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Aggregation Using the Linguistic Weighted Average
and Interval Type-2 Fuzzy Sets

Dongrui Wu, Student Member, IEEE, and Jerry M. Mendel, Life Fellow, IEEE

Abstract—The focus of this paper is the linguistic weighted av-
erage (LWA), where the weights are always words modeled as in-
terval type-2 fuzzy sets (IT2 FSs), and the attributes may also (but do
not have to) be words modeled as IT2 FSs; consequently, the output
of the LWA is an IT2 FS. The LWA can be viewed as a generaliza-
tion of the fuzzy weighted average (FWA) where the type-1 fuzzy
inputs are replaced by IT2 FSs. This paper presents the theory, al-
gorithms, and an application of the LWA. It is shown that finding
the LWA can be decomposed into finding two FWAs. Since the LWA
can model more uncertainties, it should have wide applications in
distributed and hierarchical decision-making.

Index Terms—Aggregation, computing with words, distributed
and hierarchical decision-making, fuzzy weighted average, interval
type-2 fuzzy sets, linguistic weighted average.

I. INTRODUCTION

ZADEH proposed the paradigm of computing with words
(CWW) [36], [37], i.e., CWW is “a methodology in which

the objects of computation are words and propositions drawn
from a natural language.” Nikravesh [27] further pointed out
that CWW “is fundamentally different from the traditional ex-
pert systems which are simply tools to ‘realize’ an intelligent
system, but are not able to process natural language which is
imprecise, uncertain and partially true.”

Words in the CWW paradigm may be modeled by type-1 (T1)
fuzzy sets (FSs) [34] or their extension, type-2 (T2) FSs [35].
The main difference between the two kinds of FSs is that the
memberships of a T1 FS are crisp numbers whereas the mem-
berships of a T2 FS are T1 FSs; hence, a T2 FS can model more
uncertainties. To date the most widely used T2 FSs are interval
T2 (IT2) FSs (see Section II-A).

CWW using T1 FSs has been studied by many researchers,
e.g., [8], [11], [15], [17]–[19], [28], [30], [31], [33], and [36];
however, the limitations of using T1 FSs in CWW have also
been pointed out by several researchers. Herrera and Herrera-
Viedma [7] noticed that “formally speaking, it seems difficult
to accept that all individuals should agree on the same member-
ship function (T1 FS) associated to linguistic terms.” Türkşen
[29] also pointed out that “type-1 representation is a ‘reduc-
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Fig. 1. Specific architecture for CWW, the perceptual computer.

tionist’ approach for it discards the spread of membership values
by averaging or curve fitting techniques and hence, camouflages
the ‘uncertainty’ embedded in the spread of membership values.
Therefore, Type-1 representation does not provide a good ap-
proximation to meaning representation of words and does not
allow computing with words a richer platform.” Mendel [19]
notes that “words mean different things to different people and
so are uncertain. We therefore need a FS model for a word that
has the potential to capture its uncertainties, and an IT2 FS
should be used as a FS model of a word.” The discussions in
this paper are therefore limited to IT2 FSs.

A specific architecture for CWW using IT2 FSs was pro-
posed in [18] (Fig. 1), called a perceptual computer (Per-C).
The Per-C consists of three components: encoder, decoder, and
CWW engine. Perceptions (i.e., granulated terms, words) acti-
vate the Per-C and are also output by the Per-C; so, it is possible
for a human to interact with the Per-C just using a vocabulary of
words. In Fig. 1, the encoder1 transforms linguistic perceptions
into IT2 FSs that activate a CWW engine. The decoder2 maps
the output of the CWW engine into a word. Usually a vocab-
ulary (codebook) is available, in which every word is modeled
as an IT2 FS. The output of the CWW engine is mapped into a
word (in that vocabulary) most similar to it.

How to transform linguistic perceptions into IT2 FSs, i.e.,
the encoding problem, has been considered in [23]–[25]. The
decoding problem, i.e., how to map an IT2 FS into a word
(linguistic label), has been discussed in [32]. The basic idea
of decoding is to first compute the similarities between and
all words in the codebook and then find the largest similarity,
to which the corresponding word is assigned to . In [32], a
vector similarity measure (VSM) is proposed, whose two ele-
ments measure the similarity in shape and proximity, respec-
tively. A crisp similarity measure can be obtained as the product
of the two components of the VSM.

1Zadeh calls this constraint explicitation in [36] and [37]. In some of his re-
cent talks, he calls this precisiation.

2Zadeh calls this linguistic approximation in [36] and [37].

1063-6706/$25.00 © 2007 IEEE
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This paper proposes a CWW engine, called the linguistic
weighted average (LWA),3 which is an extension of the fuzzy
weighted average (FWA) when the inputs become IT2 FSs, i.e.,

(1)

where and are words modeled by IT2 FSs. The applica-
tion of the LWA can be illustrated by the following:

Example: Consider the following distributed and hier-
archical decision-making situation. There are judges (or
experts, managers, commanders, referees, etc.) who have to
provide a subjective decision or judgement about a situation
(e.g., quality of a submitted journal article). They will do this
by providing a linguistic evaluation (i.e., a word, term, or
phrase) for each of prespecified and preranked measures,

, using a prespecified vocabulary of terms
, because it may be too problematic to provide

a numerical score for these categories. For a submitted journal
article, the categories might be importance, content, depth,
presentation, etc.; and, e.g., for presentation, the terms might
be excellent, good, adequate, marginal, and poor.

Assume that each of the category terms has been modeled a
priori as an IT2 FS ; so, for each , there are associated
IT2 FSs . Additionally, assume that the evaluation cat-
egories have also been linguistically rank-ordered a priori, so
that each is associated with a linguistic weight, modeled as
the IT2 FS . The judges do not have to be concerned with
any of the a priori rankings and modeling; it has all been done
before they have been asked to judge.

