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Abstract—In Pneumatic Muscle Actuators (PMAs)-driven
robotic applications, there might exist unpredictable shocks
which lead to the sudden change of desired trajectories and
large tracking errors. This is dangerous for physical systems.
In this paper, we propose a novel adaptive proxy-based robust
controller (APRC) for PMAs, which is effective in realizing a
damped response and regulating the behaviors of the PMA via
a virtual proxy. Moreover, the integration of the APRC and the
nonlinear disturbance observer (NDO) further handles the system
uncertainties/disturbances and improves the system robustness.
According to the Lyapunov theorem, the tracking states of the
closed-loop PMA control system are proven to be globally uni-
formly ultimately bounded through two motion phases. Extensive
experiments are conducted to verify the superior performance of
our approach, in multiple tracking scenarios.

Index Terms—Pneumatic muscle actuator, adaptive proxy-
based robust control, two-phase stability analysis.

I. INTRODUCTION

DUE to the attractive characteristics, i.e., high pow-
er/weight ratio, no mechanical parts, low cost, etc [1],

the Pneumatic Muscle Actuator (PMA) has been widely used
in a variety of fields, especially exoskeletons that are effective
in power augmentation and rehabilitation training [2]–[4]. Its
driving force is converted from the air pressure of the inner
bladder, which has the features of nonlinearity, hysteresis, and
time-varying parameters [5], making its modeling and control
very challenging. Different control strategies have been pro-
posed for the PMA, including PID-based control [6], nonlinear
model predictive control [7], [8], sliding mode control (SMC)
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[9], fuzzy control [10], adaptive control [11], dynamic surface
control [12], etc. Unfortunately, an accurate mathematic model
of the PMA is very difficult to obtain in practice which causes
difficulties in precise control. Meanwhile, the traditional PID
control, a typical model-free strategy, works in the position
control of the PMA. However, some significant issues should
be taken into account. First, the high-gain PID controller
may cause oscillation and can hardly realize satisfactory
performance in the physical PMA applications, due to the slow
response of the PMA and limited sampling rate, etc. Second,
the PMA is widely used in the field of robot actuation and
industry, in which the load, running amplitude and frequency
may change within a certain task. The traditional PID con-
troller with a set of fixed control parameters may not meet the
requirements of these applications. Next, from a theoretical
viewpoint, it is difficult to theoretically prove the stability of
the closed-loop system when no theoretical model is involved.
Thus, there is still a strong demand for robust PMA control.

In robotic applications, the idea of using a proxy is common
because a proxy enables robots to track the reference with
a damped response to unexpected impacts, which results in
the improvement of the system security and performance
[13]. Whereas the physical proxy requires a light-weight and
compact mechanism that leads to difficulties for designation.
The virtual proxy is a remedy to fulfill the requirement of
robot control. A typical strategy called proxy-based sliding
mode control (PSMC) [14], which assumes that a zero-quality
virtual proxy exists between the controlled object and the de-
sired trajectory, is significantly a model-free strategy. Damme
[15] presented a PSMC for a two-degree-of-freedom planar
manipulator actuated by Pleated Pneumatic Artificial Muscles,
and such a strategy of position control was developed for
piezoelectric-actuated nanopositioning stages in [16]. Another
approach supposed that there was a free space around the
proxy for the impedance control of a cable-driven system [17].
However, most proxy-based strategies lack stability analysis or
depend on a strong conjecture (e.g., see Conjecture 1 in [14]).
Therefore, this kind of strategies demands further investigation
to establish a sound theoretical foundation.

The robustness of the control strategy is another significant
issue for robotic systems. Although the proxy-based strategies
have been used in various applications, most of them rarely
consider the improvement of system robustness. Nonlinear
Disturbance Observer (NDO) based control is a common
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method for improving control performance. The basic idea
is to estimate the disturbances/uncertainties from measurable
variables before a control action is taken. Consequently, the
influence of the disturbances/uncertainties can be suppressed,
and the system becomes more robust [18]–[20]. Multiple
NDO-based control strategies have been proposed to compen-
sate for the influence of disturbances/uncertainties [21]–[25].
However, to our best knowledge, there are very few researches
on the proxy-based control strategy integrated with NDO.
This may be due to two challenges. First, most of the proxy-
based strategies are model-free control approaches, whereas a
typical NDO-based controller requires a mathematical model
of the control system. Therefore, the integration of proxy-
based strategy and NDO is not straightforward. Second, a more
rigorous analysis is needed to guarantee the stability of the
system, which should not be based on a strong conjecture.

