
A Reconstruction Decoder

for the Perceptual Computer

Dongrui Wu

Machine Learning Lab, GE Global Research, Niskayuna, NY, USA

E-mail: wud@ge.com

Abstract—The Word decoder is a very important approach for
decoding in the Perceptual Computer. It maps the computing with
words (CWW) engine output, which is a fuzzy set, into a word
in a codebook so that it can be understood. However, the Word
decoder suffers from significant information loss, i.e., the fuzzy set
model of the mapped word may be quite different from the fuzzy
set output by the CWW engine, especially when the codebook is
small. In this paper we propose a Reconstruction decoder, which
represents the CWW engine output as a combination of two
successive codebook words with minimum information loss by
solving a constrained optimization problem. The Reconstruction
decoder can be viewed as a generalized Word decoder and it
is also implicitly a Rank decoder. Moreover, it preserves the
shape information of the CWW engine output in a simple
form without sacrificing much accuracy. Experimental results
verify the effectiveness of the Reconstruction decoder. Its Matlab
implementation is also given in this paper.

Index Terms—Computing with words, Perceptual Computer,
decoder, type-1 fuzzy sets, interval type-2 fuzzy sets

I. INTRODUCTION

Computing with words (CWW) [33], [34] is “a method-

ology in which the objects of computation are words and

propositions drawn from a natural language.” Many different

approaches for CWW have been proposed so far [1], [6], [7],

[9], [11], [16]–[18], [20], [22], [30], [31], [35]. According to

Wang and Hao [21], these techniques may be classified into

three categories:

• The Extension Principle based models [1], [3], [13], [16],

which operate the underlying fuzzy set (FS) models of the

linguistic terms using the Extension Principle [32].

• The symbolic models [4], which operate on the indices

of the linguistic terms.

• The 2-tuple representation based models [5], [6]. Each

2-tuple includes a linguistic term and a numeric number

in [−0.5, 0.5), which allows a continuous representation

of the linguistic information in its domain.

Each category of models has its unique advantages and

limitations. The Extension Principle based models can deal

with any underlying FS models for the words, but they are

computationally intensive. Moreover, their results usually do

not match any of the initial linguistic terms, and hence an

approximation process must be used to map the results to the

initial expression domain. This results in loss of information

and hence the lack of precision [2], [21]. The symbolic models

are much computationally simpler than the Extension Principle

based models, but they do not directly take into account the

underlying vagueness of the words [9]. Also, they have the

same information loss problem as the Extension Principle

based models. The 2-tuple representation based models can

avoid the information loss problem, but generally they have

constraints on the shape of the underlying FS models for the

linguistic terms, i.e., they need to be equidistant [6]. There

have also been hybrid approaches, which try to combine the

advantages of different models but eliminate their limitations,

e.g., a new version of 2-tuple linguistic representation model

[21], which combines symbolic models with the 2-tuple repre-

sentation models to eliminate the “equal-distance” constraint.

However, to the best of the author’s knowledge, there has not

been active research into the information loss problem of the

Extension Principle based models.

In this paper we focus on the Extension Principle based

models, particularly, the Perceptual Computer (Per-C) [13],

[16]. It has the architecture that is depicted in Fig. 1, and

consists of three components: encoder, CWW engine and

decoder. Perceptions–words–activate the Per-C and are the Per-

C output (along with data); so, it is possible for a human to

interact with the Per-C using just a vocabulary. A vocabulary

is application (context) dependent, and must be large enough

so that it lets the end-user interact with the Per-C in a user-

friendly manner. The encoder transforms words into FSs and

leads to a codebook–words with their associated FS models.

Both type-1 (T1) and interval type-2 (IT2) FSs [12] may be

used for word modeling, but we prefer the IT2 FSs because

their footprint of uncertainty (FOU) can model both the intra-

personal and inter-personal uncertainties associated with the

words [14]. The outputs of the encoder activate a CWW engine

whose output is one or more other FSs, which are then mapped

by the decoder into a recommendation (subjective judgment)

with supporting data.

Thus far, there are three kinds of decoders according to three

forms of recommendations:

Encoder CWW Engine Decoder
Recommendation

+ Data

Words FSs FSs

Fig. 1. Conceptual structure of the Perceptual Computer.

1) Word: To map a FS into a word, it must be possible

to compare the similarity between two FSs. The Jaccard

similarity measure [26] can be used to compute the sim-

ilarities between the CWW engine output and all words

U.S. Government work not protected by U.S. copyright

WCCI 2012 IEEE World Congress on Computational Intelligence
June, 10-15, 2012 - Brisbane, Australia FUZZ IEEE

in the codebook. Then, the word with the maximum

similarity is chosen as the Decoder’s output.

2) Rank: Ranking is needed when several alternatives are

compared to find the best. Because the performance of

each alternative is represented by a FS obtained from the

CWW engine, a ranking method for IT2 FSs is needed.

A centroid-based ranking method for T1 and IT2 FSs is

described in [26].

3) Class: A classifier is necessary when the output of

the CWW engine needs to be mapped into a decision

category [15]. Subsethood [16], [19], [23] is useful for

this purpose. One first computes the subsethood of the

CWW engine output for each of the possible classes.

Then, the final decision class is the one corresponding

to the maximum subsethood.