After the judges have chosen a linguistic term for the cat-
egories, the following LWA is automatically computed:

(2)

where is Judge ’s choice on . These IT2 FSs are
then sent to a control (command) center (e.g., the associate ed-
itor); however, because judges may not be of equal expertise,
it is also assumed that each judge’s level of expertise has been
prespecified using a linguistic term provided by the judge
from a small vocabulary of terms (e.g., low expertise, moderate
expertise, high expertise). The linguistic evaluations from the
judges are then aggregated using a second LWA as

(3)

This second LWA is also sent to the control (command) center.
Using and/or , a final decision or judge-
ment is made at the control (command) center. Exactly how that
is done is not the subject of this paper. This example is pursued
in greater detail in Section V.

3The phrases linguistic weighted averaging and linguistic weighted aggrega-
tion were first used in [7], where T1 FSs were considered. Although our LWA
is very different from the linguistic weighted averaging in [7], it is in the spirit
of their linguistic weighted aggregation operators; hence, we also use the LWA
acronym in this paper. Note that in this paper, LWA is always connected to IT2
FSs.

Fig. 2. An IT2 FS. A is an embedded T1 FS.

The rest of this paper is organized as follows. Section II re-
views the background needed to derive the LWA algorithms, i.e.,
IT2 FSs, -cuts, and the FWA. Section III provides theorems
for the LWA, which are the bases for the LWA computational
algorithms proposed in Section IV. Section V presents an appli-
cation. Section VI draws conclusions.

II. BACKGROUND

A. Interval Type-2 Fuzzy Sets (It2 FSs)

An IT2 FS is to date the most widely used kind of T2 FS
and is the only kind of T2 FS that is considered in this paper. It
is described as4

(4)

where is the primary variable, is the primary
membership of is the secondary variable, and
is the secondary membership function (MF) at . Note that (4)
means . Uncertainty about

is conveyed by the union of all of the primary memberships,
called the footprint of uncertainty of [FOU ], i.e.,

FOU

(5)

An IT2 FS is shown in Fig. 2. The FOU is shown as the shaded
region. It is bounded by5 an upper MF (UMF) and a
lower MF (LMF) , both of which are T1 FSs; conse-
quently, the membership grade of each element of an IT2 FS is
an interval .

Note that an IT2 FS can also be represented as

FOU (6)

with the understanding that this means putting a secondary
grade of one at all points of FOU .

For discrete universes of discourse and , an embedded
T1 FS has elements, one each from ,
namely , i.e.,

(7)

4This background material is taken from [26]. See also [16].
5It is also customary to use � (x) and � (x) for the LMF and UMF of ~A.

Here, a simpler notation is used.
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Examples of are and ; see also Fig. 2. Note that if each
is discretized into levels, there will be a total of ,

where

(8)

Mendel and John [20] have presented a Representation Theorem
for a general T2 FS, which when specialized to an IT2 FS can
be expressed as follows.

Representation Theorem for an IT2 FS: Assume that pri-
mary variable of an IT2 FS is sampled at values,

, and at each of these values its primary mem-
berships are sampled at values, . Let

denote the th embedded T1 FS for . Then is repre-
sented by (6), in which6

FOU

(9)

This representation of an IT2 FS, in terms of simple T1 FSs,
the embedded T1 FSs, is very useful for deriving theoretical
results; however, it is not recommended for computational
purposes because it would require the enumeration of the
embedded T1 FSs and [given in (8)] can be astronomical.
Equation (9) is heavily used in the sequel when the LWA is
derived.

B. -Cuts and Decomposition Theorem

Given a T1 FS defined on its universe of discourse , and
any number , the -cut of , is the crisp set [10]

(10)

Let be an indicator function of the crisp set , i.e.

(11)

The MF of T1 FS is then defined as

(12)

Decomposition Theorem: [10] Let and be T1 FSs in
with defined in (12). Then

(13)

6Although there are a finite number of embedded T1 FSs, it is customary
to represent FOU( ~A) as an interval set [A(x); �A(x)] at each x. Doing this is
equivalent to discretizing with infinitesimally many small values and letting the
discretizations approach zero.

where denotes the standard fuzzy union (i.e., sup over
). Note that because a T1 FS is described by its MF, (13) is

a commonly used shorthand for

(14)

Observe from this theorem that, if the -cuts of a T1 FS can
be determined, for , the T1 FS itself can be specified;
therefore, determining a T1 FS is equivalent to determining its

-cuts for .
One important application of the -cut Decomposition The-

orem is to compute some function of a T1 FS, or between several
T1 FSs [10]; it gives exactly the same result as the one obtained
by using Zadeh’s Extension Principle. For example, when the
function is the FWA of attributes and the corresponding

weights , it is true that fuzzified by the Extension Prin-
ciple satisfies

(15)

i.e., an -cut on is computed by finding the corresponding
-cuts on and first and then substituting them into .

When all are obtained, can be constructed
by using (13). Equation (15) is heavily used in the sequel.

C. The Fuzzy Weighted Average (FWA)

The FWA is defined as [2]

(16)

In (16), all and are T1 FSs; consequently, is also
a T1 FS.

The FWA has been studied in multiple criteria decision
making [1]–[6], [12], [13] and computing the generalized
centroid of an IT2 FS [9], [16], [22], [21]. Beginning in 1987,
various solutions to computing the FWA have been proposed,
all of which use (15).

To compute the FWA, first the complete range of the mem-
bership [0,1] of the FSs and
is discretized into -cuts, . For each , the cor-
responding intervals for in and in
are found, i.e.,

(17)

(18)

The output of the FWA algorithm for this particular -cut,
, is an interval, i.e.,

(19)



1148 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 15, NO. 6, DECEMBER 2007

where

(20)

(21)

These results are easy to prove because appear only in
the numerator of (19), and so the smallest (largest) values of

are used to find the smallest (largest) value of (19). It is
now well known that and can be represented as

(22)

(23)

where and are switch points satisfying [14]

(24)

(25)

Note that and
have been sorted in increasing order, respectively; hence, in the
sequel, it is assumed that

(26)

(27)

Each of the published FWA computational algorithms com-
putes and but in different ways. When all intervals

are found, the MF of , is
computed as [see (14) and (12)]

(28)

where [see (11)]

(29)

is the indicator function of .
An example of the FWA is shown in Fig. 9. The T1 FS shown

by dashed lines in Fig. 9(c) is the FWA of T1 FSs [dashed
lines in Fig. 9(a)] and [dashed lines in Fig. 9(b)].

