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Abstract-This paper focuses on evolving type-2 fuzzy logic 
controllen (FLCs) genetically and examining whether they are 
better able to handle modelling Uncertainties. The study is 
conducted by utilizing a type2 FLC, evolved by a genetic 
algorithm (GA), to control a liquid-level process. A hvo stage 
strategy is employed to design the type-2 FLC. First, the 
parameters of a type-1 FLC are optimized usine GA. Next. the 

sets characterized by membership grades that are themselves 
fuzzy have been attracting interest [4]. As illustrated in Fig. 2, 
a type.2 fuzzy MF can be obtained by starting with a type. 

The extra mathematical dimension 
provided by the blurred area, referred to as the footprint of 
uncertainty (FOU). remesents the uncertainties in the shaue 

MF and 

_ ,  , . 
footprint of uncertainty is evolved by blurring the fuzzy input 
set. Experimental results show that the type-2 FLC copes well 
with the complexity of the plant, and can handle the modelling 
uncertainty better than its type-1 counterpart. 

a d  position of the type-1 fuzzy set. n e  FOU is bounded by 
upper and lower ms, and points 
have membership grades given by type-I MFs. The most 
frequently used type-2 fuzzy sets are interval fuzzy sets, where 

szblurred 
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1. INTRODUCTION each point in the FOU has unity secondary membership grade. 

Fuzzy logic is a form of logic whose underlying modes of 

reasoning it emulates are the approximate ability to reason instead and of exact. use approximate Unlike crisp data logic, to ylm$rF U w r  MF 

find solutions. Fuzzy logic controllers (FLCs) are knowledge- 
based controllers consisting of linguistic "F-THEN rules that 
can be constructed using the knowledge of experts in the 
given field of interest. FLCs have demonstrated their ability 
in a number of applications [11, especially for the control 
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of complex nonlinear systems that may be difficult to model 
analytically [2], (31. 
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Fig. I .  A type-l fwzy logic system 

As illustrated in Fig. 1, a traditional fuzzy logic system 
consists of 4 components- the d e  base, the fuzzy infer- 
ence engine, the fuzzifier and the defuzzifier. Knowledge is 
embedded within the rule base in the form of rules whose 
antecedent and consequent are fuzzy sets that partition the 
input and output domains. Despite having a name that has 
the connotation of uncertainty, researches have shown that 
type-1 fuzzy logic systems have difficulties in modelling and 
minimizing the effect of uncertainties 141. The main reason is 
that a type-1 fuzzy set is certain in the sense that for each input, 
there is a crisp membership grade. Recently, a type of fuzzy 

Fig. 2. A type-? fuzq  set 

A fuzzy logic system described using at least one type-2 
fuzzy set is called a type-2 fuzzy logic system. They are very 
useful in circumstances where it is difficult to determine an 
exact membership grade for a fuzzy set; hence, they can be 
used to handle system uncertainties and have the potential to 
outperform their type-I counterparts. Fig. 3 shows the structure 
of a type-2 fuzzy logic system. It is similar to its type-I 
counterpart, the major difference being that at least one of the 
fuzzy sets is type-2 and a type-reducer is needed to convert 
the type-2 fuzzy output sets into type-I sets so that they can 
be processed by the defuzzifier to give a crisp output. 
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Fiz. 3. A type-2 fuzzy logic system 
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Fl(x), is an interval calculating the firing set n;=lp-z(Z1) 
type-I set : 

Fi 
Perhaps the most difficult problem in FLC design is to 

determine the MFs and the rule base. Genetic algorithm (GA) 
is widely used recently to solve this problem [ 5 ] ,  [6],  [7]. 
GA is a general-purpose search algorithm that uses principles 
inspired by natural population genetics to evolve solutions to 
problems. It was first proposed by Holland in 1975. GAS 
are theoretically and empirically proven to provide a robust 
search in complex spaces, thereby offering a valid approach 
to problems requiring efficient and effective searches [SI, [9], 
[lo]. 