The Word decoder suffers a lot from the aforementioned

information loss problem because a user-friendly codebook

only contains a small number (usually around seven) of words

and hence an FOU may be mapped into a codebook word

whose FOU looks quite different. In this paper we propose a

Reconstruction decoder for the Per-C, which can be used to

replace the Word decoder with very little loss of information.

The remainder of this paper is organized as follows: Sec-

tion II introduces the details of the Reconstruction decoder.

Section III presents some experimental results. Section IV

draws conclusions. Matlab implementation of the Reconstruc-

tion decoder is given in the Appendix.

II. THE RECONSTRUCTION DECODER FOR THE PER-C

So far almost all FS models used in CWW are normal

trapezoidal FSs (triangular FSs are special cases of trapezoidal

FSs), no matter whether they are T1 or IT2 FSs. Additionally,

the only systematic methods for constructing IT2 FSs from

interval survey data are the Interval Approach [10] and its

enhanced version, the Enhanced Interval Approach [29], both

of which only output normal trapezoidal IT2 FSs. So, in this

paper we focus on normal trapezoidal T1 and IT2 FSs for

simplicity. We will discuss how our method can be extended

to more general FS models like Gaussian FSs or subnormal

FSs at the end of this section. Matlab implementation of the

Reconstruction decoder is given in the Appendix. It can be

used for both T1 and IT2 normal trapezoidal FSs.

A. The Reconstruction Decoder for T1 FS Word Models

A normal trapezoidal T1 FS can be represented by four

parameters shown in Fig. 2. Note that a triangular T1 FS is a

special case of the trapezoidal T1 FS when b = c.

x

u
1

a b c d

Y

Fig. 2. A trapezoidal T1 FS, determined by four parameters (a, b, c, d).

Assume the output of the CWW Engine is a trapezoidal T1

FS1 Y , which is represented by four parameters (a, b, c, d).
Assume also the codebook consists of N words, which have

already been sorted in ascending order using the centroid based

ranking method [26]. The trapezoidal T1 FS model for the

nth word is Wn, which is represented by four parameters

(an, bn, cn, dn) and whose centroid is wn, n = 1, 2, ..., N .

The Reconstruction decoder tries to find a combination of

two successive codebook words to represent Y with minimum

information loss, i.e.,

Y ≈ W (1)

where

W = αWn′ + βWn′+1. (2)

To determine n′, we first compute the centroid of Y , y, and

then identify the n′ such that

wn′ ≤ y ≤ wn′+1. (3)

Essentially, this means that we rank {Wn} and Y together and

then select the two words immediately before and after2 Y .

The next problem is how to determine the coefficient α and

β so that there is minimum information loss in representing

Y as W . There can be different definitions of minimum

information loss, e.g.,

1) The similarity between Y and W is maximized. This

definition is very intuitive, as the more similar Y and W

are, the less information loss there is when we represent

Y by W .

2) The mean-squared error between the four parameters

of Y and W is minimized. This definition is again

very intuitive, as generally a smaller mean-squared error

means a larger similarity between Y and W , and hence

less information loss.

However, one problem with the second approach is that it

is difficult to find a set of parameters to define T1 FSs with

arbitrary shapes (e.g., not necessarily trapezoidal or Gaussian).

On the other hand, the Jaccard similarity measure [26] can

work for any T1 FSs. So, in this paper we use the first

definition.

Before computing the similarity between Y and W , we

first need to compute W = αWn′ + βWn′+1. Because both

Wn′ and Wn′+1 are normal trapezoidal T1 FSs, W is also

a normal trapezoidal T1 FS; so, it can also be represented

1Strictly speaking, when trapezoidal T1 FSs are used in the CWW engine,
e.g., the novel weighted averages [16], [28] or Perceptual Reasoning [16],
[27], the output T1 FS Y is not perfectly trapezoidal, i.e., its waists are
slightly curved instead of straight; however, the waists can be approximated
by straight lines with very high accuracy. Moreover, as we will see at the
end of this section, our method can be applied to FSs with any shape. So,
trapezoidal Y is used in the derivation for simplicity.

2There may be a concern that Y is smaller than W1 or larger than WN

so that we cannot find a n′ satisfying (3); however, this cannot occur in
the Per-C if the encoder and the decoder use the same vocabulary and the
novel weighted average [16], [28] or Perceptual Reasoning [16], [27] is used,
because both CWW engines are some kind of weighted average, and it is
well-known that the output of a weighted average cannot be smaller than the
smallest input and cannot be larger than the largest input either.

by four parameters (aw, bw, cw, dw). Based on the Extension

Principle [32] and the α-cut Representation Theorem [8], we

have

aw = αan′ + βan′+1 (4)

bw = αbn′ + βbn′+1 (5)

cw = αcn′ + βcn′+1 (6)

dw = αdn′ + βdn′+1 (7)

To solve for α and β, we consider a constrained optimiza-

tion problem, i.e.,

argmax
α,β

s(Y,W) (8)

s.t. α ≥ 0, β ≥ 0

α+ β = 1

where

s(Y,W) =

∑I

i=1
min(µY (xi), µW (xi))∑I

i=1
max(µY (xi), µW (xi))

(9)

is the Jaccard similarity measure between Y and W .

