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Response to the Review of TCBBSI-2019-10-0485 

 

Dear Prof. Zhang and the Reviewers,  

 

Title: A Novel Negative-Transfer-Resistant Fuzzy Clustering Model with a Shared Cross-Domain 

Transfer Latent Space and its Application to Brain CT Image Segmentation 

 

First of all, we would like to thank the reviewers for all their positive comments. According to 

your comments and suggestions, we have carefully revised the manuscript. Now, we are 

submitting the revised manuscript (the original manuscript No. TCBBSI-2019-10-0485). Main 

changes are highlighted in YELLOW in the revised manuscript and the details in response to the 

comments are given below. 

With our best efforts, we believe that the quality of the revised manuscript is okay now. 

Thanks a lot in advance for reviewing the manuscript again. 

Best regards 

All authors 

2019/12/14 
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Response to Associate Editor 
 
Comments to the Author: This paper needs a major revision according to the 
reviewers’ comments. Some descriptions are unclear and should be clarified, such as 
the motivation of your proposed method and the framework of the adopted algorithm. 
The selection of the parameter values and their influence on the modeling 
performance should be discussed. In the comparison of different models, more 
datasets should be used to further test the performance of your method. 
Reply: We would like to thank all of you for your valuable comments which have 
been very helpful to improve the quality of our manuscript. We have carefully revised 
the manuscript according to the comments received. Main changes are in yellow in 
the revised manuscript and the details in response to the comments are given below.
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Response to Reviewer 1 
This paper proposes a new image segmentation LSS-FTC-NTR model for leveraging 
source knowledge to improve the segmentation performance of target domain. The 
proposed model is interesting and the experimental results are effective. This paper 
looks nice. This paper can be considered for publication after a major revision. The 
authors should revise the paper by taking the reviewer's comments into account. 
Comments 1: I think that deep learning approaches can be mentioned in Section 1 
with respect to clustering performance maximization. 
Reply: Thanks for your valuable comment. As suggested by the reviewer, we have 
revised the Introduction section in our revised manuscript, and we have added more 
related work in it. (Ref to: the first paragraph of page 2): 
Deep learning learns the feature representation of tissue contour based on deep convolutional 

neural networks [12, 13]. Deep learning methods have successfully applied for medical image 

segmentation in recent years. However, deep learning methods usually need a large number of 

training dataset and special hardware devices. 

 
Comments 2: The number of clustering and parameter setting are important factors 
which are directly related to the clustering performance. In addition to the grid-type 
selection, some clustering index can be used. This issue can be also discussed in the 
paper. 
Reply: Thanks for your suggestions. We agree with your opinion. In addition to the 
grid-type selection, some cluster validity indices can be used for determination the 
number of clustering and other parameters, such as Xie-Beni index, Mountain 
potential index and so on. In the experiments, we perform our experiments on 
ultrashort echo time (UTE) and modified Dixon brain image datasets. All CT images 
with corresponding manual segmentation are segmented into three classes: bone, 
water and soft issues. The number of clustering is manually set to be three, and the 
other parameters are determined by the grid-type selection strategy. In our future 
work, we will extend our work to other medical image segmentation applications. 
How to set the number of clustering and other parameters is worthy to be studied in 
the future. 
 
Comments 3: The parameter specifications are not clearly explained. It is 
recommended that the author examine all the formulas throughout. 
Reply: Thanks a lot for your reminder. In the revised manuscript, we have 
double-checked the mathematical notations and parameter specifications. 
 
Comments 4: Some sentences are complicated and difficult to read. I personally 
suggest that sometimes the author doesn't need to use these long sentences. 
Reply: Thanks a lot for your reminder. We have carefully proofed the manuscript to 
correct grammatical errors. We also have asked a technical writer to polish the 
manuscript. We believe the quality of the revised manuscript has been improved 
significantly. 
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Comments 5: It would be interesting if the proposed model is compared on more 
medical datasets. 
Reply: Thanks for your suggestions. In response to both your comment and another 
referee’s suggestions, we do changes in the revised manuscript as follows 
1) We have performed more experiments in our revised manuscript. (Ref to: the 
subsection 4.1 of page 7): 
We randomly select 20 brain CT images as the original target domain data, and the rest 236 brain 

CT images as source domain data. Following the training protocol established in [41], we 

construct a total training data set combining 236 source brain images and random 8 target brain 

images, while the remaining 12 target brain images are used as testing brain images. We repeat 

the experiment for 10 runs and record the experimental results. 