III. LWA THEORY

A. LWA Preliminaries

In (1), because all and are IT2 FSs, is also an
IT2 FS, and therefore [see (6) and (9)]

FOU (30)

where and are the LMF and UMF of , respec-
tively. Because the FOU of is completely determined by

and , computing is equivalent to computing
and .

Fig. 3. (a) Variables for ~X :a (� ); a (� ); b (� ), and b (� ). (b) Vari-
ables for ~W :c (� ); c (� ); d (� ) and d (� ). The dashed curves are
embedded T1 FSs.

Using (6) and (9) applied to each and , it follows that

FOU (31)

FOU (32)

where and ( and ) are lower and upper MFs of
, respectively.

In (1), only appears in the numerator of ; hence

(33)

(34)

One method to find is to compute the totality of all FWAs
that can be formed from all of the embedded T1 FSs ; how-
ever, this is impractical because there can be infinite many .
In the following, an -cut based approach is proposed, which
eliminates the need to enumerate and evaluate all embedded
T1 FSs.

B. Computing the LWA Using -Cuts

To compute and using -cuts, the complete
range of the membership is first discretized into points,

; then, for each , the -cuts on and are
used to compute the corresponding -cut on .

The notations in Fig. 3(a) and (b) will be used in the deriva-
tions of the LWA. For notational simplicity, dependence of all
variables on is omitted in all the figures in this paper. Normal
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Fig. 4. Case 1: 0 � � < h . (a) Variables for ~X :a (� ); a (� );
b (� ); and b (� ); and, (b) Variables for ~W :c (� ); c (� ); d (� );
and d (� ).

IT2 FSs are always used, i.e., the maximum membership grades
of the UMFs of all T2 FSs equal unity. This means that each

-cut on the UMFs will produce an interval for , or, a crisp
point or an interval for , as shown in Fig. 3(a) and (b).

Generally, the LMFs of and have different heights
(maximum membership grades), as shown in Fig. 4(a) and (b).
Denote the height of as and the height of as ,
respectively. Assume the maximum (minimum) height of all
and all is , i.e.,

(35)

(36)

In the Fig. 4 example, and , and for
clarity and are shown as dashed lines in both parts
of that figure.

Depending on the position of the -cut, there can be three
different cases.

1) -cuts on all UMFs and LMFs exist, e.g., when
in Fig. 4.

2) -cuts on all UMFs exist while -cuts on some LMFs do
not exist, e.g., when in Fig. 5,
and have no -cut when .

3) -cuts on all UMFs exist, but none exists on the LMFs,
e.g., when in Fig. 6.

Because Cases 1 and 3 can be treated as special cases of Case
2, the approach here is to consider Case 2 first and then spe-
cialize its results to Cases 1 and 3.7

C. Case 2: -Cuts on All UMFS Exist While -Cuts on Some
LMFs Do Not Exist

Observe in Fig. 3(a) that if the -cut on the LMF of
exists, the interval is divided into

7The following three sections are very technical. The reader who is not inter-
ested in the details can go directly to Section III-F.

Fig. 5. Case 2: h � � � h . (a) Variables for ~X :a (� );
a (� ); b (� ); b (� ); a (� ); and b (� ). (b) Variables for
~W :c (� ); c (� ); d (� ); d (� ); c (� ); and d (� ).

Fig. 6. Case 3: h < � � 1. (a) Variables for ~X :a (� ); b (� );
a (� ) and b (� ). (b) Variables for ~W :c (� ); d (� ); c (� ) and
d (� ).

three subintervals: and
. In this case, and

cannot assume a value larger than . Similarly,
and cannot assume a value

smaller than . However, if the -cut on the LMF of
does not exist [e.g., and in Fig. 5(a) for ],
then both and can assume values freely in the
entire interval , i.e.,

(37)

(38)
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Fig. 7. Variables for ~Y :f (� ); f (� ); f (� ); and f (� ). The
dashed curve represents an embedded T1 FS.

where

(39)

(40)

Thus, the effect of an -cut on such an LMF of is to further
constrain the ranges of and .

Similarly, observe from Fig. 5(b) that

(41)

(42)

where

(43)

(44)

Thus, the effect of an -cut on such an LMF of is to further
constrain the range of and .

Note that in (22) and (23) for the FWA,
and are crisp numbers; consequently,

and computed from them are also crisp numbers. How-
ever, in Case 2 of the LWA, and
can assume values continuously in their corresponding -cut
intervals. Numerous different combinations of

and can be formed. and need to
be computed for all the combinations. By collecting all
a continuous interval is obtained, and by
collecting all a continuous interval
is also obtained (see Fig. 7), i.e.,

(45)

(46)

where and are illus-
trated in Fig. 7. Clearly, to find and

and need to be found.
Consider first. Note that it lies on , and is the

minimum of but now and
, i.e.,

(47)

Substituting from (22) into (47), it follows that we have
(48) as shown at the bottom of the page. Observe that
only appears in the numerator of (48); thus, should be
used to calculate , i.e., (49) at the bottom of the page.
Following a similar line of reasoning, and

can also be expressed as shown in (50)–(52) at the
bottom of the page.

So far, only are fixed for and
and are fixed for and . As will be
shown, it is also possible to fix and for

(48)

(49)

(50)

(51)

(52)
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and ; thus, there will be no need to
enumerate and evaluate all of ’s embedded T1 FSs to find

and .

Theorem 1: The following are true.
a) in (49) can be specified as

(53)

where is the switch point satisfying
.

b) in (50) can be specified as

(54)

where is the switch point satisfying
.

c) in (51) can be specified as

(55)

where is the switch point satisfying
.

d) in (52) can be specified as

(56)

where is the switch point satisfying
.