Observe that we have some constraints in (8), which are

derived from the analogy to the case for crisp numbers. For

example, the decimal 4.4, which lies between two successive

integers 4 and 5, can be represented as 4.4 = α·4+β ·5, where

α = 0.6, β = 0.4, and α + β = 1. In (8) we treat Wn′ and

Wn′+1 as two successive “integers” and Y as a “decimal,” and

we want to represent this “decimal” using the two “integers.”

In summary, the procedure for the Reconstruction decoder

for T1 FS word models is:

1) Compute wn, the centroid of Wn, n = 1, ..., N , and

rank {Wn} in ascending order. This step only needs to

be performed once, and it can be done offline.

2) Compute y, the centroid of Y .

3) Identify n′ according to (3).

4) Solve the constrained optimization problem in (8) for α

and β.

5) Represent the decoding output as Y ≈ αWn′ +βWn′+1.

B. The Reconstruction Decoder for IT2 FS Word Models

In this paper a normal trapezoidal IT2 FS is represented

by nine parameters shown in Fig. 3. Note that we use

four parameters for the normal trapezoidal upper membership

function (UMF), similar to the T1 FS case; however, we need

five parameters for the trapezoidal lower membership function

(LMF) since usually it is subnormal and hence we need a fifth

parameter to specify its height.

Assume the output of the CWW Engine is a trape-

zoidal IT2 FS3 Ỹ , which is represented by nine parameters

(a, b, c, d, e, f, g, i, h). Assume also the codebook consists

of N words, which have already been sorted in ascending

order using the centroid based ranking method [26]. The

IT2 FS for the nth word is W̃n, which is represented by

3Similar to the discussions in Footnote 1, here trapezoidal IT2 FSs are used
for simplicity. Our method can be applied to IT2 FSs with arbitrary FOUs.

x

u
1

a b c de f g i

h

Y%
Y

Y

FOU

Fig. 3. A normal trapezoidal IT2 FS. (a, b, c, d) determines a normal
trapezoidal UMF, and (e, f, g, i, h) determines a trapezoidal LMF with height
h.

(an, bn, cn, dn, en, fn, gn, in, hn) and whose center of centroid

is wn, n = 1, 2, ..., N . The Reconstruction decoder again tries

to find a combination of two successive codebook words to

represent Ỹ with minimum information loss.

Similar to the T1 FS case, we first compute the center of

centroid of Ỹ , y, and then identify the n′ such that

wn′ ≤ y ≤ wn′+1. (10)

We then solve the following constrained optimization problem

for α and β:

argmax
α,β

s(Ỹ , W̃) (11)

s.t. α ≥ 0, β ≥ 0

α+ β = 1

where

W̃ = αW̃n′ + βW̃n′+1. (12)

and s(Ỹ , W̃) is the Jaccard similarity measure between Ỹ and

W̃ , shown in (13) on top of the next page.

Clearly, to solve (11), we need to be able to numerically

represent W̃ in (12). Assume W̃ is represented by nine param-

eters (aw, bw, cw, dw, ew, fw, gw, iw, hw). We then compute

the UMF and LMF of W̃ separately. The UMF computation

is very simple. Because the UMFs of both W̃n′ and W̃n′+1

are normal, similar to the T1 FS case, we have

aw = αan′ + βan′+1 (14)

bw = αbn′ + βbn′+1 (15)

cw = αcn′ + βcn′+1 (16)

dw = αdn′ + βdn′+1 (17)

However, the computation of the LMF of W̃ is not so straight-

forward, because generally the LMFs of W̃n′ and W̃n′+1 have

different heights, i.e., hn′ 6= hn′+1. Based on the Extension

Principle, the height of the LMF of W̃ should be equal to

the smaller one of hn′ and hn′+1 (this fact has also been

used in deriving the linguistic weighted averages [24], [25]).

Without loss of generality, assume hn′ ≤ hn′+1. We then

crop the top of Wn′+1 to make it the same height as Wn′ , as

shown in Fig. 4. Representing the cropped version of Wn′+1

as (en′+1, f
′

n′+1, g
′

n′+1, in′+1, hn′), the LMF of W̃ is then

s(Ỹ , W̃) =

∑I

i=1
min(µY (xi), µW (xi)) +

∑I

i=1
min(µY (xi), µW (xi))∑I

i=1
max(µY (xi), µW (xi)) +

∑I

i=1
max(µY (xi), µW (xi))

(13)

computed as:

ew = αen′ + βen′+1 (18)

fw = αfn′ + βf ′

n′+1 (19)

gw = αgn′ + βg′n′+1 (20)

iw = αin′ + βin′+1 (21)

hw = min(hn′ , hn′+1) (22)

In fact, if we represent W̃ as

W̃ =
αW̃n′ + βW̃n′+1

α+ β
· (α+ β) (23)

and compute the first term on the right hand side as a special

linguistic weighted average [24], [25], we can get the same

result as presented above.

x

u

1ne ′+ 1nf ′+ 1ng ′+ 1ni ′+

nh ′

1nW ′+

1nh ′+

1nf ′+
′

1ng ′+
′

Fig. 4. Illustration of how W
n′+1 is cropped to have height hn′ .

In summary, the procedure for the Reconstruction decoder

for IT2 FS word models is:

1) Compute wn, the centers of centroid of W̃n, n =
1, ..., N , and rank {W̃n} in ascending order. This step

only needs to be performed once, and it can be done

offline.

2) Compute y, the center of centroid of Ỹ .

3) Identify n′ according to (10).