This paper proposes an adaptive proxy-based robust control
integrated with nonlinear disturbance observer for the position
control of PMAs. Our main contributions are:

1) The proposed adaptive proxy-based robust control ex-
tends proxy-based sliding mode control from a model-free
strategy to a model-based strategy by defining the motion be-
haviors of the proxy. Accompanied by a nonlinear disturbance
observer, the proposed control method retains the original
characteristics of smooth and damped motions and greatly
improves the robustness of the algorithm.

2) The proposed controller ensures the global stability of the
closed-loop system through two stages, in which the controlled
object tracks the proxy, and the proxy tracks the reference
trajectory, simultaneously. Furthermore, this paper elaborately
studies the case when the proxy is not zero and finds that the
non-zero proxy mass is capable of regulating the behaviors of
the controlled object.

3) Real-world experiments are conducted based on a phys-
ical PMA platform for validating the effectiveness of the
proposed controller, and the results present better tracking
accuracy and robustness under various reference trajectories.

Note that a study presents an extended proxy-based sliding
mode control [26]. Compared with [26], this paper proposes
a new theoretical proxy-based method by constructing the
motion behaviors of the proxy. Integrating with a NDO, this
method can strictly guarantee the global stability of the system
while improving the robustness and retaining the original
characteristics of smooth and damped motions. Meanwhile,
this paper quantitatively analyzes the effect of proxy on control
performance. It turns out that as the proxy mass increases,
the system’s tracking errors will gradually approach a bound
associated with estimation errors of the system’s uncertain-
ties/disturbances. To the best of our knowledge, this is the
first study to investigate the effect of the virtual proxy on the
physical plant.

The rest of this paper is organized as follows. Section II
introduces the three-element model of the PMA with the
lumped disturbances. Section III first proposes the APRC
and then extends the APRC to APRC-NDO to improve the
system robustness. Section IV presents real-world experiments
to demonstrate the effectiveness and robustness of the APRC-
NDO. Finally, Section V draws conclusions.

Fig. 1. The PMA and its three-element model.

II. THE THREE-ELEMENT MODEL OF THE PMA

The generalized three-element model of the PMA is shown
in Fig. 1 [27]. The contractile length varies with the air
pressure of inner bladder. The dynamics of the PMA is:

mẍ+ b(P )ẋ+ k(P )x = f(P )−mg
bi(P ) = bi0 + bi1P (inflation)
bd(P ) = bd0 + bd1P (deflation)

k(P ) = k0 + k1P
f(P ) = f0 + f1P

(1)

where m, x, P are the mass of load, the contractile length of
PMA, and the air pressure, respectively. b(P ), f(P ), k(P ) are
the damping coefficient, the contractile force, and the spring
coefficient, respectively.

Let τ(t) denote the sum of unmodeled uncertainties, in-
cluding unmodeled dynamics, friction, inaccurate parameters,
and changing loads, etc. The dynamics of the PMA can be
rewritten as a typical second-order nonlinear model: ẍ = f(x, ẋ) + b(x, ẋ)u+ τ(t)

f(x, ẋ) = 1
m (f0 −mg − b0ẋ− k0x)

b(x, ẋ) = 1
m (f1 − b1ẋ− k1x)

(2)

where u is the air pressure, and f(x, ẋ) and b(x, ẋ) are
nonlinear terms related to the system states.

Lemma 1 [28]: Given a differentiable continuous function
Ψ(t), ∀t ∈ [t0, t1] satisfying σ1 ≤ |Ψ(t)| ≤ σ2 with positive
constant σ1 and σ2. The derivative Ψ̇(t) is also bounded.

Assumption 1 [29]: For the system unknown lumped dis-
turbance τ(t):R+ → R, there exists an unknown positive
constant ε such that ∀t ∈ R+ satisfy |τ(t)| < ε.