Table 1  

NMI performance of all comparison methods on 5% noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0112  0.0041 0.5085 0.2249 0.5802 0.0254 0.7146 0.0056 

Subject2 0.1515 0.1468 0.5801 0.1632 0.6359 0.0148 0.7526 0.0142 

Subject3 0.1583 0.1040 0.5573 0.1591 0.6438 0.0290 0.7253 0.0059 

Subject4 0.0137 0.0062 0.5149 0.1868 0.6091 0.0590 0.7256 0.0138 

Subject5 0.2333 0.1355 0.5649 0.1840 0.6329 0.0254 0.7432 0.0094 

Subject6 0.1823 0.1094 0.5659 0.1446 0.6505 0.0234 0.7441 0.0116  

Subject7 0.0086 0.0046 0.5283 0.2242 0.6096 0.0212 0.7352 0.0110  

Subject8 0.1324 0.1157  0.5664 0.1917 0.6603 0.0245 0.7586 0.0108 

Subject9 0.1188  0.1240 0.5845 0.1638 0.6700 0.0399 0.7693 0.0111  

Subject10 0.0185 0.0083 0.5765 0.2749 0.6512 0.0258 0.7781 0.0127 

Subject11  0.1178  0.2362 0.5882 0.2124 0.6580 0.0179 0.7862 0.0068 

Subject12 0.0642 0.0376 0.5719 0.1542 0.6631 0.0358 0.7759 0.0079 

Table 2 

NMI performance of all comparison methods on 10% noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0155 0.0098 0.5063 0.2137 0.4748 0.0095 0.6337 0.0091 

Subject2 0.2943 0.1666 0.5797 0.1689 0.5792 0.0194 0.7230 0.0045 

Subject3 0.2182 0.0813 0.5502 0.1716 0.5224 0.0366 0.6908 0.0117  

Subject4 0.0196 0.0163 0.5061 0.1966 0.4706 0.0110 0.6475 0.0127 

Subject5 0.1959 0.1420 0.5635 0.1591 0.5273 0.0205 0.7056 0.0122 

Subject6 0.2868 0.0777 0.5683 0.1421 0.5310 0.0162 0.6894 0.0177 

Subject7 0.0076 0.0038 0.5336 0.2612 0.4696 0.0106 0.6710 0.0162 

Subject8 0.2006 0.1377 0.5680 0.1448 0.5357 0.0217 0.7077 0.0158 

Subject9 0.2052 0.1502 0.5923 0.1901 0.5409 0.0165 0.7274 0.0104 

Subject10 0.0153 0.0136 0.5755 0.2609 0.5103 0.0186 0.7244 0.0046 

Subject11  0.0814 0.1664 0.5846 0.2263 0.5231 0.0215 0.7203 0.0122 

Subject12 0.1534 0.1036 0.5694 0.1864 0.5409 0.0062 0.7144 0.0149 
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Table 3 

 NMI performance of all comparison methods on 15% noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0130 0.0106 0.5053 0.2261 0.4470 0.0181 0.5684 0.0082 

Subject2 0.2346 0.1282 0.5815 0.1536 0.5631 0.0172 0.6452 0.0118  

Subject3 0.2155 0.0679 0.5541 0.2003 0.4881 0.0175 0.5978 0.0024 

Subject4 0.1789 0.2392 0.5076 0.2182 0.4509 0.0171 0.5849 0.0157 

Subject5 0.2061 0.0862 0.5621 0.1394 0.5341 0.0121 0.6220 0.0030 

Subject6 0.2592 0.1368 0.5691 0.1526 0.5079 0.0163 0.6261 0.0096 

Subject7 0.0963 0.1848 0.5274 0.1991 0.4664 0.0168 0.5939 0.0130 

Subject8 0.1826 0.1223 0.5674 0.1458 0.5087 0.0223 0.6198 0.0101 

Subject9 0.2245 0.1570 0.5869 0.1486 0.5118 0.0120 0.6419 0.0157 

Subject10 0.0735 0.1450 0.5697 0.2271 0.4975 0.0197 0.6098 0.0169 

Subject11  0.0937 0.1846 0.5826 0.2770 0.5267 0.0242 0.6107 0.0075 

Subject12 0.2454 0.1816 0.5720 0.2135 0.5328 0.0129 0.6537 0.0117  

 

Table 4 

 NMI performance of all comparison methods on 20% noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0246 0.0289 0.5095 0.1908 0.4782 0.0069 0.6000 0.0055 