4) Solve the constrained optimization problem in (11) for

α and β.

5) Represent the decoding output as Ỹ ≈ αW̃n′ +βW̃n′+1.

C. The Reconstruction Decoder for Arbitrary FS Shapes

We have explained the Reconstruction decoder for normal

trapezoidal T1 and IT2 FS word models. Our method can

also be applied to T1 and IT2 FSs with arbitrary shapes. The

procedure is essentially the same. The only difference is in

computing W or W̃ . Take W as an example. If Wn′ and

Wn′+1 have different heights, then the method for computing

W in the previous subsection can be used for computing W ,

i.e., we fist crop the higher T1 FS to make it the same height as

the lower one. If Wn′ and Wn′+1 are not trapezoidal, then W

cannot be represented using only four parameters; however, it

can still be computed using the α-cut Decomposition Theorem

[8], [24], [25], one α-cut at a time.

III. EXPERIMENTAL RESULTS

Experimental results on verifying the performance of the

Reconstruction decoder are presented in this section. We

consider T1 FS and IT2 FS cases separately.

A. T1 FS Case

In [29] we computed the FOUs of 32 IT2 FSs using the

Enhanced Interval Approach. The UMFs of these 32 IT2 FSs,

shown as the black solid curves in Fig. 5, are used in this

experiment as our T1 FSs. They have been sorted in ascending

order according to their centroids. In the experiment, we

select a T1 FS (Wn) from these 32 words as Y , the output

of the CWW engine, and use the remaining 31 words as

our codebook. The Reconstruction decoder is then used to

represent Y as a combination of two IT2 FSs in the codebook.

Note that once a Wn is selected as Y , it is excluded from

the codebook because otherwise Y would be mapped to Wn

directly, which is not interesting and usually does not happen

in practice. By excluding Wn in the codebook we force the

Reconstruction decoder to represent Wn as a combination of

Wn−1 and Wn+1 and hence we can test the performance of

the Reconstruction decoder. Note also that W1 and W32 are

not selected as Y because, as explained in Footnote 2, if the

Encoder and the Decoder use the same codebook, then the

CWW engine output can never be smaller than the smallest

word in the codebook, and also can never be larger than the

largest word in the codebook. If we select W1 as Y and use

W2 −W32 as the codebook, then Y is smaller than all words

in the codebook, which cannot happen in practice. So, we only

repeat the experiment for Wn, n = 2, 3, ..., 31.

The reconstructed W are shown in Fig. 5 as the red dashed

curves. Observe that most of them are almost identical to

the original Wn. The Jaccard similarities between Y and W

are shown in the second column of Table I. Observe that 16

of the 30 similarities are larger than or equal to 0.95, 25

are larger than or equal to 0.9, and all 30 similarities are

larger than 0.65. The corresponding α and β for constructing

W are given in the third part of Table I, and the Jaccard

similarities between Y and Wn−1 and Wn+1 are shown in

the fourth part of Table I. It is interesting to examine whether

the Reconstruction decoder preserves the order of similarity,

i.e., if s(Y,Wn−1) > s(Y,Wn+1), then we would expect that

α > β and vice versa. We call this property consistency. The

inconsistencies words are marked in bold in Table I. Observe

that only two of the 30 words have an inconsistency.

Teeny−weeny Tiny None to very little A smidgen

Very small Very little A bit Little

Low amount Small Somewhat small Some

Quite a bit Modest amount Some to moderate Medium

Moderate amount Fair amount Good amount Considerable amount

Sizeable Substantial amount Large Very sizeable

A lot High amount Very large Very high amount

Huge amount Humongous amount Extreme amount Maximum amount

Fig. 5. Reconstruction results for T1 FS models. The black solid curves
show the original T1 FSs, and the red dashed curves show the reconstructed
T1 FSs.

TABLE I
EXPERIMENTAL RESULTS FOR T1 FS WORD MODELS. FOR EACH ROW,

Y = Wn AND W = αWn−1 + βWn+1 .

Y s(Y,W) α β s(Y,Wn−1) s(Y,Wn+1)
W2 0.93 0 1 0.73 0.93
W3 0.93 1 0 0.93 0.72
W4 0.90 0.53 0.47 0.72 0.87
W5 0.94 0.50 0.50 0.87 0.82
W6 0.91 0.83 0.17 0.82 0.64
W7 0.96 0.54 0.46 0.64 0.71
W8 1 0.17 0.83 0.71 0.94
W9 0.99 0.57 0.43 0.94 0.94
W10 0.94 0.95 0.05 0.94 0.67
W11 0.84 0.57 0.43 0.67 0.52
W12 0.79 0.34 0.66 0.52 0.72
W13 0.73 0.76 0.24 0.72 0.64
W14 0.98 0.22 0.78 0.64 0.90
W15 0.90 1 0 0.90 0.70
W16 0.90 0.07 0.93 0.70 0.89
W17 0.94 0.65 0.35 0.89 0.83
W18 0.96 0.82 0.18 0.83 0.47
W19 0.97 0.01 0.99 0.47 0.97
W20 0.98 0.98 0.02 0.97 0.65
W21 0.66 0.10 0.90 0.65 0.75
W22 0.82 0.43 0.57 0.75 0.77
W23 0.98 0.06 0.94 0.77 0.98
W24 0.98 0.82 0.18 0.98 0.89
W25 0.99 0.57 0.43 0.89 0.84
W26 0.97 0.59 0.41 0.84 0.71
W27 0.95 0.32 0.68 0.71 0.84
W28 1 0.17 0.83 0.84 0.96
W29 1 0.91 0.09 0.96 0.57
W30 1 0.15 0.85 0.57 0.87
W31 1 0.84 0.16 0.87 0.21

B. IT2 FS Case

The 32 FOUs in [29] are again used in the experiment. The

UMFs and LMFs are shown as the black solid curves in Fig. 6.

