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Abstract
We recently proposed a family of robust linear and nonlin-
ear estimation techniques for recognizing the three emotion
primitives–valence, activation, and dominance–from speech.
These were based on both local and global speech duration, en-
ergy, MFCC and pitch features. This paper aims to study the
relative importance of these four categories of acoustic features
in this emotion estimation context. Three measures are consid-
ered: the number of features from each category when all fea-
tures are used in selection, the mean absolute error (MAE) when
each category is used separately, and the MAE when a category
is excluded from feature selection. We find that the relative
importance is in the order of MFCC > Energy ≈ Pitch > Du-
ration. Additionally, estimator fusion almost always improves
performance, and locally weighted fusion always outperforms
average fusion regardless of the number of features used.
Index Terms: Emotion estimation, 3D emotion space, speech
analysis, estimator fusion, support vector regression, robust re-
gression, locally linear reconstruction, locally weighted fusion

1. Introduction
Emotions may be recognized from many different information
sources, e.g., speech [1–3], facial expressions [4,5], physiologi-
cal signals [6,7], or their multimodal combination [8,9]. In this
paper we focus on emotion recognition from speech signals.

A majority of research on speech emotion recognition clas-
sifies emotions into a small number of categories [1, 10, 11].
Emotion psychology research [12–14] has shown that emo-
tions can also be represented as points in a multi-dimensional
space, i.e., emotions can be quantified as continuous numbers
instead of categorical values. One of the most frequently used
emotion spaces consists of three primitives [14, 15] of Valence,
Activation, and Dominance. This 3D representation is easier
to implement than categories because, though computing with
words [16, 17] is possible, computers are better at dealing with
numbers for deriving inferences and decision making. This 3D
representation of emotions is used in this paper.

We [3] have recently introduced three elementary models
and two fusion approaches for estimating speech emotions in
3D space using the VAM corpus [18]. Four categories of acous-
tic features widely adopted in the literature (duration, energy,
MFCC, and pitch) were used. The three elementary models had
comparable performance with the state-of-the-art results [2,19],
and the two fusion models outperformed them. This paper aims
to provide more insights on which features are more important
for speech emotion estimation in the 3D space using the newly
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proposed estimators. Particularly, it studies the relative impor-
tance of the four categories of acoustic features using three dif-
ferent measures.

Feature importance is a key topic in speech emotion recog-
nition. It has been investigated in a number of papers [11, 20–
24]. However, all of them study the importance of acoustic fea-
tures in classifying emotions into categories. In contrast, this
paper investigates feature importance in estimating the contin-
uous values of emotions in 3D space, a topic that has not been
widely addressed. Our novel contributions are as follows:

1. We introduce three measures to evaluate the relative im-
portance of the four categories of acoustic features in
emotion estimation.

2. We use three elementary estimators in each of the three
measures, and also two fusion models in the latter two
measures.

The rest of this paper is organized as follows: Section 2
briefly introduces our experiment setup. Section 3 presents our
experimental results. Finally, Section 4 draws conclusions and
proposes some future works.

2. Experiment Setup
The VAM corpus [18] was used in this paper. It contains spon-
taneous speech with authentic emotions recorded from guests
in a German TV talk-show Vera am Mittag (Vera at Noon in
English). There are 947 emotional utterances from 47 speak-
ers (11m/36f). Each utterance was evaluated by 6-17 human
listeners in the 3D space of valence, activation and dominance.
Then, their evaluations in each dimension were aggregated to
obtain a number in [-1, 1]. So, the emotion of each utterance is
represented by a 3D vector, which serves as our reference.

46 acoustic features, which are listed in the second column
of Table 1, were extracted. They are the same as those used
in [2, 3] on the same corpus and cover four major categories:

• Duration features (5): mean and standard deviation of
the duration of voiced and unvoiced segments, ratio be-
tween the duration of unvoiced and voiced segments.

• Energy features (6): energy mean, standard devia-
tion, maximum, 25% and 75% quantiles, and the inter-
quantile distance.

• MFCC features (26): mean and standard deviation of 13
Mel frequency cepstral coefficients (MFCC).

• Pitch features (9): f0 mean, standard deviation, median,
minimum, maximum, range, 25% and 75% quantiles,
and the inter-quantile distance.

Three elementary estimators – robust regression (RR), sup-
port vector regression (SVR), and locally linear reconstruction
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Figure 1: A flowchart for speech emotion primitives estimation.