III. ADAPTIVE PROXY-BASED ROBUST CONTROL
INTEGRATED WITH NONLINEAR DISTURBANCE OBSERVER

A. Adaptive Proxy-based Robust Control

The objective of this study is to drive the trajectory of the
PMA to track the desired trajectory. In our proxy-based robust
controller, an imaginary object called “proxy”, assumed to be
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connected to the physical actuator, is presented. Before intro-
ducing the APRC, we define the following sliding manifolds:

Sq = ẋd − ẋ+ c1(xd − x) + c2

∫
(xd − x) dt (3)

Sp = ẋd − ẋp + c1(xd − xp) + c2

∫
(xd − xp) dt (4)

where c1 and c2 are positive constants, xd the desired tra-
jectory, and xp and x the proxy position and the PMA’s
displacement, respectively.

Fig. 2. The principle of proxy-based robust control.

First of all, we design a relationship between the proxy and
the controlled object to satisfy:

Ṡq +Kp(xp − x) +Ki

∫
(xp − x) dt

+Kd(ẋp − ẋ) + τ = 0 (5)

where Kp, Ki and Kd are positive constants.

Remark 1. Traditionally, once the sliding manifold Sq is de-
fined, the controller can be designed using Ṡq = −k ·sgn(Sq),
which is known as the sliding mode control and may cause
severe chattering. Hence, our idea of introducing the proxy
is to replace −k · sgn(Sq) by a PID controller to establish
a connection between the controlled object and the proxy, as
shown in Fig. 2. Note that (5) can also be rewritten as:

Ẋ =

 0 1 0
0 0 1
0 −c2 −c1

X +

 0
0
1

ul +

 0
0
1

 ρ (6)

where ρ = ẍd + c1ẋd + c2xd + τ , X = [
∫
xdt, x, ẋ], and

ul = Kp(xp − x) +Ki

∫
(xp − x) dt+Kd(ẋp − ẋ). (7)

It is clear that (6) can be regarded as a local relation
between the controlled object and the proxy. This is a linear
system with PID control, where X is the system’s states,
xp regarded as the desired trajectory, and ẍd, ẋd and xd
varying parameters unrelated to the system’s states. This PID
controller drives the PMA’s trajectory x to track the proxy’s
trajectory xp, when the controller parameters are properly
tuned based on the following stability condition.

Hence, bringing (2) and (3) into (5), the control signal fed
into the PMA can be computed:

u =
1

b(x, ẋ)
[ẍd + c1(ẋd − ẋ) + c2(xd − x)− f(x, ẋ)

+Kp(xp − x) +Ki

∫
(xp − x) dt+Kd(ẋp − ẋ)]. (8)

However, xp is unknown, and xp should be driven to
approach the desired trajectory xd to fulfill the tracking tasks.

A common idea is to use a sign function to ensure the manifold
Sp → 0. Hence, we generate the control signal of proxy ur
between the desired trajectory and the proxy, i.e.,

ur = Γ̂ · sgn(Sp) (9)

where sgn(Sp) is the signum function. Γ̂ is the adaptive gain of
the sliding surface Sp, and the corresponding optimal constant
of Γ̂ is Γ∗.

The adaptive law is described as:

˙̂
Γ =

{
γ|Sp|, |Sp| ≥ δ

0, |Sp| < δ
, Γ̂(0) = 0 (10)

where γ is a positive constant that regulates the adaptive rate. δ
is a boundary layer. When the system achieves a steady-state,
|Sp| is small enough, so that Γ̂ will reach an upper bound
instead of monotonically increasing.

Remarkably, the proxy is affected by ur and ul, simultane-
ously, as shown in Fig. 2, and they are not force signals in the
traditional sense. Hence, we cannot directly use Newton’s law
to establish the relationship between the motion behaviors of
the proxy and ur, ul. Besides, it is necessary to define such
property to ensure the realization of tracking and the system’s
stability. Similar to Newton’s law, we define the behavior of
the proxy under the effects of ur and ul. Let mp > 0 be the
so-called proxy mass. Then,

mpṠp = −ur + ul. (11)

The effect of −ur + ul is similar to the resultant force on
the proxy while mpṠp can be seen as the motion principle of
the proxy. Note that this property can be arbitrarily defined
according to the specific situation, as long as the stability of
the closed-loop system can be ensured.