GA performs optimization by processing a population of 
generic variants from one generation to the next. A particular 
chromosome encodes a candidate solution of the optimization 
problem. The fitness of an individual with respect to the 
optimization task is described by a scalar objective function 
(fitness function). According to  Darwin's principle, highly 
fit individuals are more likely to be selected to reproduce 
offsprings. Genetic operators such as crossover and mutation 
are applied to the parents in order to generate new candidate 
solutions. As a result of this evolutionary cycle of selection, 
crossover and mutation, more and more suitable solutions to 
the optimization problem emerge within the population. 

This paper aims at developing a strategy for using GA to 
design a type-2 FLC. A comparison of the abilities of type- 
1 and type-2 FLCs to handle modelling uncertainties is also 
performed. The rest of the paper is organized as follows: 
Section I1 describes a singleton type-2 FLC. Next, the coupled- 
tank liquid-level system is introduced. Two FLCs, one type-I 
and one type-2, are designed in Section IV and their abilities to 
handle modelling uncertainties are experimentally compared in 
Section V. Section VI discusses issues on computational cost. 
Finally, conclusions are drawn in Section VII. 

11. SINGLETON INTERVAL TYPE-2 FLC 

This section discusses the singleton interval type-2 FLC 
that is studied hereafter. As a singleton interval type-2 FLC 
fuzzifies crisp input signals as singletons, it does not ac- 
count explicitly for input measurement uncertainties. The 
antecedents of the rule base are constructed using interval 
type-2 fuzzy sets in order to handle model uncertainties, while 
the consequents are type-1 fuzzy sets. 

A. Fuzzy Inference Engine 

The role of the fuzzy inference engine is to combine the 
NICS which are fired in order to generate a mapping from 
crisp inputs to output type-2 fuzzy sets. Just as the sup-star 
composition is the backbone computation for a type-1 FLC, 
the extended sup-star composition is the backbone for a type-2 
FLC. Each rule is interpreted as a type-2 fuzzy implication. 
Suppose the sum-min inference engine is used and a rule is 

RI : I? and Fi i G' 

Fi and Fi are interval type-2 fuzzy sets while GI is a type-I 
fuzzy set. As all the type-2 sets used here are interval ones, 
the result of the input and antecedent operations, involved in 

p-, (xi) is the lower membership grade of 
pgt (z i )  is the upper membership grade of F'. 
--F 

The output set that is obtained when rule R' is fired is the 
following type-2 fuzzy set 

where pol (y) is the membership grade of G'(y). To determine 
p;,(y), one only needs to compute its lower and upper 
membership grades. 

B. Type-Reduction 
The outputs corresponding to the fired rules are type-2 

fuzzy sets which must be type-reduced before the defiizifier. . 

can be used to generate a crisp output. This is the main 
structural difference between the type-I and type-2 FLCs. In. 
this paper, the center-of-sets type-reducer is used. It combines 
all the type-2 output sets and then performs a center-of-sets 
calculation to produce a type-I set, known as a type-reduced 
set. There are two type-reduction methods: Kamik-Mendel 
iterative method [4] and the uncertainty hound method [I l l .  
The first approach is adopted and it is based on the Generalized 
Centroid (GC) concept [4] which may he defined as 

GC 

= [YI, Yvl (3) 

where Zi is a type-I set with center c, and spread si, and Wi 
is a type-l set with center h, and spread Si. zi and mi are 
calculated using c,, si, hi and Si via the following iterative 
procedure shown in Fig. 4. It has been proved that this iterative 
procedure can converge in at most N iterations [4]. 

C. Defuzzifrcation 
Once yi and y,. are obtained, they can be used to calculate 

the crisp output. Since the type-reduced set is an interval set, 
the output is (yi + y,)/P. 