The experiment setup is very similar to that in the previous

subsection, except that here we use the IT2 FSs instead of

only the UMFs. The reconstructed W̃ are shown in Fig. 6 as

the red dashed curves. Observe again that most of them are

almost identical to the original W̃n. The Jaccard similarities

between Ỹ and W̃ are shown in the second column of Table II.

Observe that 12 of the 30 similarities are larger than or equal

to 0.95, 18 are larger than or equal to 0.9, 26 are larger than

or equal to 0.8, and all 30 similarities are larger than 0.6. The

corresponding α and β for constructing W are given in the

third part of Table II, and the Jaccard similarities between Ỹ

and W̃n−1 and W̃n+1 are shown in the fourth part of Table II.

The inconsistency is marked in bold in Table II. Observe that

only one of the 30 words has an inconsistency.

Teeny−weeny Tiny None to very little A smidgen

Very small Very little A bit Little

Low amount Small Somewhat small Some

Quite a bit Modest amount Some to moderate Medium

Moderate amount Fair amount Good amount Considerable amount

Sizeable Substantial amount Large Very sizeable

A lot High amount Very large Very high amount

Huge amount Humongous amount Extreme amount Maximum amount

Fig. 6. Reconstruction results for IT2 FS models. The black solid curves
show the original IT2 FSs, and the red dashed curves show the reconstructed
IT2 FSs.

C. Discussions

The Reconstruction decoder has the following advantages,

evidenced from its derivation and the experimental results:

1) The Reconstruction decoder is a generalized Word de-

coder. Take the T1 FS case for example. If α > β, then

the output Y = αWn′ + βWn′+1 reads “Y is a word

between Wn′ and Wn′+1, and it is closer to Wn′ .” Sim-

ilarly, if α < β, then the output Y = αWn′ + βWn′+1

reads “Y is a word between Wn′ and Wn′+1, and it

TABLE II
EXPERIMENTAL RESULTS FOR IT2 FS WORD MODELS. FOR EACH ROW,

Ỹ = W̃n AND W̃ = αW̃n−1 + βW̃n+1 .

Ỹ s(Ỹ , W̃) α β s(Ỹ , W̃n−1) s(Ỹ , W̃n+1)

W̃2 0.86 0.02 0.98 0.76 0.86

W̃3 0.86 1 0 0.86 0.60

W̃4 0.76 0 1 0.60 0.76

W̃5 0.80 0 1 0.76 0.80

W̃6 0.94 0.79 0.21 0.80 0.55

W̃7 0.91 0.50 0.50 0.55 0.73

W̃8 0.99 0.17 0.83 0.73 0.93

W̃9 0.97 0.57 0.43 0.93 0.94

W̃10 0.85 0.98 0.02 0.94 0.54

W̃11 0.80 0.55 0.45 0.54 0.50

W̃12 0.78 0.48 0.52 0.50 0.65

W̃13 0.66 0.76 0.24 0.65 0.63

W̃14 0.97 0.22 0.78 0.63 0.89

W̃15 0.89 1 0 0.89 0.64

W̃16 0.86 0.08 0.92 0.64 0.85

W̃17 0.91 0.62 0.38 0.85 0.78

W̃18 0.89 0.71 0.29 0.78 0.44

W̃19 0.94 0.04 0.96 0.44 0.93

W̃20 0.93 1 0 0.93 0.50

W̃21 0.64 0.04 0.96 0.50 0.73

W̃22 0.99 0.41 0.59 0.73 0.75

W̃23 0.98 0.01 0.99 0.75 0.98

W̃24 0.98 0.83 0.17 0.98 0.90

W̃25 0.97 0.58 0.42 0.90 0.80

W̃26 0.97 0.62 0.38 0.80 0.62

W̃27 0.93 0.19 0.81 0.62 0.79

W̃28 0.99 0.17 0.83 0.79 0.96

W̃29 1 0.91 0.09 0.96 0.59

W̃30 1 0.15 0.85 0.59 0.88

W̃31 1 0.84 0.16 0.88 0.27

is closer to Wn′+1.” If we want to represent Y by a

single word, then it is safe to choose Wn′ if α > β,

or Wn′+1 if α < β, because we have shown through

experiments that this is almost always consistent with

the Word decoder.

2) The Reconstruction decoder is implicitly a Rank decoder.

Again take the T1 FS case for example. If we know that

Y1 = α1Wn′ +β1Wn′+1, Y2 = α2Wm′+β2Wm′+1, and

n′ < m′, regardless of the values of α1, β1, α2 and β2,

it must be true that Y1 ≤ Y2 because Y1 ≤ Wn′+1 ≤
Wm′ ≤ Y2.