Combining (4), (7), (9), and (11), the trajectory of the proxy
is presented as:

ẍp=
1

mp
[Γ̂sgn(Sp)−Kp(xp − x)−Ki

∫
(xp − x) dt

−Kd(ẋp − ẋ)] + ẍd + c1(ẋd − ẋp) + c2(xd − xp). (12)

Once xp is determined, the control signal of the PMA can
then be computed from (4), (8) and (12).

For the convenience of presentation, we first define Km =
diag{Kic2, $,Kd} with $ = Kpc1 −Ki −Kdc2.

Theorem 1. The norm of tracking error between the proxy
states Xp =

[∫
xpdt, xp, ẋp

]T
and the system states X =[∫

xdt, x, ẋ
]T

is uniformly ultimately bounded, and a sliding
motion on the surface (4) can be guaranteed when the APRC
satisfies:

mp > 0, λ(Kc) > 0,Γ∗ ≥ λ2(Kp +Ki +Kd), $ > 0

where λ(·) and λmin(·) denote the eigenvalues and the mini-
mum eigenvalue of the matrix, respectively.

λ2 =
(c1 + c2 + 1)ε

λmin(Km)
,Kc =

[
Kpc2 +Kic1 Ki +Kdc2
Ki +Kdc2 Kp +Kdc1

]
.

Proof: Due to λ(Kc) > 0, a Lyapunov candidate is
defined as V = V1+V2+V3 > 0 with

V1 =
1

2
mpS

2
p +

1

2
S2
q (13)
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V2 =
1

2

[
ep ėp

]
Kc

[
ep
ėp

]
(14)

=
1

2
(Kp +Kdc1 −Ki −Kdc2)ė2p

+
1

2
(Kpc2 +Kic1 −Ki −Kdc2)e2p

+
1

2
(Ki +Kdc2)(ep + ėp)

2

V3 =
1

2γ
Γ̃2 (15)

where ep =

∫
(xp − x) dt and Γ̃=Γ̂− Γ∗.

From (7)-(11), it follows that

mpṠp = −Γ̂sgn(Sp) +Kpėp +Kiep +Kdëp. (16)

According to (3)-(5), we have

Ṡq = −Kpėp −Kiep −Kdëp − τ (17)
Sp = Sq − (ëp + c1ėp + c2ep). (18)

Integrating (10)-(18), the derivatives of V1, V2 and V3 are:

V̇1 = Sp(−Γ̂sgn(Sp) +Kpėp +Kiep +Kdëp)

+ Sq(−Kpėp −Kiep −Kdëp − τ) (19)

= −Γ̂|Sp| − τSq + (Kpėp +Kiep +Kdëp)(Sp − Sq)
= −Γ̂|Sp| − τSq −Kdë

2
p −Kpc1ė

2
p −Kic2e

2
p

− (Kp +Kdc1)ėpëp − (Ki +Kdc2)epëp

− (Kpc2 +Kic1)epėp

V̇2 = (Kp +Kdc1)ėpëp + (Kpc2 +Kic1)epėp (20)

+ (Ki +Kdc2)ė2p + (Ki +Kdc2)epëp.

V̇3 =
1

γ
Γ̃

˙̂
Γ = Γ̃ |Sp| = Γ̂ |Sp| − Γ∗ |Sp| . (21)

Then, it follows that

V̇1 + V̇2 = −Γ̂|Sp| − τSq −Kdë
2
p −$ė2p −Kic2e

2
p. (22)

Note that

Γ∗ ≥ (Kp +Ki +Kd)(1 + c1 + c2)

min(Kic2, $,Kd)
ε ≥ ε. (23)

From (17)-(23), we have

V̇ = V̇1 + V̇2 + V̇3

= −Γ∗ |Sp| − τSq −Kdë
2
p −$ė2p −Kic2e

2
p

≤ −ε |Sq|+ ε |ëp + c1ėp + c2ep| (24)

