term minimizes the structural risk of the model. 
The solution of (5) is [8] [9] 

𝑓(𝑥) = ∑ 𝛼𝑖𝐾(𝑥𝑖 , 𝑥)
𝑛𝑠+𝑛𝑡
𝑖=1 + 𝑏 = 𝛼𝑇𝐾(𝑋, 𝑥) + 𝑏       (6) 

where 𝛼 = [𝛼1, 𝛼2, . . . , 𝛼𝑛𝑠+𝑛𝑡,𝑙+𝑛𝑡,𝑢]
𝑇 , 𝐾 ∈

𝑅(𝑛𝑠+𝑛𝑡,𝑙+𝑛𝑡,𝑢)×(𝑛𝑠+𝑛𝑡,𝑙+𝑛𝑡,𝑢)  is the kernel matrix with 

𝐾(𝑥𝑖 , 𝑥𝑗) = ⟨𝜑(𝑥𝑖), 𝜑(𝑥𝑗)⟩ ; so we can convert the 

optimization problem to [Error! Bookmark not defined.]:  

𝛼 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛼∈ℝ

𝑛𝑠+𝑛𝑡,𝑙+𝑛𝑡,𝑢

𝜉∈ℝ
𝑛𝑠+𝑛𝑡,𝑙

∑ 𝐸𝑖𝑖𝜉𝑖
𝑛𝑠+𝑛𝑡,𝑙
𝑖=1 + 𝜎𝛼𝑇𝐾𝛼                        

𝑠. 𝑡.    𝑦𝑖[∑ 𝛼𝑖𝐾(𝑥𝑖 , 𝑥𝑗)
𝑛𝑠+𝑛𝑡,𝑙+𝑛𝑡,𝑢
𝑖=1 + 𝑏] ≥ 1 − 𝜉𝑖           (7) 

𝜉𝑖   ≥    0,        𝑖 = 1,2, . . . , 𝑛𝑠 + 𝑛𝑡,𝑙                          

where 𝐸𝑖𝑖 =
𝑑𝑖𝑎𝑔(𝑤𝑠,1, … , 𝑤𝑠,𝑛𝑠 ,  𝑤𝑡𝑤𝑡,𝑛𝑠+1, … , 𝑤𝑡𝑤𝑡,𝑛𝑠+𝑛𝑡,𝑙). 

The pseudo code of the overall algorithm is summarized in 
Algorithm 1. 
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III.  EXPERIMENTS 

A.  Datasets  

We have 292 resting fMRI cases in the source domain and 
26 cases in the target domain. Source data were obtained from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database (adni.loni.usc.edu). The ADNI was launched in 2003 
as a public–private partnership, led by Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI has been 
to test whether serial magnetic resonance imaging, positron 
emission tomography (PET), other biological markers, and 
clinical and neuropsychological assessment can be combined 
to measure the progression of mild cognitive impairment and 
early Alzheimer’s disease. For up-to-date information, see 
www.adni-info.org. The target data were obtained from the 
Tongji Hospital, Huazhong University of Science and 
Technology.  

The ADNI dataset is a widely used public dataset, it has 
more samples than Tongji Hospital. Table 1 presents the 
summary of these two datasets. We have 117 samples of 
patients with Alzheimer’s Disease (AD) and 175 normally 
control (NC) samples in the ADNI dataset, 12 AD samples and 
14 NC samples in the Tongji dataset.  Where Mini–Mental 
State Examination (MMSE) is a questionnaire to measure 
cognitive impairment, and healthy people usually have large 
MMSE values. 

 

TABLE I.  SUMMARY OF THE ADNI AND TONGJI DATASETS. 

Dataset Information AD NC 

ADNI 

Number (M/F) 117 (56/61) 175 (98/77) 

MMSE 21.3 ± 3.5 28.9 ± 1.5 

Age 74.6 ± 7.5 75.5 ± 6.1 

Tongji 

Number (M/F) 12 (6/6) 14 (8/6) 

MMSE 16.7 ± 3.0 28.5 ± 1.2 

Age 65.7 ± 11.9 65.7 ± 7.5 

 

B. Data Preprocessing 

We used the data processing assistant for resting-state 
fMRI (DPARSF) [10] to preprocess all samples. We removed 
the first ten volumes of each time series, corrected the slice 
time, realigned the volumes for head motion correction, and 
normalized them to the EPI template. We excluded samples 
with significant head motions. Subsequently, the images were 
spatially smoothed, and the linear trends of the time courses 
were removed. Next, we applied a [0.01, 0.08] Hz band-pass 
filter to the time courses of each voxel, and the global mean 
signal, white matter signal, and cerebrospinal fluid sign were 
regressed out. Finally, we extracted the time series of 90 ROIs 
of each sample following the AAL template [11]. 

C.  Feature Extraction 

The Pearson correlation coefficient can be used to measure 
the linear relationship between variables, which is often used 
in the construction of brain networks [12]. As the brain 
network is a 90 × 90 symmetric matrix, we used the 4005 
unique terms as our features. Given that the number of features 
is very large, it is necessary to select the most discriminative 
features. For the sequence of each feature of the training 
sample, we calculated its Kendall correlation coefficient with 
the sequence of labels and selected the features with large 
correlation coefficient as the inputs to the classifier. 

D. Experimental Results 

We divided the samples into three parts: the entire ADNI 
dataset as the labeled source domain data 𝑆, some samples 
from the Tongji dataset as the unlabeled target domain samples 
𝑇𝑢, and the remaining Tongji dataset samples as the labeled 
target domain samples 𝑇𝑙 . Three methods were compared: 

A．𝑇𝑙  for training and Tu for the test, i.e., we only used the 

Tongji dataset for training and test; 

B．𝑇𝑙combined with 𝑆 for training and Tu for the test, i.e., 

we simply combined the samples from different domains for 
training; and 

C．𝑇𝑙and 𝑆 for training and 𝑇𝑢 or the test, by applying our 

proposed algorithm. 