Subject2 0.3092 0.1299 0.5796 0.1631 0.5596 0.0082 0.6348 0.0128 

Subject3 0.2597 0.0992 0.5556 0.1588 0.5029 0.0108 0.5926 0.0051 

Subject4 0.0102 0.0061 0.5136 0.2026 0.4778 0.0066 0.5254 0.0133 

Subject5 0.3071 0.0852 0.5654 0.1471 0.5333 0.0119 0.6237 0.0084 

Subject6 0.2998 0.0697 0.5662 0.1376 0.5247 0.0176 0.5875 0.0099 

Subject7 0.0994 0.1742 0.5298 0.2377 0.4804 0.0088 0.5719 0.0063 

Subject8 0.2557 0.1427 0.5683 0.1438 0.5426 0.0160 0.6023 0.0114  

Subject9 0.3098 0.0342 0.5852 0.1508 0.5366 0.0089 0.6433 0.0062 

Subject10 0.0966 0.2007 0.5788 0.2565 0.5309 0.0066 0.5991 0.0080 

Subject11  0.1196  0.2075 0.5818 0.2101 0.5525 0.0080 0.6516 0.0129 

Subject12 0.1530 0.1197  0.5707 0.1767 0.5466 0.0167 0.5869 0.0122 

 

Table 5 

 NMI performance of all comparison methods on 25% noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0107 0.0058 0.5078 0.2154 0.4969 0.0043 0.5469 0.0104 

Subject2 0.1708 0.1001 0.5792 0.1741 0.5842 0.0076 0.6572 0.0182 

Subject3 0.2460 0.0981 0.5503 0.1685 0.5232 0.0145 0.5940 0.0093 

Subject4 0.0121 0.0081 0.5177 0.2390 0.5045 0.0112 0.5717 0.0197 
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Subject5 0.1503 0.1169  0.5621 0.1599 0.5580 0.0122 0.6090 0.0083 

Subject6 0.2199 0.0660 0.5662 0.1533 0.5434 0.0311 0.5935 0.0142 

Subject7 0.0284 0.0285 0.5331 0.2528 0.5156 0.0137 0.5677 0.0095 

Subject8 0.1320 0.1375 0.5705 0.1577 0.5547 0.0156 0.6272 0.0136 

Subject9 0.2594 0.1054 0.5859 0.1542 0.5682 0.0124 0.6437 0.0127 

Subject10 0.1980 0.0293 0.5763 0.2203 0.5488 0.0073 0.6416 0.0157 

Subject11  0.2156 0.2697 0.5830 0.2349 0.5745 0.0184 0.6732 0.0117  

Subject12 0.3935 0.0908 0.5724 0.1827 0.5617 0.0122 0.6386 0.0078 

 

Table 6 

 NMI performance of all comparison methods on 30% noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0120 0.0093 0.5086 0.2028 0.5569 0.0124 0.6567 0.0084 

Subject2 0.2553 0.1770 0.5833 0.1497 0.6333 0.0113 0.7439 0.0109 

Subject3 0.2010 0.0804 0.5526 0.1537 0.5872 0.0206 0.6602 0.0110  

Subject4 0.0891 0.1752 0.5143 0.2144 0.5664 0.0050 0.6720 0.0114  

Subject5 0.1820 0.1376 0.5663 0.1463 0.6172 0.0193 0.7080 0.0028 

Subject6 0.2316 0.1094 0.5695 0.1928 0.6062 0.0120 0.6872 0.0086 

Subject7 0.1080 0.1686 0.5316 0.2091 0.5769 0.0172 0.6966 0.0054 

Subject8 0.1755 0.1045 0.5696 0.1777 0.6231 0.0097 0.7037 0.0103 

Subject9 0.2584 0.0893 0.5913 0.1901 0.6295 0.0216 0.7356 0.0200 

Subject10 0.0113  0.0135 0.5751 0.2901 0.6247 0.0198 0.7441 0.0115  

Subject11  0.2121 0.2838 0.5827 0.2652 0.6343 0.0212 0.7491 0.0042 

Subject12 0.1547 0.1170  0.5702 0.1941 0.6226 0.0045 0.7256 0.0095 
 

Table 7 

 ARI performance of all comparison methods on 5% noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0021 0.0043 0.3399 0.1756 0.7579 0.0301 0.8880 0.0028 