− τSq −Kdë
2
p −$ė2p −Kic2e

2
p

≤ ε(1 + c1 + c2) ‖ep‖ − λmin(Km)‖ep‖2

= −‖ep‖ [λmin(Km) ‖ep‖ − ε(1 + c1 + c2)]

where ep = Xp − X =
[
ep ėp ëp

]T
. It is easy to see

that after a sufficiently long time

‖ep‖ ≤ λ2. (25)

As a result, ‖ep‖ is uniformly ultimately bounded.
Define a new Lyapunov candidate as:

Vp =
1

2
mpS

2
p +

1

2γ
Γ̃2. (26)

It follows from (16) that

V̇p = mpSpṠp +
1

γ
Γ̃

˙̂
Γ

= −Γ∗ |Sp|+ (Kpėp +Kiep +Kdëp)Sp (27)
≤ −Γ∗ |Sp|+ λ2(Kp +Ki +Kd)Sp

≤ 0.

When ||ep|| is uniformly ultimately bounded, the achievement
of a sliding motion on the surface (4) is guaranteed.

This completes the proof.

Remark 2. The stability analysis of the system has two motion
phases. First, the norm of the tracking error between the proxy
states Xp and the system states X is uniformly ultimately
bounded. This indicates that the system states converge to
the proxy states. Then, the achievement of sliding motion on
the surface (4) means that the proxy tracks the reference
trajectory, theoretically. In summary, the system states are
capable of indirectly tracking the reference, and the stability
of the closed-loop system is guaranteed.

Corollary 1. If inequality (25) holds, and initially xp = xd,
then, as the proxy mass mp increases, Sq will gradually
approach a bound associated with the upper bound of the
lumped disturbances.

lim
mp→∞

|Sq| ≤ λ2(c1 + c2 + 1). (28)

Proof: From (16), it follows that

|Ṡp| =
1

mp
| − Γ∗sgn(Sp) +Kpėp +Kiep +Kdëp|. (29)

Since the system is globally uniformly ultimately bounded and
a limited Γ∗, we have

lim
mp→∞

|Ṡp| = 0. (30)

The proxy mass mp is a fixed value in each experiment. Let
tf be the finite duration of the experiment. Then,

Sp =

∫ tf

0

Ṡpdt+ υ (31)

where υ is the initial value of xd − xp, which equals zero.
Hence, it follows that

|Sp| = |
∫ tf

0

Ṡpdt| ≤
∫ tf

0

|Ṡp|dt. (32)

Combining (30) and (32), we can obtain

lim
mp→∞

|Sp| = 0. (33)

Considering (18) and (25), after a sufficiently long time

|Sq| ≤ |Sp|+ |ëp + c1ėp + c2ëp|
≤ |Sp|+ λ2(c1 + c2 + 1). (34)

Finally,

lim
mp→∞

|Sq| ≤ λ2(c1 + c2 + 1). (35)

According to the above results, when the proxy mass mp ap-
proaches positive infinity, Sq will approach a bound associated
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with the the upper bound of the lumped disturbances. This
means that mp can be used to regulate the behaviors of the
PMA. Normally, it should be sufficiently large, so that the
proxy trajectory will track the reference accurately and realize
a damped response.

This completes the proof.

B. Adaptive Proxy-based Robust Control Integrated with Non-
linear Disturbance Observer

The previous analysis indicates that the APRC can suppress
system uncertainties and ensure the uniformly ultimate bound-
edness of the system states. However, unlike fast-response
motors, the response of the PMA system tends to be relatively
slow. The excessive gain Γ∗ leads to control accuracy degrada-
tion and system instability. Therefore, a nonlinear disturbance
observer is considered to handle the system uncertainties and
increase the system robustness. According to Lemma 1 and
Assumption 1, we have

|τ̇ | ≤ µ (36)

where µ being an unknown constant.
We define an auxiliary variable z to design the nonlinear

disturbance observer, as shown{
τ̂ = z + κẋ

ż = −κ(f(x, ẋ) + b(x, ẋ)u+ τ̂)
(37)

where τ̂ is the estimation of disturbances and κ is a constant
gain. Therefore, the derivative of τ̂ is

˙̂τ = ż + κẍ = κτ̃ (38)

where τ̃ = τ − τ̂ . Subtracting both sides of (38) from τ̇ , we
have ˙̃τ = τ̇ − κτ̃ with ˙̃τ = τ̇ − ˙̂τ .