3) The Reconstruction decoder preserves the shape infor-

mation of the CWW engine output in a simple form with

minimum information loss. So, if we want to use Y or

Ỹ in future computations, we can always approximate

it by W or W̃ without sacrificing much accuracy. As an

evidence, observe from the second column of Tables I

and II that the similarities between the original FSs and

the reconstructed FSs are very close to 1. Additionally,

replacing Y by W (or Ỹ by W̃) is almost always better

than replacing Y (or Ỹ) by the word suggested by the

Word decoder, because in Table I we almost always have

s(Y,W) ≥ s(Y,Wn−1) and s(Y,W) ≥ s(Y,Wn+1),

and in Table II we almost always have s(Ỹ , W̃) ≥

s(Ỹ , W̃n−1) and s(Ỹ , W̃) ≥ s(Ỹ , W̃n+1).

IV. CONCLUSIONS

The Word decoder is a very important approach for de-

coding in the Per-C. It maps the CWW engine output into a

word in a codebook so that it can be understood. However,

it suffers from significant information loss, i.e., the FS of the

mapped word may be quite different from the FS output by

the CWW engine, especially when the codebook is small. In

this paper we have proposed a Reconstruction decoder for

the Per-C, which represents the CWW engine output as a

combination of two successive codebook words with mini-

mum information loss by solving a constrained optimization

problem. The Reconstruction decoder can be viewed as a

generalized Word decoder and it is also implicitly a Rank

decoder. Moreover, it preserves the shape information of the

CWW engine output in a simple form without sacrificing much

accuracy. Experimental results verified the effectiveness of our

proposed method. We also give the Matlab implementation of

the Reconstruction decoder in the Appendix.

Our future research includes studying the relationship be-

tween the Reconstruction decoder and the 2-tuple representa-

tion based models.

APPENDIX A

MATLAB IMPLEMENTATION OF THE RECONSTRUCTION

DECODER

Matlab implementation of the Reconstruction decoder is

given in this Appendix. It can be used for both T1 and IT2

normal trapezoidal FSs.

The input parameters are:

• Y, which is a matrix containing Y or Ỹ . Each row

is a separate Y or Ỹ . Each Y is represented by four

parameters (a, b, c, d) in Fig. 2, and each Ỹ is represented

by nine parameters (a, b, c, d, e, f, g, i, h) in Fig. 3.

• CB, which is a matrix containing the codebook. Each

row is a separate Wn or W̃n. Each Wn is represented

by four parameters, and each W̃n is represented by nine

parameters.

• Cs, which is a vector containing the centroids of Wn,

or the centers of centroid of W̃n. Cs will be computed

automatically if it is not provided or if it is empty.

The output parameters are:

1) alpha, which is the α in the paper. Note that β = 1−α.

2) W, which is a matrix containing the reconstructed FSs.

It has the same number of rows as the input Y. Each

row is a separate W or W̃ . Each W is represented by

four parameters, and each W̃ is represented by nine

parameters.

function [alpha,W]=reconstruction1(Y,CB,Cs)

M=size(Y,1); W=zeros(M,size(Y,2));

if nargin==2 || isempty(Cs)

Cs=centroid(CB);

end

[Cs,index]=sort(Cs);

CB=CB(index,:); alpha=nan(M,1);

switch size(Y,2)

case 4 % T1 FSs

for m=1:M

c=centroid(Y(m,:));

i=find(Cs<c,1,’last’);

MFl=CB(i,:); MFr=CB(i+1,:);

A=[-1; 1]; b=[0; 1];

f=@(x)myfun1(x,MFl,MFr,Y(m,:));

alpha(m)=fmincon(f,.5,A,b);

W(m,:)=MFl*alpha(m)+...

MFr*(1-alpha(m));

end

case 9 % IT2 FSs

for m=1:M

c=centroid(Y(m,:));

i=find(Cs<c,1,’last’);

[h,index]=min([CB(i,9),CB(i+1,9)]);

MFl=CB(i,:); MFr=CB(i+1,:);

MFl(9)=h; MFr(9)=h;

switch index

case 1

MFr(6)=CB(i+1,5)+...

h/CB(i+1,9)*(CB(i+1,6)...

-CB(i+1,5));

MFr(7)=CB(i+1,8)-...

h/CB(i+1,9)*(CB(i+1,8)...

-CB(i+1,7));

case 2

MFl(6)=CB(i,5)+h/...

CB(i,9)*(CB(i,6)-CB(i,5));

MFl(7)=CB(i,8)-h/...

CB(i,9)*(CB(i,8)-CB(i,7));

end

A=[-1; 1]; b=[0; 1];

f=@(x)myfun2(x,MFl,MFr,Y(m,:));

alpha(m)=fmincon(f,.5,A,b);

W(m,:)=[MFl(1:8)*alpha(m)+...

MFr(1:8)*(1-alpha(m)) h];

end

end

function f=myfun1(x,MFl,MFr,Y)

% Objective function for T1 FS model

f=-Jaccard(Y,x(1)*MFl+(1-x(1))*MFr);

function f=myfun2(x,MFl,MFr,Y)

% Objective function for IT2 FS model

f=-Jaccard(Y,[x(1)*MFl(1:8)+(1-x(1))*...