Proof: See Appendix A.
Comment 1: Theorem 1(a) can be understood in the

following way. When an FWA algorithm is used to com-
pute in (22), if and

, then and
; so, should be replaced by

and should be replaced by to get . The-
orem 1(b)–(d) can be understood in a similar way.

Comment 2: Note that in (53), in (54), in (55),
and in (56) have to be determined by an FWA algorithm,
such as the KM algorithm [9].

Comment 3: Observe from Theorem 1(a) and (d) that
and only depend on [see Fig. 3(b)].

Since Cases 1 and 3 can be viewed as special cases of Case
2, Theorem 1 can also be used in Cases 1 and 3 by properly
setting the parameters of (37), (38), (41), and (42), as will be
shown next.

D. Case 1: -Cuts on All UMFs and LMFs Exist

When , the -cuts on all UMFs and LMFs
exist. Consequently, in Theorem 1, set

(57)

and keep all other quantities unchanged.
Corollary 1: It is true that when , Theorem

1(a) and (d) remain unchanged, and Theorem 1(b) and (c) can
be simplified to the following.

(b’) can be specified as

(58)

where is the switch point satisfying
.

(c’) can be specified as

(59)

where is the switch point satisfying
.

Comment 4: Corollary 1 shows that in Case 1, and
, that define , only depend on the LMFs of

and .

E. Case 3: -Cuts on All UMFs Exist But None Exists on the
LMFs

When , the -cuts on all UMFs exist but none
of the -cuts on the LMFs of and exists. Consequently,
in Theorem 1, set

(60)

and keep all other quantities unchanged.
Corollary 2: It is true that when , Theorem

1(a) and (d) remain unchanged and Theorem 1(b) and (c) can
be simplified to (b’) and (c’)

.
Proof: See Appendix B.

Comment 5: Corollary 2 shows that in Case 3, and
, that define , only depend on the UMFs of

and .

F. Observations

Observe, from Fig. 7, that when is small, there may
be a gap between the left-hand interval

and the right-hand interval
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Fig. 8. Flowchart for computing the LWA.

. However, for large values of ,
there may not be such a gap.

Theorem 2:
a) When , i.e., there

is always a gap within and
.

b) When may be smaller
than, equal to, or larger than depending on spe-
cific values of , e.g., if for an , ,
then there is no gap within and .

c) When , there is never a gap between
and , and hence there is no need to com-

pute and .
Proof: See Appendix C.

Comment 6: Theorem 2 demonstrates that the height
of cannot be larger than because when

, there is never a gap between
and .

Comment 7: Because it is impossible to know in Case 2
whether or not is larger than without com-
puting their values, the following two steps are still needed in
this case to determine the corresponding -cut on .

1) Use the -cuts on the UMFs of and to calculate the
interval without considering whether
or not there is a gap.

2) Calculate and to determine whether
there is a gap. If , then there is a

gap which should be removed from
the interval ; otherwise, there is no
gap and the FOU of fills in the entire interval

.

IV. LWA ALGORITHMS

A flowchart for computing the LWA is shown in Fig. 8. Ob-
serve that and can be computed in parallel, and that
the two FWA algorithms that are used to compute and

can also be computed in parallel. Some blocks of Fig. 8
are explained in detail next.

A. Computation of

To compute .
1) Calculate and . To do this:

a) Determine and , and ,
which is the maximum of all and .

b) Select appropriate -cuts for (e.g., divide
[ ] into intervals and set

, ).
c) Find the corresponding -cuts and

on and [see Fig. 5(a) and
(b); , , and are defined
in (39), (40), (43), and (44)], respectively].

d) Use a KM algorithm to find in (54) and
in (55).
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e) IF , THEN keep
; otherwise, discard it. The last

value of for which this test is passed is called
; denote the number of smaller than or equal

to by , and go to Step 2). Otherwise, go to
Step f).

f) Repeat Steps c)—e) until the test in Step e) is failed,
or until .

2) Construct from the -cuts. To do this:
a) Store the left-coordinates ,

.
b) Store the right-coordinates ,

.
c) (Optional) Fit a spline curve through the coordi-

nates just stored.

B. Computation of

Computation of is simpler than that of . To com-
pute :

1) Calculate and , . To do this:
a) Select appropriate -cuts for (e.g., divide [0,

1] into intervals and set ,
).

b) Find the corresponding -cuts and
on and [see Fig. 3(a) and

(b)].
c) Use a KM algorithm to find in (53) and

in (56).
d) Repeat Steps b) and c) for every ( ),

and then go to Step 2).
2) Construct from the -cuts. To do this:

a) Store the left-coordinates , .
b) Store the right-coordinates ,

.
c) (Optional) Fit a spline curve through the coordi-

nates just stored.
Once and are obtained, is determined, i.e.
its FOU is the area between and .

C. Example

An example of the LWA is shown in Fig. 9. and are ob-
tained by blurring the corresponding T1 FSs and , which
are shown as the dashed lines in the FOUs. Note that the LMFs
of and have different heights. In each figure 201 equally
spaced -cuts were used. Observe from Fig. 9(c) that the dashed
curve is not located symmetrically in the FOU of .
The nonsymmetrical and FOUs provide a nonsymmet-
rical .

V. APPLICATION

As pointed out in the Introduction, a promising application
for the LWA is distributed and hierarchical decision-making.
In this section, the paper evaluation process (that was described
in the Introduction) for a generic journal is used as an applica-
tion to illustrate how the LWA can be employed. This applica-
tion is representative of other distributed and hierarchical deci-
sion-making applications; so, its results should be extendable to
them.

Fig. 9. (a) ~X . To distinguish between ~X and ~X , the UMF and LMF of ~X
are plotted in dotted lines; (b) ~W ; (c) ~Y . The dotted curve in (c) indicates
the overlapped area where f (� ) > f (� ). The dashed lines in the FOUs
are T1 FSs (a) X , (b) W , and (c) the corresponding Y .

Fig. 10. The review form for a generic journal.