111. THE COUPLED-TANK  SYSTEM^ 

The plant used as the test bed in this work is the coupled- 
tank apparatus shown in Fig. 5 .  The equipment consists oftwo 
small tower-type tanks mounted above a reservoir that store 
the water. Water is pumped into the top of each tank by two 
independent pumps, and the levels of water are measured by 
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Set z, = c, +si for i = 1,. . . , N ;  
Arrange z, in ascending order; 
Set wi =,hi for a = 1,. . . , N ;  c.= *."I Yi = *; 

VI' = y ; 
&=,U's 

do 
Y) = Y" 
Find k € 11- N - l] such thaf zx 5 y' 5 Z&+I: 
Set wi = h. - & f o r i  5 k 
Set w. = h, + &  for i 2 k f  1; 

EN= Z l W I  

Gin, Y!, = +. 
while y'! = y 
y7 = y"; 

Fig. 4. Kamik-Mendel itsniive method 

Fig. 5. The coupled-tank liquid-level contml system 

two capacitive-type probe sensors. Each tank is fitted with an 
outlet, at the side near the base. Raising the baffle between 
the two tanks allows water to flow between them. The amount 
of water which returns to the reservoir is approximately 
proportional to the square root of the height of water in the 
tank, which is the main source of nonlinearity. 

The dynamics of the coupled-tank apparatus can he mod- 
elled by the following set of nonlinear differential equations: 

where AI, A2 are the cross-sectional area of Tank # I ,  #2; 
HI, H z  are the liquid level in Tank #I, #2; Q1,Q2 are the 
volumetric flow rate (cm3/sec) of Pump # I ,  #2; al, a2, 0 3  

are the proportionality constant corresponding to the a, 
Jf7; and ,/=terms. 

The coupled-tank apparatus is configured as a second-order 
single input single output (SISO) system in this paper by 
turning off Pump #2 and using Pump # I  to control the water 
level in Tank #2. In this case, Q 2  equals zero and Equation (4h) 
can be simplified to : 

FLCs were tuned based on the simulated plant. The sam- 
pling period is 1 sec. For the results reported herein, the 

following parameters are adopted 

AI = Az = 36.52 cm2 

cy3 = 10 
ai = a2 = 5.6186 

The maximum control signal is 5 volts. corresponding to an 
approximately flow rate of pump # I  of 73 cm31sec. These pa- 
rameters were identified using data collected from the physical 
plant so that the FLCs designed using the simulated process 
can he tested experimentally. 

IV. DESIGN OF FLCS 
In this section, a CA based strategy for designing a singleton 

interval type-2 FLC is proposed. 
Two very different approaches may he used to select the 

parameters of a type-2 fuzzy logic system [.?I. One is  a 
partially dependent approach, where a best possible type-I 
fuzzy logic system is designed first, and then used to initialize 
the parameters of a singleton type-2 fuzzy logic system. The 
other method is a totally independent approach, where all 
of the parameters of the type-2 FLC are tuned from scratch 
without the aid of an existing type-I design. In this paper, 
the partially dependent approach is adopted because it has the 
following benefits: 1) smart initialization of the parameters of 
the type-2 FLC; and 2) a baseline design whose performance 
can be compared with that of the type-2 FLC [4]. Another 
benefit is the number of parameters that need to he tuned is 
usually fewer with this approach, thus the CA can converge 
at a faster speed. 

The partially dependent approach requires a good baseline 
design. To satisfy this requirement, the proposed design strat- 
egy is to use CA to optimize the parameters of a type-1 FLC. 
The type-2 FLC is then evolved by blurring the type-I fuzzy 
input sets to generate the FOU. Before presenting details about 
how GA is used to tune the FLCs, the structure of the type-I 
and type-2 FLC that is used to control the liquid level process 
is described. 

In order to concentrate on examining the possibility of using 
CA to evolve type-2 FLCs and to assess their ability to handle 
uncertainties, the standard fuzzy Proportional plus Integral (PI) 
controller is employed. Hence, the input signals of the FLCs 
are the feedback error, e, and the change of the error, d, 
while the output signal is the change in the control signal, 
e. Each input domain is partitioned by three fuzzy MFs that 
are labelled as N, Z and P. The output space has five MFs 
labelled as NB, NS, Z, PS and PB. Table I shows the fuzzy 
rule base, which is commonly used to construct fuzzy logic 
controllers. Both the type-1 and type-2 FLCs have essentially 
the same architecture. The only difference being that the input 
domains of the type-I and type-2 FLC are partitioned by type- 
1 and interval type-2 fuzzy sets respectively. As described in 
the previous section, the center-of-sets type-reducer and the 
height defwzifier are used to calculate the crisp control signal. 