MFr(1:8) MFl(9)]);

function CA=centroid(A)

% Compute the centroid of a T1 or IT2 FS

CA=zeros(size(A,1),1);

for i=1:size(A,1)

Xs=linspace(A(i,1),A(i,4),100);

UMF=mg(Xs,A(i,1:4),[0 1 1 0]);

switch size(A,2)

case 4

CA(i)=Xs*UMF’/sum(UMF);

case 9

LMF=mg(Xs,A(i,5:8),...

[0 A(i,9) A(i,9) 0]);

CA(i)=EIASC(Xs,Xs,LMF,UMF,0);

end

end

function S=Jaccard(A,B)

% The Jaccard similarity measure

minX=min(A(1),B(1)); maxX=max(A(4),B(4));

X=linspace(minX,maxX,100);

upperA=mg(X,A(1:4)); upperB=mg(X,B(1:4));

if length(A)==4

S=sum(min([upperA;upperB]))/...

sum(max([upperA;upperB]));

else

lowerA=mg(X,A(5:8),[0 A(9) A(9) 0]);

lowerB=mg(X,B(5:8),[0 B(9) B(9) 0]);

S=sum([min([upperA;upperB]),...

min([lowerA;lowerB])])/...

sum([max([upperA;upperB]),...

max([lowerA;lowerB])]);

end

function [y,yl,yr,l,r]=EIASC(Xl,Xr,Wl,Wr,needSort)

% Implements the EIASC type-reduction

% algorithm proposed in:

% D. Wu and M. Nie, "Comparison and Practical

% Implementation of Type-Reduction Algorithms

% for Type-2 Fuzzy Sets and Systems," IEEE

% International Conference on Fuzzy Systems,

% Taipei, Taiwan, June 2011.

ly=length(Xl); XrEmpty=isempty(Xr);

if XrEmpty; Xr=Xl; end

if max(Wl)==0

yl=min(Xl); yr=max(Xr);

y=(yl+yr)/2; l=1; r=ly-1; return;

end

if nargin==4; needSort=1; end

% Compute yl

if needSort

[Xl,index]=sort(Xl); Xr=Xr(index);

Wl=Wl(index); Wr=Wr(index);

Wl2=Wl; Wr2=Wr;

end

if ly==1

yl=Xl; l=1;

else

yl=Xl(end); l=0;

a=Xl*Wl’; b=sum(Wl);

while l<ly && yl > Xl(l+1)

l=l+1;

t=Wr(l)-Wl(l);

a=a+Xl(l)*t;

b=b+t;

yl=a/b;

end

end

% Compute yr

if ˜XrEmpty && needSort==1

[Xr,index]=sort(Xr);

Wl=Wl2(index); Wr=Wr2(index);

end

if ly==1

yr=Xr; r=1;

else

r=ly; yr=Xr(1);

a=Xr*Wl’; b=sum(Wl);

while r>0 && yr < Xr(r)

t=Wr(r)-Wl(r);

a=a+Xr(r)*t;

b=b+t;

yr=a/b; r=r-1;

end

end

y=(yl+yr)/2;

function u=mg(x,xMF,uMF)

% Compute the membership grade of x on a

% T1 FS represented by xMF and uMF, where

% xMF are samples in the x domain and uMF

% are the corresponding membership grades

if nargin==2; uMF=[0 1 1 0]; end

[xMF,index]=sort(xMF);

uMF=uMF(index); u=zeros(size(x));

for i=1:length(x)

if x(i)<=xMF(1) || x(i)>=xMF(end)

u(i)=0;

else

left=find(xMF<x(i),1,’last’);

right=left+1;

u(i)=uMF(left)+(uMF(right)...

-uMF(left))*(x(i)-xMF(left))...

/(xMF(right)-xMF(left));

end

end

REFERENCES

[1] P. Bonissone and K. Decker, “Selecting uncertainty calculi and gran-
ularity: an experiment in tradeing-off precision and complexity,” in
Uncertainty in Artificial Intelligence, L. Kanal and J. Lemmer, Eds.
Amsterdam, The Netherlands: North-Holland, 1986, pp. 217–247.

[2] C. Carlsson and R. Fuller, “Benchmarking and linguistic importance
weighted aggregations,” Fuzzy sets and systems, vol. 114, no. 1, pp.
35–42, 2000.

[3] R. Degani and G. Bortolan, “The problem of linguistic approximation
in clinical decision making,” International Journalof Approximate Rea-
soning, no. 2, pp. 143–162, 1988.

[4] M. Delgado, J. L. Verdegay, and M. A. Vila, “On aggregation operations
of linguistic labels,” International Journal of Intelligent Systems, vol. 8,
pp. 351–370, 1993.

[5] F. Herrera and L. Martinez, “A model based on linguistic 2-tuples
for dealing with multigranular hierarchical linguistic contexts in multi-
expert decision-making,” IEEE Trans. on Systems, Man, and Cybernet-

ics, Part B: Cybernetics, vol. 31, no. 2, pp. 227–234, 2001.

[6] F. Herrera and L. Martinez, “A 2-tuple fuzzy linguistic representation
model for computing with words,” IEEE Trans. on Fuzzy Systems, vol. 8,
no. 6, pp. 746–752, 2000.

[7] J. Kacprzyk and S. Zadrożny, “Computing with words in intelligent
database querying: Standalone and internet-based applications,” Infor-

mation Sciences, vol. 34, pp. 71–109, 2001.

[8] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and

Applications. Upper Saddle River, NJ: Prentice-Hall, 1995.