(LLR), and two estimator fusion approaches – average fusion
(AF) and locally weighted fusion (LWF), were constructed, as
shown in Fig. 1. They are exactly the same as those reported
in our previous study [3]. The three elementary estimators
were chosen because they are diverse and complementary, in
the sense that they cover both local model (LLR) and global
models (RR and SVR), and both linear models (RR and LLR)
and nonlinear model (SVR). So, we expect better performance
when they are fused properly. AF takes the average of the three
elementary estimators. LWF computes the weighted average of
RR, SVR and LLR, where the weights are adaptive and depen-
dent on the local performance of the elementary estimators.

For feature selection, we first ranked the features using the
iterative sequential backward selection method [25], and then
performed cross-validation according to the rank of the fea-
tures to select the best subset. We started with all 46 features
and gradually removed the worst feature until the 10-fold cross-
validation performance stopped improving.

3. Experimental Results
The mean absolute error (MAE) between the estimates, ŷn, and
the human evaluations, yn, i.e., MAE = 1

947

∑947
n=1 |ŷn − yn|,

was used in performance evaluation. It has also been used in
[2,3,19]. Three measures based on MAE were employed in this
paper:

1. Measure1: The number of features from each category
when all four categories are used in feature selection.

2. Measure2: The MAE when each category of features are
used separately in feature selection.

3. Measure3: The MAE when a category is excluded from
feature selection (the remaining three categories are used
together).

Experimental results on the three measures are presented next.

3.1. Experimental Results for Measure1

For Measure1, we used the number of features as an importance
indicator and assume that the more features are selected from
a certain category, the more important that category is. The
features used by RR, SVR and LLR for estimating the three
emotion primitives are shown in Table 1. Observe that:

1. Generally all four categories of features contributed in
emotion primitives estimation. This is consistent with
Batliner et al.’s [21] observation when these categories
were used in emotion classification.

2. The optimal feature subsets for the three elementary es-
timators were different for each emotion primitive.

3. For RR, the importance of the four categories was in the
order of MFCC > Pitch > Energy > Duration.

Table 1: The features used by RR, SVR and LLR for estimat-
ing the three emotion primitives. The rank of a feature in each
category is determined by the number of times it appeared in
the nine cases (shown in the last column); so, generally a higher
rank indicates higher importance.

RR SVR LLR
Category Feature V A D V A D V A D #

pauseDurationStd
√ √ √ √ √ √

6
Duration speechDurationMean

√ √ √
3

Features pauseDurationMean
√ √ √

3
pause2SpeechRatio

√
1

speechDurationStd 0
intensityMax

√ √ √ √ √ √ √
7

intensityQ75
√ √ √ √ √

5
Energy intensityStd

√ √ √ √
4

Features intensityQRange
√ √ √ √

4
intensityMean

√ √ √
3

intensityQ25
√ √ √

3
f0Min

√ √ √ √ √ √
6

f0Q75
√ √ √ √ √ √

6
f0Median

√ √ √ √ √
5

Pitch f0Q25
√ √ √ √ √

5
Features f0Mean

√ √ √ √
4

f0Max
√ √ √

3
f0QRange

√ √ √
3

f0Range
√ √

2
f0Std

√
1

mfccMean1
√ √ √ √ √ √ √ √ √

9
mfccMean2

√ √ √ √ √ √ √ √
8

mfccStd3
√ √ √ √ √ √ √ √

8
mfccMean3

√ √ √ √ √ √ √
7

mfccMean7
√ √ √ √ √ √ √

7
mfccMean9

√ √ √ √ √ √ √
7

mfccStd4
√ √ √ √ √ √ √

7
mfccMean4

√ √ √ √ √ √
6

mfccMean6
√ √ √ √ √ √

6
mfccMean8

√ √ √ √ √ √
6

mfccMean12
√ √ √ √ √ √

6
MFCC mfccStd2

√ √ √ √ √ √
6

Features mfccStd5
√ √ √ √ √ √

6
mfccStd10

√ √ √ √ √
5

mfccMean5
√ √ √ √

4
mfccMean10

√ √ √ √
4

mfccMean11
√ √ √ √

4
mfccStd1

√ √ √ √
4

mfccStd13
√ √ √ √

4
mfccMean13

√ √ √
3

mfccStd7
√ √ √

3
mfccStd8

√ √ √
3

mfccStd6
√ √

2
mfccStd12

√ √
2

mfccStd9
√

1
mfccStd11

√
1
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Figure 2: MAEs of the five estimators when the four cate-
gories of features were used separately. For example, “Dura-
tion” means only the five duration features were used in feature
selection. “Full” means all 46 features from the four categories
were used. A larger MAE means that category of features are
less important. (a) Valence; (b) Activation; and, (c) Dominance.

4. For SVR, the importance of the four categories was in
the order of MFCC > Pitch > Energy > Duration for
Valence and Activation, and MFCC > Energy > Pitch
> Duration for Dominance.