A.  The Genetic Aigorifhms 
In this paper, the MFs of the type-I FLC and the FOU 

of the type-2 FLC are evolved using a population size of 
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Fig. IO.  This ensures that MFs that cover the both positive 
and negative sides of universe of discourse can be trained. 

B. Type-1 FLC (FLC1) 
Since each universe of discourse of FLCl are partitioned 

by 3 fuzzy sets that have partition of unity, three points are 
sufficient to uniquely determine the three input MFs associated 
with an input domain. Using the MFs of e as an example, the 
three points are Ne,  2, and P,, as indicated by the dotted 
lines in Fig. 6. The output has five type-I fuzzy sets. They 
may be represented mathematically by five distinct numbers 
because height defwzifier is used. Consequently, there are a 
total of 11 parameters which need to be optimized by the GA. 
The MFs of e and e of FLCl evolved by CA are shown in 
Fig. 7 as the dark thick lines. The MFs of 4 are shown in 
Fig. 8. 

4 

TABLE I 
RULE BASE OF THE TWO FLCS 

Z / I  NS I 2 I PS 
P II 7 I PC I PR 

200 chromosomes coded in real number. Members of the first 
generation are randomly initialized and the GA terminates 
after 50 generations. To ensure that the fitness increases 
monotonically, the best population in each generation enters 
the next generation directly. In addition, a generation gap of 
0.8 is used during the reproduction operation so that 80% 
of the members in the new generation are determined by 
the rank reproduction method, while the remaining 20% are 
selected randomly. This strategy helps to prevent premature 
convergence. The crossover rate is 0.8. Mutation is performed 
by generating a random number, m, for each gene in the 
chromosome. If 'm is smaller than 0.05, non-linear mutation, 
as defined in Equation (6), occurs. 

z(2 + 1) = z(2) + b(z,i) ( 6 )  

where 

(R ,  - z) . (1  - A('-&)), 
( L ,  - z) . (1 - A('-&)), 

if rand(1) > 0.5 
otherwise 

(7) 
and z ( i )  is the value of gene z in ith generation, i,,, is the 
maximum number of generations, [L,, R,] is the interval in 
which z lies, X is a random number in [0, 11. This mutation 
method enables finer adjustment to occur as i becomes bigger. 

The fitness of each member in the population is assessed us- 
ing the simulated liquid level process described in Section 111. 
As the main objective of the control system is to minimize 
the error between the setpoint and the actual response of the 
plant, the fitness hnction is chosen as the sum of the integral 
of time-weighted absolute error (ITAE), which is defined in 
Equation (8). 

{ b(2, 2)  = 

M 

F=C C k * e ( k )  (8) 
*=1 r1 1 

where iV, is the number of sampling instants between step 
changes in the setpoint, hf is the number of step changes in 
the test sequence used to evaluate the fitness of each member 
in a generation. A test sequence comprising of multiple 
step changes is needed because the liquid level process has 
nonlinear dynamics. However, a complex setpoint trajectory 
places a higher computational load on the computer and it 
will take a longer time to evolve the necessary parameters. As 
a trade-off, 1l.I is chosen to be 2. The 2 setpoints are randomly 
selected at the start of each generation in order to cover a wide 
operating range. In addition, the process is first brought to the 
higher setpoint and then to the lower one, as illustrated in 