Subject2 0.0854 0.0814 0.3931 0.1561 0.8032 0.0160 0.9111  0.0109 

Subject3 0.0861 0.0521 0.4144 0.1478 0.8072 0.0318 0.8839 0.0031 

Subject4 0.0013 0.0041 0.3466 0.1701 0.7730 0.0629 0.8913 0.0107 

Subject5 0.1186  0.0877 0.3884 0.1761 0.8085 0.0316 0.9080 0.0078 

Subject6 0.0839 0.0560 0.4153 0.1393 0.8069 0.0264 0.8950 0.0108 

Subject7 0.0012 0.0026 0.3593 0.1594 0.7728 0.0243 0.8922 0.0119 

Subject8 0.0651 0.0732 0.3902 0.1753 0.8293 0.0276 0.9169 0.0095 

Subject9 0.0658 0.0682 0.4153 0.1524 0.8305 0.0378 0.9187 0.0102 

Subject10 0.0071 0.0055 0.3806 0.2090 0.8036 0.0304 0.9242 0.0106 

Subject11  0.0771 0.1614 0.3858 0.1903 0.8089 0.0215 0.9299 0.0053 

Subject12 0.0094 0.0109 0.3744 0.1365 0.8131 0.0424 0.9269 0.0081 
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Table 8 

ARI performance of all comparison methods on 10% noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0028 0.0113  0.3403 0.1791 0.5742 0.0284 0.8155 0.0056 

Subject2 0.1798 0.1182  0.3955 0.1613 0.5515 0.0292 0.8812 0.0056 

Subject3 0.1158  0.0542 0.4121 0.1696 0.6163 0.0635 0.8515 0.0148 

Subject4 0.0046 0.0063 0.3433 0.1729 0.5650 0.0237 0.8281 0.0134 

Subject5 0.1051 0.0953 0.3848 0.1535 0.6339 0.0317 0.8777 0.0093 

Subject6 0.1523 0.0812 0.4168 0.1373 0.6359 0.0297 0.8467 0.0136 

Subject7 0.0008 0.0012 0.3607 0.1920 0.5573 0.0211 0.8482 0.0125 

Subject8 0.1140  0.0988 0.3915 0.1311 0.6423 0.0301 0.8522 0.0149 

Subject9 0.1202 0.1143  0.4210 0.1781 0.6382 0.0300 0.8839 0.0101 

Subject10 0.0011  0.0089 0.3800 0.1963 0.5939 0.0328 0.8849 0.0037 

Subject11  0.0493 0.1062 0.3848 0.1608 0.6045 0.0401 0.8742 0.0118 

Subject12 0.0484 0.0401 0.3737 0.1681 0.6302 0.0112 0.8738 0.0125 

 

Table 9 

ARI performance of all comparison methods on 15% noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0009 0.0031 0.3389 0.1753 0.3607 0.0262 0.6833 0.0089 

Subject2 0.1206 0.1058 0.3935 0.1414 0.4404 0.0126 0.6679 0.0107 

Subject3 0.1083 0.0540 0.4127 0.1807 0.4323 0.0238 0.5997 0.0032 

Subject4 0.1239 0.1680 0.3439 0.1746 0.3620 0.0344 0.7034 0.0137 

Subject5 0.0847 0.0405 0.3859 0.1306 0.4408 0.0298 0.7278 0.0046 

Subject6 0.1421 0.1255 0.4182 0.1430 0.4259 0.0204 0.6636 0.0077 

Subject7 0.0639 0.1304 0.3588 0.1519 0.3662 0.0287 0.5863 0.0161 

Subject8 0.0729 0.0824 0.3902 0.1349 0.4120 0.0355 0.5671 0.0136 

Subject9 0.1302 0.0900 0.4174 0.1444 0.4186 0.0102 0.6287 0.0148 

Subject10 0.0398 0.0848 0.3778 0.2008 0.4098 0.0241 0.5256 0.0122 

Subject11  0.0593 0.1239 0.3843 0.2049 0.4230 0.0250 0.6560 0.0087 

Subject12 0.1478 0.1185  0.3750 0.1692 0.4119 0.0303 0.6518 0.0128 
 

Table 10 

ARI performance of all comparison methods on 20% noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0019 0.0080 0.3400 0.1486 0.3241 0.0059 0.6624 0.0098 

Subject2 0.1754 0.1208 0.3933 0.1522 0.3859 0.0059 0.6005 0.0116 

Subject3 0.1443 0.0831 0.4147 0.1533 0.3742 0.0102 0.5570 0.0066 

Subject4 0.0015 0.0060 0.3464 0.1713 0.3270 0.0090 0.5008 0.0139 

Subject5 0.1679 0.0931 0.3883 0.1370 0.3730 0.0056 0.6152 0.0068 
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Subject6 0.1701 0.0682 0.4176 0.1304 0.3838 0.0091 0.5775 0.0079 