A. Introduction

When an author submits a paper to a journal, the Editor usu-
ally assigns its review to an Associate Editor (AE), who then
sends it to at least three reviewers. These reviewers send their re-
views back to the AE, who then makes a final decision based on
their opinions. In addition to the “comments for the author(s),”
each reviewer usually has to complete a form similar to the one
shown in Fig. 10, in which the reviewer has to evaluate the paper
based on four8 measures: importance, content, depth, and pre-
sentation. For each of the four measures, there are five assess-
ment levels that range from the best to the worst, namely: ex-
cellent, good, adequate, marginal, and poor. A reviewer must
check off an appropriate level for every measure. Usually, the
reviewer is asked to give an overall evaluation of the paper and

8Four measures are chosen for illustration purposes and to save space; there
could be arbitrary many measures. It is also possible to have hierarchical mea-
sures, i.e., measures with some submeasures associated with each of them.
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Fig. 11. The paper evaluation process for a generic journal.

make a recommendation to the AE. The AE then makes a final
decision based on the opinions of the three reviewers. The entire
hierarchical process is shown in Fig. 11.

Sometimes a reviewer may feel it is difficult to give an overall
evaluation of a paper because it gets high scores on some of the
measures but does poorly on the others. In that case, the reviewer
may give an evaluation based on the reputation of the author(s)
or randomly choose an evaluation from several comparable eval-
uations. A similar situation may also occur at the AE level, e.g.,
if one reviewer suggests rejection of the paper, another suggests
a revision of the paper, and the third reviewer suggests accep-
tance of the paper, what should the final decision be?

B. The Automatic Paper Evaluation Process

Because the above evaluation process is often difficult and
subjective, it may be better to leave it to a computer, i.e.,
each reviewer should only be asked to provide a subjective
evaluation of a paper for each of the four measures, after which
the LWA would automatically compute the reviewer’s overall
opinion (judgement) of the paper. Once the opinions of all the
reviewers are obtained, another LWA would compute a final
aggregated (fused) opinion for the AE. This automatic process
has the potential to relieve much of the burden of the reviewers
and the AE, and, moreover, it may be more accurate and less
subjective.

Because the paper evaluation process is distributed and hi-
erarchical (see Fig. 11), and linguistic evaluations are used to
reach a conclusion, this seems to be an excellent application for
the LWA; however, before the LWA can be implemented, the
following need to be established.

1) A five-word9 vocabulary for each of the four measures,
e.g., excellent, good, adequate, marginal, and poor, as in
the review form shown in Fig. 10.

2) IT2 FSs corresponding to the five-word vocabulary for
each of the four measures, so that once a reviewer selects
an appropriate word for a measure, the corresponding IT2
FS can be activated.

9Of course, fewer or more than five words could be used, and different words
could be used for each measure.

In this application it is assumed that all IT2 FSs are estab-
lished on a 0–10 scale. Their FOUs can be found by sur-
veying the AEs (and reviewers). Because “words mean dif-
ferent things todifferentpeople” [16], it is almostcertain that
the AEs (and reviewers) will have different opinions about
the ranges of the five words for each measure, i.e., there
will be uncertainties for every word. An IT2 FS can then
be used to model the uncertainties for each word. Mendel
and Wu [23]–[25] have proposed a fuzzistic methodology10

to model words by IT2 FSs. Here it is assumed that FOUs
have already been established for the five words.

3) Four IT2 FSs corresponding to the weights for the four
measures, shown in Fig. 11 as and .
These weights are necessary because usually the four
measures are not equally important. The IT2 FSs corre-
sponding to the weights can also be established by the
fuzzistics methodology described in [23]–[25]. Here it is
assumed that FOUs for these four weights have already
been established.

4) Three IT2 FSs corresponding to the weights for the three
reviewers, shown in Fig. 11 as and .
These weights are necessary because the opinion of a re-
viewer with high expertise should be considered more se-
riously than the opinion of a reviewer with low expertise.
In the review form shown in Fig. 10, a reviewer’s exper-
tise is divided into three levels: high, moderate, and low.
The IT2 FSs corresponding to the three words can also
be established by the fuzzistics methodology described in
[23] and [24]. Every reviewer would be asked to indicate
his/her expertise by checking off one of the three words.
The word’s IT2 FS would be used as the reviewer’s weight.
Once again, it is assumed that the FOUs for these three
levels of expertise have been established.

Note that a reviewer is not asked to select the weights for the
four measures; this is done behind the scenes, ahead of time.
Note, also, that the positions of the measures on the review form
will indicate their relative order of importance to a reviewer.

10Research on fuzzistic methodology is ongoing, and we expect even better
methodologies to be available in the future.
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Fig. 12. FOUs for the five words for each measure. ~X ; ~X ; ~X ; ~X ; and ~X correspond to poor, marginal, adequate, good, and excellent, respectively.

Fig. 13. The weights associated with the four measures. ~W ; ~W ; ~W ; and ~W correspond to the weight for importance, content, depth, and presentation,
respectively.

Once the words for the four measures and all of the weights
are modeled by IT2 FSs, the entire paper evaluation process can
proceed automatically as follows.

1) For each of the four measures importance, content, depth,
and presentation, a reviewer chooses an appropriate lin-
guistic word from the five precalibrated words. Doing this
determines and . Once a
reviewer has finished the online evaluation of the four mea-
sures, an LWA is computed automatically to provide the
IT2 FS FOU representing the reviewer’s overall opinion
about the paper , where

(61)

FOU is obtained for each reviewer using the method
described in Section IV. Whether or not should be re-
vealed to the reviewer is an open question.

2) Not only would the AE receive FOU but an LWA
would also be computed for the AE that summarizes the
aggregated opinions of the three reviewers, where

(62)

Again, FOU is obtained by the method described in
Section IV.

3) FOU can be mapped to a word in a codebook by
using the similarity measure proposed in [32]. Using
FOU and/or FOU and a set of rules
(which also need to be established a priori), the AE makes
a final recommendation, e.g., one rule might be “If is
Poor and is High, then reject the paper.” Another rule
might be, “If is Good, then accept the paper.” Exactly
how to establish such rules is an open research issue, but
it is well within state-of-the-art knowledge to do this.