Defining a Lyapunov function

Vτ (τ̃) =
1

2
τ̃2 (39)

and evaluating V̇τ (τ̃) along (39)

V̇τ (τ̃) = τ̃ ˙̃τ = τ̃(τ̇ − κτ̃)

≤ µ |τ̃ | − κτ̃2 (40)
= − |τ̃ | (κ |τ̃ | − µ).

Therefore, the estimation error is bounded by

|τ̃ | ≤ ε̃ (41)

where ε̃ = µ/κ.
To integrate the nonlinear disturbance observer into the

APRC, we only need to redefine (5) as:

Ṡq +Kp(xp − x) +Ki

∫
(xp − x) dt

+Kd(ẋp − ẋ) + τ̃ = 0. (42)

Similarly, bringing (2) and (3) into (42), the control signal of
the PMA system is:

u =
1

b(x, ẋ)
[ẍd + c1(ẋd − ẋ) + c2(xd − x)− f(x, ẋ) (43)

+Kp(xp − x) +Ki

∫
(xp − x) dt+Kd(ẋp − ẋ)− τ̂ ].

Theorem 2. The norm of ẽp = [ep, ėp, ëp, τ̃ ]
T is uniformly

ultimately bounded, and a sliding motion on the surface (4)
can be guaranteed when the APRC-NDO satisfies:

mp > 0, λ(Kc) > 0,Γ∗ ≥ λ′2(Kp +Ki +Kd), $ > 0

where K′m = diag{Kic2, $,Kd, κ}, and

λ′2 =
ε̃(1 + c1 + c2) + µ

λmin(K′m)

Proof: We define a new Lyapunov candidate

V ′ = V1 + V2 + V3 +
1

2
τ̃2 (44)

and note that Γ∗ ≥ λ′2(Kp +Ki +Kd) ≥ ε̃.
From (16), (21), (36)-(39) and (42), the derivative of V ′ is:

V̇ ′ = −Γ∗ |Sp| − τ̃Sq −Kdë
2
p −$ė2p −Kic2e

2
p + τ̃ ˙̃τ

≤ −ε̃ |Sq|+ ε̃ |ëp + c1ėp + c2ep| − τ̃Sq (45)

−Kdë
2
p −$ė2p −Kic2e

2
p + µ |τ̃ | − κτ̃2

≤ [ε̃(1 + c1 + c2) + µ] ‖ẽp‖ − λmin(K′m)‖ẽp‖2

= −‖ẽp‖ (λmin(K′m) ‖ẽp‖ − [ε̃(1 + c1 + c2) + µ])

Thus, ẽp is uniformly ultimately bounded by

‖ẽp‖ ≤ λ′2 (46)

In this situation, by applying the similar technique in (27),
the achievement of a sliding motion on (4) is guaranteed.

V ′p =
1

2
mpS

2
p +

1

2γ
Γ̃2. (47)

Thus, the derivative of V ′p is expressed as:

V̇ ′p = mpSpṠp + Γ̃ ˙̃Γ

≤ −Γ∗ |Sp|+ λ′2(Kp +Ki +Kd)Sp (48)
≤ 0

This completes the proof.

Corollary 2. If inequality (46) holds, and initially xp = xd,
then, as the proxy mass mp increases, Sq will gradually
approach a bound associated with estimation errors of the
lumped disturbances.

lim
mp→∞

|Sq| ≤ λ′2(c1 + c2 + 1). (49)

Proof: This corollary can be easily proven by using the
similar method given in the Proof of Corollary 1.