Subject7 0.0625 0.1226 0.3602 0.1912 0.3309 0.0064 0.4983 0.0083 

Subject8 0.1520 0.1066 0.3913 0.1339 0.3809 0.0088 0.5055 0.0102 

Subject9 0.1619 0.0404 0.4164 0.1424 0.3871 0.0056 0.5725 0.0053 

Subject10 0.0620 0.1394 0.3812 0.1927 0.3571 0.0027 0.5494 0.0065 

Subject11  0.0713 0.1457 0.3838 0.1649 0.3695 0.0065 0.5819 0.0122 

Subject12 0.0657 0.0780 0.3746 0.1617 0.3641 0.0048 0.4376 0.0106 
 

Table 11 

ARI performance of all comparison methods on 25% noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0023 0.0020 0.3409 0.1786 0.3419 0.0056 0.5128 0.0139 

Subject2 0.0687 0.0687 0.3948 0.1626 0.4354 0.0132 0.6609 0.0156 

Subject3 0.1447 0.0664 0.4126 0.1659 0.4043 0.0113 0.5219 0.0102 

Subject4 0.0125 0.0047 0.3484 0.1856 0.3738 0.0138 0.5349 0.0204 

Subject5 0.0701 0.0553 0.3862 0.1545 0.4182 0.0235 0.6445 0.0077 

Subject6 0.1147  0.0392 0.4186 0.1502 0.4153 0.0305 0.5271 0.0151 

Subject7 0.0076 0.0109 0.3611 0.1885 0.3654 0.0088 0.5132 0.0116 

Subject8 0.0656 0.0666 0.3914 0.1499 0.4143 0.0176 0.5902 0.0148 

Subject9 0.1248 0.0841 0.4173 0.1462 0.4233 0.0152 0.6459 0.0121 

Subject10 0.1157  0.0035 0.3804 0.1958 0.3796 0.0046 0.5953 0.0165 

Subject11  0.1382 0.1889 0.3842 0.1686 0.4277 0.0200 0.6537 0.0123 

Subject12 0.2421 0.0869 0.3739 0.1749 0.4058 0.0177 0.6031 0.0091 

 

Table 12 

 ARI performance of all comparison methods on 30% noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0008 0.0052 0.3401 0.1505 0.5432 0.0294 0.7743 0.0062 

Subject2 0.1663 0.1180  0.3941 0.1505 0.5887 0.0309 0.8122 0.0136 

Subject3 0.0947 0.0389 0.4132 0.1584 0.5700 0.0397 0.7414 0.0125 

Subject4 0.0601 0.1242 0.3471 0.1760 0.5526 0.0094 0.7876 0.0146 

Subject5 0.0867 0.0967 0.3886 0.1351 0.5858 0.0488 0.7966 0.0044 

Subject6 0.1193  0.0774 0.4173 0.1744 0.5833 0.0131 0.7834 0.0053 

Subject7 0.0675 0.1173  0.3611 0.1547 0.5637 0.0408 0.7874 0.0079 

Subject8 0.0684 0.0490 0.3911 0.1728 0.6018 0.0277 0.7363 0.0144 

Subject9 0.1227 0.0787 0.4184 0.1823 0.6060 0.0214 0.8233 0.0176 

Subject10 0.0047 0.0076 0.3800 0.2041 0.5840 0.0421 0.8140 0.0134 

Subject11  0.1420 0.1947 0.3839 0.2030 0.6010 0.0318 0.8226 0.0052 

Subject12 0.0588 0.0640 0.3745 0.1792 0.5793 0.0106 0.7996 0.0093 

 

2) We perform the application of LSS-FTC-NTR in the scenario of target images polluted by 20%, 
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25% and 30% Gaussian noise in our revised manuscript. To better observe the behavior of all 

algorithms, Figs. 4-9 graphically shows the segmentation results of all comparison methods 

obtained on subject1 with different noise. Similar to the results in the Tables 1-12, LSS-FTC-NTR 

obtains the best segmentation results for distinguishing the bone, water and soft issues. The 

boundaries between different organizations are smooth and obvious are relatively clearer than the 

other three methods. 

 
(a) (b) 

 
(c) (d) 

Fig.7 Clustering segmentations on subject1+20% noise, (a)FCM, (b)TSC, (c) T1-KT-FCM, 
(d)LSS-FTC-NTR

 
(a) (b) 

 
(c) (d) 

Fig.8 Clustering segmentations on subject1+25% noise, (a)FCM, (b)TSC, (c) T1-KT-FCM, 
(d)LSS-FTC-NTR

 
(a) (b) 

 
(c) (d) 

Fig.9 Clustering segmentations on subject1+30% noise, (a)FCM, (b)TSC, (c) T1-KT-FCM, 
(d)LSS-FTC-NTR