Note that the above process has four LWAs: one for each re-
viewer [(61)] and one that aggregates the three reviews for the
AE [(62)].

C. Examples

Simulation results for the simplified paper evaluation process
are presented in this section. The universes of discourse for all
the measures and weights used in this example are [0, 10]. The
four measures (importance, content, depth, and presentation)
use the same five IT2 FSs shown in Fig. 12 to
represent the five words, poor, marginal, adequate, good, and
excellent. A reviewer chooses one word for each measure ac-
cording to the reviewer’s subjective decision about the paper’s
score in that measure. The reviewer’s choices for different mea-
sures can even be the same word, e.g., the choice for both im-
portance and depth may be good .

The predetermined weights for the four measures importance,
content, depth, and presentation are and ,
respectively, as shown in Fig. 13. Note that there is no need to
assign words to these weights (since the weights are not revealed
to a reviewer).

The weights for the reviewer’s expertise low, moderate, and
high are represented by IT2 FSs and , respec-
tively, as shown in Fig. 14. Every reviewer needs to indicate the
reviewer’s expertise in the review form. The corresponding pre-
determined IT2 FS is automatically set as the reviewer’s weight.

Example 1: Three completed review forms are shown in
Fig. 15(a)–(c). The IT2 FSs corresponding to the reviewer’s
choices about the four measures are shown in Fig. 15(d)–(f).
The weights for the four measures have already been given in
Fig. 13. The LWAs computed for the three reviewers are shown
in Fig. 15(g). The weights for the three reviewers are shown in
Fig. 15(h). The aggregated reviewer’s LWA computed for the
AE is shown in Fig. 15(i).
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Fig. 14. The weights for the reviewer’s expertise: low ( ~W ), moderate ( ~W ); and high ( ~W )).

Fig. 15. Example 1: (a)–(c) Reviewer i’s (i = 1; 2; 3) completed review form; (d)–(f) FOUs for Reviewer i’s (i = 1; 2; 3) choices for the four measures;
(g) FOUs for all three reviewers’ opinions (The LMF and UMF of ~Y are dashed); (h) FOUs for the weights corresponding to the three reviewers’ expertise; and
(i) FOU of the aggregated reviewers’ opinions computed by the LWA. The weights for the four measures used to compute ~Y (i = 1; 2; 3) are shown in Fig. 13.

Observe from Fig. 15(a) that Reviewer 1’s opinions on the
first two measures are below adequate, on the third measure is
exactly adequate,, and on the fourth measure is somewhat above

adequate. Observe also, from Fig. 13, that the first two measures
have the largest weights ( and ) and the fourth measure
has the smallest weight ; consequently, it is expected that
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Reviewer 1’s overall opinion on the paper will be below ade-
quate. This is confirmed by shown in Fig. 15(g), which is to
the left of in Fig. 12. Similarly, it is also expected that Re-
viewer 2’s overall opinion on the paper will be below adequate,
as confirmed by shown in Fig. 15(g).

Fig. 15(c) shows that Reviewer 3’s opinions on the first three
measures are above adequate and Reviewer 3’s opinion on the
fourth measure is adequate. It is hence expected that Reviewer
3’s overall opinion about the paper should be above adequate, as
confirmed by in Fig. 15(g). Observe, also, that is visually
more similar to shown in Fig. 15(f) (which is the same as

and ). This is reasonable because has the smallest
weight, and consequently it has the least influence on .

As shown in Fig. 15(g), and are quite similar. Fig. 15(h)
shows that the weights associated with and are larger than

, the weight associated with ; consequently, it is expected
that should be close to or , as confirmed by Fig. 15(i).

Once is obtained, it can be mapped to a word in a code-
book. Assume the codebook consists of the five words,11 poor,
marginal, adequate, good, and excellent, whose corresponding
IT2 FSs are shown in Fig. 12 as . Using the VSM pro-
posed in [32], the similarities between and are

(63)

Observe that all are relatively small and there is no
that dominates the others. This is because the code-

book consists of only five words. If we consider more diverse
FOUs in the codebook, we should be able to map to a word
with high similarity degree. In this example, we may map
to marginal. is most similar to marginal but there are still
two possibilities: 1) is better than marginal, i.e., is
between marginal and good; and 2) is worse than mar-
ginal, i.e., is between poor and marginal. Since the second
largest similarity is , we conclude that the quality of
the paper is between marginal and good. This suggests that the
paper should be rewritten.

Example 2: Three different completed review forms are
shown in Fig. 16(a)–(c). The IT2 FSs corresponding to the
reviewer’s choices about the four measures are shown in
Fig. 16(d)–(f). The weights for the four measures have already
been given in Fig. 13. The three LWAs computed for the three
reviewers are shown in Fig. 16(g). The weights for the three
reviewers are shown in Fig. 16(h). The LWA computed for the
AE is shown in Fig. 16(i).

Observe, from Fig. 16(a), (d), and (g), that when a reviewer’s
choices on all measures are marginal, the aggregated opinion
is also marginal ( is exactly the same as , the IT2 FS
corresponding to marginal in Fig. 12). Observe also, from
Fig. 16(b), (e), and (g) [or Fig. 16(c), (f), and (g)] that when a

11In practice, there can be more words in the codebook, and there are not
necessarily the same as those used by the four measures.

reviewer’s choices on the measures are either below or exactly
marginal, the aggregated FOU corresponding to the reviewer’s
overall opinion is below marginal. This again agrees with
intuition.

Fig. 16(g) shows that when all three reviewers’ opinions
are below marginal, the output of the LWA , shown in
Fig. 16(i), is also below marginal (compare with in
Fig. 12, which corresponds to marginal).

Next we map to a word. Again, assume the codebook
consists of five words shown in Fig. 12. Using the VSM pro-
posed in [32], the similarities between and are

(64)

Observe that is most similar to . Since the second largest
similarity is , the quality of the paper is between
poor and marginal. This suggests that the AE should reject the
paper.