Fig. 6 .  Example membership functions of e 

Fig. 7. MFs of e and 8 

Fig. 8. MFs of U 

C. Type-2 FLC (FLC2) 
FLC2 is a singleton interval type-2 FLC. It has the same 

fuzzy rule base and the output MFs as the type-I FLC. In line 
with the partially dependent approach, the type-2 fuzzy input 
sets are designed by blurring the type-1 fuzzy sets described in 
the previous section. As illustrated in Fig. 2, the type-2 fuzzy 
sets may be generated by shifting the apex of the type-I fuzzy 
set to the let? and to the right. In other words, the FOU may 
be uniquely defined by selecting suitable values for the two 
dotted lines labelled as L and R. 
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system has non-zero transport delay [12]. These characteristics 
were not modelled by the simulated liquid level process used 
by the GA to optimize the fuzzy controller parameters. Hence, 
the ability of the FLCs to handle modelling uncertainties can 
be ascertained by examining control performance of the FLCs 
on the actual plant. 

The responses to step changes in the setpoints and the 
corresponding control signals are shown in Fig. 10. The 
control performances are comparable to those obtained using a 
neuro-fuzzy controller [12], indicating that both FLCs are able 
to provide satisfactory control performance in the presence of 
uncertainties introduced by the pump non-linearity and the 
unmodelled transport delay. 
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Fig. IO. Step responses to changed setpoints 

To further compare the ability of the type-I and type- 
2 FLCs to handle uncertainties, the flow rate between the 
two tanks was reduced by lowering the baffle separating the 
two tanks. This change gave rise to a system with slower 
dynamics. In addition, the difference in liquid level between 
the two tanks was larger at steady state. When the baffle was 
slightly lowered, the step responses and the control signal 
are shown in Fig. 11. When the baffle was further lowered, 
the results are shown in Fig. 12. It may be observed that 
both the FLCs are able to attenuate the oscillations when 
the modelling uncertainties are small. The liquid level in the 
tank will eventually reach the desired setpoint, though the 
settling time is shorter when FLCz is employed. When the 
modelling uncertainties are bigger, FLCl will give rise to 
persistent oscillations while FLC? has the ability to eliminate 
these oscillations and the liquid level reach its desired height 
at steady state. 

Lastly, the ability of the two FLCs to deal with a larger 
unmodelled transport delay was studied. First, a 2-second 
transport delay was added to the system. The step responses 
and the control signal are shown in Fig. 13. When a 4-second 
transport delay was added to the system, the results are shown 
in Fig. 14. Once again, the type-2 FLC outperforms its type-I 
counterpart especially when the uncertainty is large. Thus, it 
may be concluded that the type-2 FLC is more robust than the 
type-I FLC. 
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Fig. 11. Step responses when the bat& was slightly lowered 

Fig. 12. Step responses when the bame was further lowered 

VI. DISCUSSIONS 
Besides control performance, another issue to consider is 

the amount of computing power needed to implement a type- 
2 FLC. Comparatively, the computational cost of FLCz is 
higher. On a 500 MHz computer with 128M RAM, the average 
computation time for FLCl and FLCz are 9.5 milliseconds 
and 16.8 milliseconds respectively. As the number of MFs, 
and therefore the rule base, become larger, the computational 
cost will increase further. Nevertheless, the larger computa- 
tional requirements is not likely be a serious problem as fast 
computers are readily available nowadays. The computational 
load can also be reduced by employed the uncertainty bound 
type-reduction method [I 11. 

VII. CONCLUSIONS 

In this paper, a GA approach for designing a singleton 
interval type:2 FLC is proposed and used to design a controller 
for a coupled-tank liquid-level system. Experimental results 
show that the type-2 FLC outperforms its type-I counterpart 
significantly when the modelling error is large. The main ad- 
vantage of the type-2 FLC appears to be its ability to eliminate 
persistent oscillations. As the type-2 FLC can tolerate bigger 
modelling errors, it is more robust than type-I FLCs. Another 
interesting observation is that the performances of both FLCs 
are similar for the nominal plant, indicating that robustness is 
obtained with little performance trade-offs. 

y/ I n 10 la) IJO IM 250 1m 150 4M A S 0  sa) 
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Fig. 13. Step responses when there was B 2 sec transport delay 
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Fig. 14. Step responses when there was a 4 sec transport delay 
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