 
Comments 6: The discrepancies of the results in the experiments are easy to 
understand. However, there lacks necessary explanation about how the proposed 
model outperforms others. This makes it inadequate to assert the effectiveness of the 
proposed model. Please give a more detailed explanation of the results. 
Reply: We would like to thank you for your comments. In order to follow your 
suggestions, firstly we have restated the information of datasets used in the 
experiment (Please refer to the revision in the Section 4.1, page 7), then we have 
improved the presentation of the experimental results in revised manuscript (Please 
refer to the revision in the Section 4.2, pages 8-10). Moreover, we have given a more 
detailed explanation about the experimental results (Please refer to the revision in the 
Section 4.2, page 8). 
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Response to Reviewer 2 

 

Comments 1: The study proposes a negative-transfer-resistant mechanism by using 
the weight of transferred knowledge to achieve positive transfer and avoid negative 
transfer. In addition, the integrated negative-transfer-resistant and maximum mean 
discrepancy into the framework of fuzzy c-means clustering is also proposed in this 
manuscript. However, I personally believe that this study is not yet accepted. Some 
minor revisions are required. 
Reply: Thank you for your comments. We have carefully revised the manuscript 
according to the comments received. Main changes are in yellow in the revised 
manuscript and the details in response to the comments are given below. 
 
Comments 2: The authors consider the noisy scenario as the target domain and the 
existing medical image dataset from related scenario elsewhere as the source domain, 
and use the learning on clean images of source data to improve the clustering in target 
data, but I personally think that the contributions and research motivations of this 
study should be clearly described in the abstract.  
Reply: Thank you for your comments. In order to follow your suggestions, we have 
made the following changes in the revised manuscript: 
1) We have added up the motivation of LSS-FTC-NTR in Section 1 (Ref to: the first 
paragraph of page 3): 
The motivation of LSS-FTC-NTR is shown in Fig.1. Two cluster centers presented as black triangle and 

circle have positive transfer influence to the clustering in the target domain, while the cluster center 

presented as Black Square has negative influence to the clustering in the target domain. LSS-FTC-NTR 

will automatically resist black square participating in the clustering in the target domain by using the 

negative-transfer-resistance strategy. 

Fig.1  The motivation of LSS-FTC-NTR 

 
2) We have added up the contributions of LSS-FTC-NTR in Section 1 (Ref to: the 
second paragraph of page 3): 
The novelty of this study is as follows.  

1) We formulate the problem of insufficient and noisy medical image segmentation as a model of 

transfer clustering task. To the best of our knowledge, our study is the first attempt to address this issue. 

2) The negative-transfer-resistance mechanism is proposed to identify and resist negative source 

transfer knowledge.  

Quality Images in Source Domain

Noisy Images in Target Domain

Shared Latent Space 

Knowledge Transfer

Negative-Transfer
Resistance
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3) The MMD is introduced into LSS-FTC-NTR to unify the representation of image data of different 

domains in the shared latent space, which helps transferring knowledge across domains.  

4) Clustering centers based transfer matching scheme is used to deal with the inconsistency problem of 

clustering numbers between source and target domains, so that more robust and cluster performance 

can be promoted. 

 

Comments 3: Also, the author should clearly point out the differences and 
relationships between the research and the existing related work.  
Reply: Thank you for your valuable comments. We have added some discussion to 
compare transfer learning with multi-task learning and co-clustering. (Ref to: the last 
paragraph of page 3): 
Currently, when the training data is not enough to represent the current domain, transfer learning, 

multi-task learning and co-clustering are three effective techniques that can enhance the clustering 

performance in the current domain. Multi-task learning performs multiple learning tasks together 

through by sharing certain knowledge among all tasks [30, 31]. Co-clustering performs clustering on 

both rows and columns of data samples, so as to exploit the clear duality between rows and columns of 

a contingency table [32]. Transfer learning clustering enhances the clustering performance in the new 

domain by leveraging useful knowledge from different but related domains. Many researches show that 

the transfer clustering methods have better learning ability to obtain an effective model with the idea of 

transfer learning [28, 29, 33]. In real applications, due to the existences of noise and field offset etc, 

the insufficient medical images are inadequate to complete image segmentation. Therefore, we think 

transfer learning clustering is an effect technology to promote the segmentation of insufficient and 

noisy medical image in the new domain. 