VI. CONCLUSION

The concept of the LWA was introduced in this paper. It was
shown that for IT2 FSs, the LWA is also an IT2 FS, and theorems
were provided to compute it. -cuts and FWA algorithms were
employed.

Because the LWA is a generalization of the FWA from T1 FSs
to IT2 FSs, there is a close relation between them. It is shown
that finding the LWA is equivalent to finding its UMF

and LMF , each of which may be viewed as an
FWA.

The LWA offers a unique property that a weighted average or
a FWA does not have, namely, it is able to incorporate the lin-
guistic opinions of a group of people and then reach a decision
linguistically. This can be accomplished by mapping into
the word whose FOU is most similar to , e.g., [32].
A promising application of the LWA is distributed and hierar-
chical decision-making. As shown in the Introduction, the LWA
can also be used as a CWW engine in the Per-C.

APPENDIX A
PROOF OF THEOREM 1

Because the proofs of Theorem 1(b)–(d) are quite similar to
the proof of (a), only the proof of (a) is given here.

Let

(A-1)

where ,
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Fig. 16. Example 2: (a)–(c) Reviewer i’s (i = 1; 2; 3) completed review form; (d)–(f) FOUs for Reviewer i’s (i = 1; 2; 3) choices for the four measures;
(g) FOUs for all three reviewers’ opinions (the LMF and UMF of ~Y are dashed); (h) FOUs for the weights corresponding to the three reviewers’ expertise; and
(i) FOU of the aggregated reviewers’ opinions computed by the LWA. The weights for the four measures used to compute ~Y (i = 1; 2; 3) are shown in Fig. 13.

and . Then
in (49) can be found by the following.

1) enumerating all possible combinations of

for and
;

2) computing in (A-1) for each combina-
tion; and,

3) setting to the smallest .
Note that corresponding to the smallest
in step 3) is in Theorem 1. In the following proof, the fact
that there always exists such a is used; however, there is no

need to know the value of it (its value can be computed by a
FWA algorithm). Equation (49) can be expressed as

(A-2)

In [14], it is proved that has a value in the
interval ; hence, at least one

must assume a value in the same interval. In
general there can be numerous satisfying

(A-3)
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(B-1)

(B-2)

The remaining must be larger than
, i.e., they must assume values in one of the inter-

vals ,
etc. Because the minimum of is of interest,
only those satisfying (A-3) will be consid-
ered in this proof.

Next it is shown that when achieves its
minimum, i) for and ii)

for .
i) When , it is straightforward to show that the

derivative of with respect to ,
computed from (A-1), is

(A-4)

Using the left-hand side of (A-3), it follows that

(A-5)

Hence, in the numerator of (A-4)

(A-6)

In obtaining (A-6), the fact that
when [due to the a priori increased ordering
of the ; see (26)] was used. Consequently, using
(A-6) in (A-4), it follows that

(A-7)

Equation (A-3) indicates that the first derivative of
with respect to

is negative; thus, decreases when
increases. Consequently, the minimum

of must use maximum possible
for , i.e., for , as stated
in (53).

ii) When , it is straightforward to show that the
derivative of with respect to ,
computed from (A-1), is

(A-8)

Using the right-hand side of (A-3), it follows that

(A-9)

Hence, in the numerator of (A-8)

(A-10)

In obtaining (A-10), the fact that
when [due to the a priori increased ordering
of the ; see (26)] was used. Consequently, using
(A-10) in (A-8), it follows that

(A-11)

Equation (A-11) indicates that the first derivative of
with respect to

is positive; thus, decreases when
decreases. Consequently, the min-

imum of must use minimum possible
for , i.e., for

, as stated in (53).

APPENDIX B
PROOF OF COROLLARY 2

Substitute (60) into (53)–(56) in Theorem 1, and observe that
(53) and (56) remain unchanged and (54) and (55) change to
(B-1) and (B-2) as shown at the top of the page. Note that

and , which determine the -cut on , are
calculated by (53) and (56), respectively. Comparing (B-1) with
(56), it is observed that in (B-1) is the same as
in (56).12 Additionally, in (B-2) is also the same as

in (53).

APPENDIX C
PROOF OF THEOREM 2

A. Proof of Theorem 2(a)

This proof shows that and in Case 1, com-
puted from (54) and (55), respectively, equal a generalized cen-
troid [9], [16], [22], for which is its left bound and

is its right bound. Consequently, .

12The switch point in (B-1) is denoted as k and that in (56) is denoted
as k ; however, because all b (� ); c (� ); and d (� ) are the same in
(B-1) and (56), when an FWA algorithm is used to compute (B-1) and (56), the
resulting switch points will be the same. Consequently, (B-1) and (56) are the
same.
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Let

(C-1)

and

(C-2)

It is known that in Case 1

(C-3)

(C-4)

The generalized centroid of and is [9], [16], [22]

(C-5)

where

(C-6)

(C-7)

The switch points are determined by [14]

(C-8)

(C-9)

Observe that (54) is the same as (C-6) and (55) is the same as
(C-7), i.e.,

(C-10)

(C-11)

Because and , when
FWA algorithms are used to calculate and , they will give

. Consequently, is always true for
Case 1.

Here and are empha-
sized since they guarantee ; otherwise, this may not be
true, as happens in Case 2.

B. Proof of Theorem 2(b)

The correctness of Theorem 2(b) can be demonstrated by the
example shown in Fig. 9. Observe from Fig. 9(a) and (b) that
Case 2 corresponds to . Observe from Fig. 9(c)
that when , there is a gap in the corresponding

-cut of , and when , there is no gap in
the corresponding -cut of .

C. Proof of Theorem 2(c)

Corollary 2 indicates that, in Case 3

(C-12)

(C-13)

Consequently

(C-14)

Equation (C-14) means that the FOU of fills in the entire
interval (see in Fig. 7), which is com-
pletely determined by the -cuts on the UMFs. Consequently,
there is no need to compute and in this case.