Classification accuracy was calculated by 

Accuracy = (x: x ∈ 𝑇𝑢 ∧ 𝑦̂(x) = y(x))/(x: x ∈ 𝑇𝑢)   (7) 

The relationship between the classification accuracy and 
the number of features is shown in Figure. 2. 

 

Algorithm 1: the improved JDA algorithm 

Input:  

𝑛𝑠labeled source domain samples: {(xi, yi)}i=1
ns ;  

𝑛𝑡,𝑙 labeled target domain samples: {(xi, yi)}i=ns+1
ns+nt,l

;  

𝑛𝑡,𝑢 unlabeled target domain samples: {xi}i=ns+nt,l+1
ns+nt,l+nt,u

; 

Subspace dimension: 𝑘;  
Regularization parameters:  ;  

Maximum iterations: 𝑇 
Output:  

labels: {yî : = f(A
Txi)}i=ns+nt,l+1

ns+nt,l+nt,u
  

Begin： 

a. Calculate the MMD matrix 
0M  by (2); set 

{𝑀𝑐 : = 0}𝑐=1
𝐶 ;  

b. Solve (4), and choose the eigenvectors corresponding 
to the k smallest eigenvalues as A, so 𝑍 : =𝐴𝑇𝑋 ; 

c. Calculate the kernel matrix by {(𝐴𝑇𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛𝑠+𝑛𝑡,𝑙

, and 

calculate , b  by (7);  

d. Calculate {𝑓(𝑥𝑖)}𝑖=𝑛𝑠+𝑛𝑡,𝑙+1
𝑛𝑠+𝑛𝑡,𝑙+𝑛𝑡,𝑢

 by (6), and get 

{𝑦𝑖̂}𝑖=𝑛𝑠+𝑛𝑡,𝑙+1
𝑛𝑠+𝑛𝑡,𝑙+𝑛𝑡,𝑢

; 

e. Update the MMD matrix {𝑀𝑐}𝑐=1
𝐶   by (3); 

f. If {𝑦𝑖̂}𝑖=𝑛𝑠+𝑛𝑡,𝑙+1
𝑛𝑠+𝑛𝑡,𝑙+𝑛𝑡,𝑢

 no longer changes or get maximum 

iterations T, return; else go to Step b; 
End  
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Figure 2.  Results with our proposed algorithm compared with control 

groups.  

In Experiment A, which used only the small Tongji dataset, 
the maximum testing classification accuracy was 
approximately 58%, close to a random guess. In Experiment 
B, we mixed the Tongji dataset with the ADNI dataset in 
training, and the maximum testing classification accuracy was 
approximately 75%, much better than Experiment A. This 
implied that, although the ADNI and Tongji datasets were 
from different populations and different fMRI scanners, they 
still shared similarities, so one dataset can help with the 
classification of the other. In Experiment C, the proposed 
improved JDA algorithm was used to transfer knowledge from 
the ADNI to the Tongji dataset, and a maximum classification 
accuracy of 80% was achieved, a 22% improvement over 
Experiment A, and a 7% improvement over Experiment B.  

As we can see, when the number of features is 
approximately 220, the performance of the classifier is the 
best, and its accuracy is 80.4%. The mixing matrix for the 
classifier when using 220 features is presented in Table 2. 

To visualize the distribution of samples in different 
datasets, we used t-SNE to reduce the features of the ADNI 
and Tongji datasets to two dimensions. The results are shown 
in Figure. 3. Before JDA (Figure. 3a), we can observe that the 
data distributions of the two domains are different. The Tongji 
samples are mostly distributed on the edge of the ADNI 
samples. As most machine learning algorithms assume that the  

TABLE II.  MIXING MATRIX FOR THE CLASSIFIER WHEN USING 220 

FEATURES, WHERE ROWS REPRESENT THE TRUE LABEL AND COLUMNS 

REPRESENT THE RESULT OF THE CLASSIFIER. 

 AD NC 

AD TP: 0.7083 FN：0.2917 

NC FP：0.1012 TN：0.8988 

 

training and testing datasets have the same distribution [13], 
such an inconsistency usually results in poor generalization 
performance. After transfer learning (Figure. 3b), we can 
observe that the difference between the source and target 
domain distributions is significantly reduced. As a result, the 
classification performance of Experiment C was improved, a 
22% improvement over Experiment A, and a 7% improvement 
over Experiment B.  

In summary, these experimental results indicate that the 
improved JDA algorithm can effectively extract relevant 
model information from the source domain data and assist the 
classification of the small dataset in the target domain. So, our 
approach can significantly improve the classification accuracy 
of the target domain samples. 

IV. CONCLUSION 

This work proposes a transfer learning approach to classify 
AD based on fMRI images. Particularly, it considers the 
problem in which we have a large number of auxiliary samples 
in the source domain and a very small number of samples in 
the target domain. These two domains have different 
distributions. Our approach first mapped the samples in the 
two domains onto a more consistent feature space and then 
assigned larger weights to the target domain samples and 
minimized the weighted loss in classifying the samples in both 
domains. This ensured that the designed classifier worked well 
in both the source and the target domains but emphasized the 
target domain. Experimental results show that our approach 
can significantly improve the classification accuracy, which 
may help in the development of a computer-assisted AD 
diagnosis system. 

Figure 3.  Distributions of ADNI and Tongji datasets.  (a) Distributions before JDA. (b) Distributions after JDA.
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