 

Comments 4: It is very important that, in order to better use the method for readers, 
the personal recommendation should indicate the actual application scenario and the 
issues to be considered in the conclusion. 
Reply: Thank you for your comments. In actual application scenario, medical images 
are often collected with different scanners and scanning parameters, medical images 
may have large differences in image quality due to machine performance or scanning 
technology, such as varying degrees of rotation, noise, etc. The requirement of 
training and target data under the same distribution prevents the use of clustering 
algorithms in larger research and clinical practice. Since the above scenarios exist in a 
large number of real-world environments, this leads to unsatisfactory segmentation 
results and the risk of algorithm failure. In this paper, we study the problem of 
medical image segmentation in a noisy scenario by transferring medical images 
collected from related scenarios. We consider the new noisy scenario as the target 
domain and the existing medical image dataset from related scenario elsewhere as the 
source domain, and then use the learning on clean images of source data to improve 
the clustering in target data. To improve the transfer learning performance, we 
consider learning the negative-transfer-resistant mechanism, so that the influence of 
positive transfer knowledge is reinforced and the influence of negative transfer 
knowledge is reduced or even eliminated. Meanwhile, we think medical images in 
different scenarios share certain common representations such as bone and soft tissue, 
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and the shared representations could be preserved in a shared space. In the revised 
manuscript, we indicate this issue and the future work in the conclusion. (Ref to: the 
conclusion subsection of page 13): 
The experiments focus on noisy brain CT images. The experimental results show that with insufficient 

and noisy medical images, it is possible to build an efficient segmentation model with the help of 

medical images from the related scenarios. Future work will extend our algorithm to other medical 

image segmentation applications. We will extend the framework so as to apply various clustering 

algorithms in order to obtain more satisfactory medical image segmentation results. We will also study 

how many images in the source domain can be considered sufficient, and how to select the important 

images to further improve the transfer. In addition, how to speed up LSS-FTC-NTR is worthy to be 

studied in the future. 

 

Comments 5: Although the study proposes an optimization of LSS-FTC-NTR In 
sub-section 3.3, the author should briefly analyze and discuss the proposed algorithm. 
Reply: Thank you for your comments. In order to follow your suggestions, we have 
made the following changes in the revised manuscript: 
1) We have added up the motivation of LSS-FTC-NTR in Section 1 (Ref to: the first 
paragraph of page 3): 
The motivation of LSS-FTC-NTR is shown in Fig.1. Two cluster centers presented as black triangle and 

circle have positive transfer influence to the clustering in the target domain, while the cluster center 

presented as Black Square has negative influence to the clustering in the target domain. LSS-FTC-NTR 

will automatically resist black square participating in the clustering in the target domain by using the 

negative-transfer-resistance strategy. 

Quality Images in Source Domain

Noisy Images in Target Domain

Shared Latent Space 

Knowledge Transfer

Negative-Transfer
Resistance

 

Fig.1 The motivation of LSS-FTC-NTR 
 
2) We have added up the novelty of LSS-FTC-NTR in Section 1 (Ref to: the second 
paragraph of page 3): 
The novelty of this study is as follows. 1) We formulate the problem of insufficient and noisy medical 

image segmentation as a model of transfer clustering task. To the best of our knowledge, our study is 

the first attempt to address this issue. 2) The negative-transfer-resistance mechanism is proposed to 

identify and resist negative source transfer knowledge. 3) The MMD is introduced into LSS-FTC-NTR 

to unify the representation of image data of different domains in the shared latent space, which helps 

transferring knowledge across domains. 4) Clustering centers based transfer matching scheme is used 
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to deal with the inconsistency problem of clustering numbers between source and target domains, so 

that more robust and cluster performance can be promoted. 
3) To clearly describe the algorithm of LSS-FTC-NTR, we have re-written some steps 
of Algorithm1 (Ref to: the first paragraph of page 6): 

Algorithm 1: LSS-FTC-NTR model 

Initialize Set the maximum number of iterations tmax, the fuzzy 

index m, the regularization parameters 1  and 2 , and 

the learning rate  .  

Repeat:  

Exacting transfer knowledge form the source domain; 

Perform soft-partition clustering methods in the source domain, such as 

FCM, and obtain the cluster centers of data in the source domain; 

t = t+1;  

Initialize the clustering centers of data in the target domain;   

 Compute the weight of transfer knowledge jhS  using Eq. (10); 

 Fix U(t) and Θ (t), obtain TDV (t) using Eq. (12); 

 Fix TDV (t) and Θ (t), obtain U(t) using Eq. (14); 

   Fix U(t) and TDV (t), obtain Θ (t) using Eq. (18) and Eq.(19); 

   Compute J (t) using Eq. (9); 

Until ( ) ( 1)J t J t     or maxt t ; 
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Response to Reviewer 3 

Comments 1: In this paper, authors propose a negative-transfer-resistance fuzzy 
clustering model with a shared cross-domain transfer latent space. In this paper, 
ultrashort echo time (UTE) and modified Dixon brain image datasets are considered. 
However, the below few points are unclear to the referees: 
The specific arrangements of the manuscript is structured as follows: The first part is 
an introduction, describes the purpose and significance of this study of the problem 
and the background, literature review, research methods and thesis structure 
arrangements. Organization of paper is okay. I think you should add more previous 
research in the field of medical image segmentation. 