REFERENCES

[1] P.-T. Chang, K.-C. Hung, K.-P. Lin, and C.-H. Chang, “A comparison
of discrete algorithms for fuzzy weighted average,” IEEE Trans. Fuzzy
Syst., vol. 14, no. 5, pp. 663–675, 2006.

[2] W. M. Dong and F. S. Wong, “Fuzzy weighted averages and implemen-
tation of the extension priniple,” Fuzzy Sets Syst., vol. 21, pp. 183–199,
1987.

[3] D. Dubois, H. Fargier, and J. Fortin, “A generalized vertex method
for computing with fuzzy intervals,” in Proc. IEEE FUZZ, Budapest,
Hungary, Jul. 2004, pp. 541–546.

[4] Y.-Y. Guh, C.-C. Hon, and E. S. Lee, “Fuzzy weighted average: The
linear programming approach via Charnes and Cooper’s rule,” Fuzzy
Sets Syst., vol. 117, pp. 157–160, 2001.

[5] Y.-Y. Guh, C.-C. Hon, K.-M. Wang, and E. S. Lee, “Fuzzy weighted
average: A max-min paired elimination method,” J. Comput. Math. Ap-
plicat., vol. 32, pp. 115–123, 1996.

[6] S.-M. Guu, “Fuzzy weighted averages revisited,” Fuzzy Sets Syst., vol.
126, pp. 411–414, 2002.

[7] F. Herrera and E. Herrera-Viedma, “Aggregation operators for lin-
guistic weighted information,” IEEE Trans. Syst., Man, Cybern. A,
Syst., Humans, vol. 27, no. 5, pp. 646–656, 1997.

[8] F. Herrera and L. MartíNez, “A 2-tuple fuzzy linguistic representation
model for computing with words,” IEEE Trans. Fuzzy Syst., vol. 8, no.
6, pp. 746–752, 2000.

[9] N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy set,” Inf.
Sci., vol. 132, pp. 195–220, 2001.

[10] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Appli-
cations. Upper Saddle River, NJ: Prentice-Hall, 1995.

[11] J. Lawry, “A methodology for computing with words,” Int. J. Approx.
Reason., vol. 28, pp. 51–89, 2001.

[12] D. H. Lee and D. Park, “An efficient algorithm for fuzzy weighted av-
erage,” Fuzzy Sets Syst., vol. 87, pp. 39–45, 1997.

[13] T.-S. Liou and M.-J. J. Wang, “Fuzzy weighted average: An improved
algorithm,” Fuzzy Sets Syst., vol. 49, pp. 307–315, 1992.

[14] F. Liu and J. M. Mendel, “Aggregation using the fuzzy weighted av-
erage, as computed using the Karnik-Mendel algorithms,” IEEE Trans.
Fuzzy Syst., to be published.

[15] M. Margaliot and G. Langholz, “Fuzzy control of a benchmark
problem: A computing with words approach,” IEEE Trans. Fuzzy
Syst., vol. 12, no. 2, pp. 230–235, 2004.

[16] J. M. Mendel, Rule-Based Fuzzy Logic Systems: Introduction and New
Directions. Upper Saddle River, NJ: Prentice-Hall, 2001.

[17] J. M. Mendel, “Computing with words, when words can mean different
things to different people,” in Proc. 3rd Int. ICSC Symp. Fuzzy Logic
Applicat., Rochester, NY, Jun. 1999, pp. 158–164, Rochester Univ.

[18] J. M. Mendel, “An architecture for making judgement using com-
puting with words,” Int. J. Appl. Math. Comput. Sci., vol. 12, no. 3,
pp. 325–335, 2002.

[19] J. M. Mendel, “Computing with words and its relationships with fuzzis-
tics,” Inf. Sci., to be published.

[20] J. M. Mendel and R. I. John, “Type-2 fuzzy sets made simple,” IEEE
Trans. Fuzzy Syst., vol. 10, no. 2, pp. 117–127, Apr. 2002.

[21] J. M. Mendel and F. Liu, “Super-exponential convergence of the
Karnik-Mendel algorithms for computing the centroid of an interval
type-2 fuzzy set,” IEEE Trans. Fuzzy Syst., to be published.

[22] J. M. Mendel and H. Wu, “New results about the centroid of an interval
type-2 fuzzy set, including the centroid of a fuzzy granule,” Inf. Sci.,
vol. 177, pp. 360–377, 2006.



WU AND MENDEL: AGGREGATION USING THE LINGUISTIC WEIGHTED AVERAGE AND INTERVAL TYPE-2 FUZZY SETS 1161

[23] J. M. Mendel and H. Wu, “Type-2 fuzzistics for symmetric interval
type-2 fuzzy sets—Part 1: Forward problems,” IEEE Trans. Fuzzy Syst.,
vol. 14, no. 6, pp. 781–792, Dec. 2006.

[24] J. M. Mendel and H. Wu, “Type-2 fuzzistics for symmetric interval
type-2 fuzzy sets—Part 2: Inverse problems,” IEEE Trans. Fuzzy Syst.,
vol. 15, no. 2, pp. 301–308, Apr. 2007.

[25] J. M. Mendel and H. Wu, “Centroid uncertainty bounds for interval
type-2 fuzzy sets: Forward and inverse problems,” in Proc. IEEE FUZZ,
Budapest, Hungary, Jul. 2004, vol. 2, pp. 947–952.

[26] J. M. Mendel, H. Hagras, and R. I. John, Standard background material
about interval type-2 fuzzy logic systems that can be used by all authors
[Online]. Available: http://ieee-cis.org/_files/standards.t2.win.pdf

[27] M. Nikravesh, IRESC: Intelligent reservoir characterization [Online].
Available: http://www-bisc.cs.berkeley.edu/BISCSE2005/FinalA-
genda.doc

[28] S. H. Rubin, “Computing with words,” IEEE Trans. Syst., Man, Cybern.
B, Cybern., vol. 29, no. 4, pp. 518–524, 1999.
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