[9] J. Lawry, “A methodology for computing with words,” International
Journal of Approximate Reasoning, vol. 28, pp. 51–89, 2001.

[10] F. Liu and J. M. Mendel, “Encoding words into interval type-2 fuzzy
sets using an Interval Approach,” IEEE Trans. on Fuzzy Systems, vol. 16,
no. 6, pp. 1503–1521, 2008.

[11] J. M. Mendel, “The perceptual computer: An architecture for computing
with words,” in Proc. IEEE Int’l Conf. on Fuzzy Systems, Melbourne,
Australia, December 2001, pp. 35–38.

[12] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction

and New Directions. Upper Saddle River, NJ: Prentice-Hall, 2001.
[13] J. M. Mendel, “An architecture for making judgments using computing

with words,” International Journal of Applied Mathematics and Com-
puter Science, vol. 12, no. 3, pp. 325–335, 2002.

[14] J. M. Mendel, “Computing with words: Zadeh, Turing, Popper and
Occam,” IEEE Computational Intelligence Magazine, vol. 2, pp. 10–
17, 2007.

[15] J. M. Mendel and D. Wu, “Computing with words for hierarchical and
distributed decision making,” in Computational Intelligence in Complex

Decision Systems, D. Ruan, Ed. Paris, France: Atlantis Press, 2010.
[16] J. M. Mendel and D. Wu, Perceptual Computing: Aiding People in

Making Subjective Judgments. Hoboken, NJ: Wiley-IEEE Press, 2010.
[17] S. K. Pal, L. Polkowski, and A. Skowron, Eds., Rough-neural Com-

puting: Techniques for Computing with Words. Heidelberg, Germany:
Springer-Verlag, 2003.

[18] S. H. Rubin, “Computing with words,” IEEE Trans. on Systems, Man,

and Cybernetics–B, vol. 29, no. 4, pp. 518 – 524, 1999.
[19] I. Vlachos and G. Sergiadis, “Subsethood, entropy, and cardinality for

interval-valued fuzzy sets – an algebraic derivation,” Fuzzy Sets and

Systems, vol. 158, pp. 1384–1396, 2007.
[20] H. Wang and D. Qiu, “Computing with words via Turing machines: A

formal approach,” IEEE Trans. on Fuzzy Systems, vol. 11, no. 6, pp.
742–753, 2003.

[21] J.-H. Wang and J. Hao, “A new version of 2-tuple fuzzy linguistic
representation model for computing with words,” IEEE Trans. on Fuzzy

Systems, vol. 14, no. 3, pp. 435–445, 2006.
[22] P. Wang, Ed., Computing With Words. New York: John Wiley & Sons,

2001.
[23] D. Wu, “Intelligent systems for decision support,” Ph.D. dissertation,

University of Southern California, Los Angeles, CA, May 2009.
[24] D. Wu and J. M. Mendel, “Aggregation using the linguistic weighted

average and interval type-2 fuzzy sets,” IEEE Trans. on Fuzzy Systems,
vol. 15, no. 6, pp. 1145–1161, 2007.

[25] D. Wu and J. M. Mendel, “Corrections to ‘Aggregation using the
linguistic weighted average and interval type-2 fuzzy sets’,” IEEE Trans.
on Fuzzy Systems, vol. 16, no. 6, pp. 1664–1666, 2008.

[26] D. Wu and J. M. Mendel, “A comparative study of ranking methods,
similarity measures and uncertainty measures for interval type-2 fuzzy
sets,” Information Sciences, vol. 179, no. 8, pp. 1169–1192, 2009.

[27] D. Wu and J. M. Mendel, “Perceptual reasoning for perceptual com-
puting: A similarity-based approach,” IEEE Trans. on Fuzzy Systems,
vol. 17, no. 6, pp. 1397–1411, 2009.

[28] D. Wu and J. M. Mendel, “Computing with words for hierarchical
decision making applied to evaluating a weapon system,” IEEE Trans.

on Fuzzy Systems, vol. 18, no. 3, pp. 441–460, 2010.
[29] D. Wu, J. M. Mendel, and S. Coupland, “Enhanced Interval Approach

for encoding words into interval type-2 fuzzy sets and its convergence
analysis,” IEEE Trans. on Fuzzy Systems, 2012, in press.

[30] R. Yager, “Aproximate reasoning as a basis for computing with words,”
in Computing With Words in Information/ Intelligent Systems 1: Founda-

tions, L. A. Zadeh and J. Kacprzyk, Eds. Heidelberg: Physica-Verlag,
1999, pp. 50–77.

[31] M. Ying, “A formal model of computing with words,” IEEE Trans. on
Fuzzy Systems, vol. 10, no. 5, pp. 640–652, 2002.

[32] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338–353,
1965.

[33] L. A. Zadeh, “Fuzzy logic = Computing with words,” IEEE Trans. on

Fuzzy Systems, vol. 4, pp. 103–111, 1996.
[34] L. A. Zadeh, “From computing with numbers to computing with words

– From manipulation of measurements to manipulation of perceptions,”
IEEE Trans. on Circuits and Systems I, vol. 46, no. 1, pp. 105–119,
1999.

[35] L. A. Zadeh and J. Kacprzyk, Eds., Computing with Words in Informa-
tion/Intelligent Systems: 1. Foundations, 2. Applications. Heidelberg:
Physica-Verlag, 1999.