IV. EXPERIMENTS

A. Experiment Setup

In the physical system, the board (NI-PCI 6052E) enabled
A/D and D/A to collect the sensory data and transmitted the
control signal to an electromagnetic proportional valve for
regulating the inner pressure of the PMA. The air compressor
provided compressed air and was connected to the PMA
through the electromagnetic proportional valve. Consequently,
the displacement of the PMA can be controlled by feedbacking
the displacement, as shown in Fig. 3. The PMA was Festo
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DMSP-20-200N-RM-RM fluidic muscle with an internal di-
ameter of 20 mm, nominal length of 200 mm, and an operating
pressure range from 0 to 6 bar. The Festo VPPM-6L-L-1-
G18-0L10H-V1P proportional valve was used to regulate the
pressure inside the PMA. The displacement sensor was GA-75
whose measurement range was 0-150 mm.

Fig. 3. The PMA system.

The proposed method does not require an accurate three-
element model of the PMA. So, we used the identified
parameters of a similar PMA in [11] (see Table I).

We designed two reference trajectories. The first was a fixed
frequency sinusoid:

xd = Ax sin(2πfxt) +Bx (50)

where Ax = 0.015 m, fx = 0.25 Hz, and Bx = 0.015 m. The
second was a sine wave whose frequency changed linearly
from 0.1 Hz to 0.5 Hz within 20 s. The sampling time was
set to 0.001 s.

TABLE I
THE MODEL PARAMETERS.

Parameter Value (Unit) Parameter Value (Unit)
f0 −202.32 (N) f1 0.00721 (N/Pa)
k01 18063.0 (N/m) k02 0.01051 (N/(m.Pa))
k11 −0.2132 (N/m) k12 90638.0 (N/(m.Pa))
b0i 6435.31 (N.s/m) b1i 0.10023 (N.s/(m.Pa))
b0d 2522.01 (N.s/m) b1d 0.00321 (N.s/(m.Pa))

The maximum absolute error (MAE), the integral of abso-
lute error (IAE) and the relative tracking accuracy (RTE) were
used as our performance measurements:

MAERa = Max(|xd(t)− x(t)|Nt=1) (51)

IAERb =
1

N

N∑
t=1

|xd(t)− x(t)| (52)

RTERc =

(
N∑
t=1
|xd(t)− x(t)|)/N

xa
× 100% (53)

where N is the total sampling time. xa is the maximum
running displacement of the PMA.

The following set of control parameters of the APRC-NDO
was used in all experiments: c1 = 177.4, c2 = 174.4, Kp =
2473.5, Ki = 1916, Kd = 194.2, κ = 15952, γ = 10. Note
that the parameter selections of all the control strategies were
based on an optimization algorithm, called switch-mode firefly
algorithm (SMFA). More related details can be found in [30].
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Fig. 4. Tracking performance of the APRC-NDO with different mp values.
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Fig. 5. Tracking performance of the APRC-NDO with different amplitudes
of the desired trajectories.

B. Experimental Results

Fig. 4 showed the experimental results that verified the
Corollary 1. In this experiment, we selected a fixed Γ∗ to
demonstrate the influence of mp = {0.5, 1.0, 5.0, 10.0, 15.0}.
As mp increased, the tracking accuracy improved, and the
variation of Sq significantly decreased. Meanwhile, xp tracked
the reference trajectory more accurately and |Sp| → 0.

Then, we intended to verify the experimental results of
the proposed control strategy with different amplitudes of the
desired trajectories, as shown in Fig. 5. The corresponding
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Fig. 6. Tracking performance of different control strategies with the fixed-
frequency sinusoidal reference (0.25 Hz).

TABLE II
TRACKING PERFORMANCE OF DIFFERENT CONTROL STRATEGIES WITH

THE FIXED-FREQUENCY SINUSOIDAL REFERENCE (0.25 HZ).

MAE IAE RTE
APRC-NDO 5.5 ×10−4 (m) 1.6 ×10−4 (m) 0.5%
PSMC 2.7 ×10−3 (m) 8.9 ×10−4 (m) 2.9%
NDO-SMC 1.4 ×10−3 (m) 3.5 ×10−4 (m) 1.2%
STA 1.5 ×10−3 (m) 4.5 ×10−4 (m) 1.5%
PID [8] 4.0 ×10−3 (m) 1.5 ×10−3 (m) 6.0%

control performances were similar, and the control parameters
did not change for this experiment, which indicated that the
proposed method is applicable to various applications.