5. For LLR, the importance of the four categories was in
the order of MFCC > Energy ≈ Pitch > Duration.

In summary, the importance of the four categories was in the
order of MFCC > Energy ≈ Pitch > Duration.

3.2. Experimental Results for Measure2

For Measure2, each category of features was used separately in
feature selection. So, by comparing the MAEs of the models ob-
tained from different categories, the importance of the four cat-
egories is directly evaluated. A comparison of the performances
is shown in Fig. 2. Note that here a smaller MAE means a better
performance and hence higher importance. Observe that:

1. For Valence, the importance of the four categories was
in the order of MFCC > Pitch > Energy > Duration.

2. For Activation and Dominance, the importance of the
four categories was in the order of MFCC > Energy >
Pitch > Duration.

3. SVR always had the smallest MAE among the three ele-
mentary estimators, and LLR often had the largest.

4. When the number of features was small (i.e., when du-
ration, energy, and pitch were used separately), LLR had
much worse performance than RR and SVR, and fusion
did not necessarily reduce the MAE.

5. LWF always outperformed AF, regardless of the number
of features used.

In summary, the importance of the four categories was in the
order of MFCC > Energy ≈ Pitch > Duration, which is con-
sistent with our finding in Measure1.
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Figure 3: MAEs of the five estimators when one category of
features were excluded. For example, “MFCC” means the 26
MFCC features were excluded in feature selection whereas all
other 20 features were used. “Full” means all 46 features from
the four categories were used. A larger MAE means that cate-
gory of features are more important. (a) Valence; (b) Activation;
and, (c) Dominance.

3.3. Experimental Results for Measure3

For Measure3, each time we excluded one category of features
from feature selection and used the remaining three categories.
The MAE in Measure3 is an indirect importance indicator, in
contrast to Measure2, because here the MAE is an indicator of
performance loss if a category of features are not used. How-
ever, Measure3 may be more meaningful than Measure2 since
in practice we usually combine features from different cate-
gories, and Measure3 indicates how much new useful informa-
tion a category can add to the existing feature combination.

A comparison of the performances is shown in Fig. 3. Note
that for Measure3 a larger MAE means higher importance, be-
cause a larger MAE indicates that the estimation performance
downgrades more when that category of features are excluded.
Observe that:

1. For the three elementary estimators, MFCC was always
the most important. Generally, Duration was the least
important. Pitch and Energy were moderately important;
however, there was no clear evidence that one was more
important than the other.

2. For the two fusion models, the importance of the four
categories was in the order of MFCC > Energy > Pitch
> Duration.

3. Fusion models almost always outperformed the elemen-
tary models, and LWF always outperformed AF.

In summary, the importance of the four categories was in the
order of MFCC > Energy ≈ Pitch > Duration, which is con-
sistent with our findings in Measure1 and Measure2.

4. Conclusions and Future Works
In this paper, we have compared the relative importance of four
categories of acoustic features in speech emotion estimation,



using three elementary estimators and two fusion models. The
main findings are:

1. For all three emotion primitives and all five models,
MFCC features were always the most important. This
finding is consistent with Vogt and Andre’s observa-
tion [20] in emotion classification using spontaneous
speech, and also Schuller and Rigoll’s observation [24]
in emotion recognition using both frame-level and supra-
segmental features.

2. Often Duration features were the least important.

3. Pitch and Energy features were moderately important;
however, there was no evidence that one was more im-
portant than the other.

4. In summary, the importance of the four categories was
in the order of MFCC > Energy ≈ Pitch > Duration.
This pattern is consistent with Mower et al.’s findings
[23], where the same 46 acoustic features were applied
to two datasets in English and information gain was used
in feature selection for emotion classification.

5. Generally, estimator fusion can achieve better perfor-
mance than the elementary estimators. Between the two
fusion approaches, LWF always outperformed AF, re-
gardless of how many features were used.

We need to point out that only 46 acoustic features were
used in this study, and the four categories had different num-
bers of features, i.e., MFCC, Energy, Pitch and Duration had
26, 6, 9, and 5 features, respectively. It is interesting to in-
vestigate whether or not extracting more and different features
in these four categories will change their relative importance
and improve the estimation performance. For example, the 137
acoustic features used by Grimm and Kroschel [19], and the
3304 acoustic features used by Batliner et al. [21], can be con-
sidered. Additionally, Busso et al. [26] showed that Mel Filter
Bank (MFB) features seem more important than MFCC fea-
tures in emotional speech analysis. It is interesting to augment
MFB features in our study. Finally, we can extend this study to
databases in different languages and study whether the pattern
found in this paper is universal.
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