Next, for a fair comparison, the control parameters for all
the strategies {APRC-NDO, NDO-SMC, super twisting algo-
rithm (STA), PSMC} were adjusted with the fixed-frequency
sinusoidal reference (fx = 0.25 Hz, Ax = 0.015 m, Bx =
0.015 m) by the SMFA. Fig. 6 showed the corresponding
performance of different control strategies, and the corre-
sponding MAEs, IAEs and RTEs of all five control strategies
were shown in Table II. We replaced the sign function of
the NDO-SMC with a sat function to eliminate chattering. In
spite of the inaccurate model parameters in Table I, the NDO-
SMC and STA were capable of handling the uncertainties
and achieving favorable performance. Meanwhile, the basic
PSMC enabled the PMA to track the reference with acceptable
precision, since it is a model-free strategy, not affected by
inaccurate model parameters. However, its performance was
still unsatisfied than APRC-NDO. Besides, according to our
previous study [8], although the traditional PID controller
tracked the reference trajectory, the performance was worse
than the proposed strategy. On the other hand, because we
had |Sp| → 0, the adaptive coefficient Γ̂ gradually tended to
be a fixed value, instead of monotonically increasing.

Based on the previous tuned control parameters, Fig. 7
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Fig. 7. Tracking performance of different control strategies with the varying-
frequency sinusoidal reference (0.1− 0.5 Hz).
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Fig. 8. Tracking performance of the APRC-NDO with a sudden change of
load.

showed the tracking performance of different control strategies
with the varying-frequency (0.1-0.5Hz) sinusoidal reference.
Although the NDO-SMC behaved well in the steady-state,
it had a large oscillation at the beginning. On the contrary,
the STA performed well at the beginning, but it could not
effectively track the reference as the frequency increased. Still,
the PSMC tracked the reference with acceptable precision.
The proposed APRC-NDO performed the best among all four
control strategies, although it had a relatively little oscillation
at the beginning. This was because the APRC-NDO needed
some time to drive the states of the PMA into the boundary
[see (25) and (46)]. After that, the proposed APRC-NDO
could handle the system disturbances/uncertainties and achieve
accurate tracking. Actually, the NDO is very important, be-
cause the uncertainties/disturbances of the system relate to
the frequency of PMA’s trajectory, and the varying frequency
causes the growth of the system’s uncertainties/disturbances.
The SMC and APRC integrated with NDO can better handle
the uncertainties/disturbances of the system.

To further investigate the robustness of the proposed control
strategy, we first designed an experiment, in which a sudden
change of the load (2.5kg-load or 5.0kg-load) was added to
the PMA during operation, as shown in Fig. 8. It is seen
that the trajectory of the PMA deviated significantly from

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on July 06,2020 at 15:05:57 UTC from IEEE Xplore.  Restrictions apply. 



1083-4435 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2020.2997041, IEEE/ASME
Transactions on Mechatronics

IEEE TRANSACTIONS ON MECHATRONICS, VOL. XX, NO. X, MARCH 2020 8

0 5 10 15 20
0

0.01

0.02

0.03

Time (s)

x 
(m

)

 

 Reference 0kg−load 2.5kg−load 5kg−load

0 5 10 15 20
−5

0

5x 10
−3

Time (s)

er
ro

r (
m

)

 

 

Fig. 9. Tracking performance of the APRC-NDO with the PMA attaching
different loads.

the reference, and the greater the sudden disturbance, the
further it deviated. Moreover, additional experiments were
conducted for tracking the varying-frequency (0.1-0.5 Hz)
reference with different loads, as shown in Fig. 9. Generally,
they were very robust to the changing loads. However, the
fixed parameters of the NDO can only handle a certain amount
of disturbances. When the disturbance is beyond a certain
degree, the parameters of NDO have to be re-tuned.

V. CONCLUSION

This paper presented a robust control strategy, APRC-
NDO, for the PMA. The APRC-NDO can realize a damped
response and regulate the behaviors of the PMA via a virtual
proxy, as well as handle the system uncertainties/disturbances
to improve the robustness. The tracking states of the PMA
were proven to be uniformly ultimately bounded through two
motion phases. Finally, extensive experiments demonstrated
the superior performance of the APRC-NDO.
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