Reply: Thank you for your comments. In order to follow your suggestions, we have 
made the following changes in the revised manuscript: 
1) We have added some discussion about deep learning in the Introduction section. 
(Ref to: the second paragraph of page 3):  
Deep learning learns the feature representation of tissue contour based on deep convolutional neural 

networks [12, 13]. Deep learning methods have successfully applied for medical image segmentation in 

recent years. However, deep learning methods usually need a large number of training dataset and 

special hardware devices. 

2) We have added some discussion to compare transfer learning with multi-task 
learning and co-clustering. (Ref to: the second paragraph of page 3): 
Currently, when the training data is not enough to represent the current domain, transfer learning, 

multi-task learning and co-clustering are three effective techniques that can enhance the clustering 

performance in the current domain. Multi-task learning performs multiple learning tasks together 

through by sharing certain knowledge among all tasks [30, 31]. Co-clustering performs clustering on 

both rows and columns of data samples, so as to exploit the clear duality between rows and columns of 

a contingency table [32]. Transfer learning clustering enhances the clustering performance in the new 

domain by leveraging useful knowledge from different but related domains. Many researches show that 

the transfer clustering methods have better learning ability to obtain an effective model with the idea of 

transfer learning [28, 29, 33]. In real applications, due to the existences of noise and field offset etc, 

the insufficient medical images are inadequate to complete image segmentation. Therefore, we think 

transfer learning clustering is an effect technology to promote the segmentation of insufficient and 

noisy medical image in the new domain. 

2) We have added some relevant introduction work about FCM-based transfer 
learning methods (Ref to: the last second paragraph of page 3): 
For example, a FCM-based transfer learning was proposed in [28], which is combined with 

Gini-Simpson diversity index and quadratic weights on membership. A knowledge-leveraged transfer 

FCM (KL-TFCM) is proposed in [29], which uses three-interlinked framework of knowledge extraction, 

knowledge matching, and knowledge utilization to leverage source information to help the FCM 

clustering in the target domain. However, the above FCM-based transfer learning clustering methods 

are completed in the original space, and while they do not consider resisting negative transfer. 

 

Comments 2:  I suggest the authors give the motivation of the paper in the first part, 
which is convenient for readers to understand the whole framework of the paper. 
Reply: We would like to thank you for your comments. In order to follow your 
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suggestions, we have added up the motivation of LSS-FTC-NTR in Section 1 (Ref to: 
the first paragraph of page 3): 
The motivation of LSS-FTC-NTR is shown in Fig.1. Two cluster centers presented as black triangle and 

circle have positive transfer influence to the clustering in the target domain, while the cluster center 

presented as Black Square has negative influence to the clustering in the target domain. LSS-FTC-NTR 

will automatically resist black square participating in the clustering in the target domain by using the 

negative-transfer-resistance strategy. 

Quality Images in Source Domain

Noisy Images in Target Domain

Shared Latent Space 

Knowledge Transfer

Negative-Transfer
Resistance

 

Fig.1 The motivation of LSS-FTC-NTR 

 

Comments 3: Figure 1 is a good description of the proposed schematic diagram, but 
the analysis of this figure is still not sufficient. The authors should pay more attention 
to the comparisons for the superiority or novelty of your method.  
Reply: Thank you for your comments. As suggested by the reviewer, we have added 
the discussion about the novelty of our study in section 1. (Ref to: the second 
paragraph of page 3): 
The novelty of this study is as follows.  

1) We formulate the problem of insufficient and noisy medical image segmentation as a model of 

transfer clustering task. To the best of our knowledge, our study is the first attempt to address this issue. 

2) The negative-transfer-resistance mechanism is proposed to identify and resist negative source 

transfer knowledge.  

3) The MMD is introduced into LSS-FTC-NTR to unify the representation of image data of different 

domains in the shared latent space, which helps transferring knowledge across domains.  

4) Clustering centers based transfer matching scheme is used to deal with the inconsistency problem of 

clustering numbers between source and target domains, so that more robust and cluster performance 

can be promoted. 

 

Comments 4: On the basis of the research in this paper, the conclusion section details 
the next steps and prospects. 
Reply: Thanks a lot for your positive comment. 
 
Comments 5: Please note the format of the reference. 
Reply: Thanks for your valuable comment. In our revised paper, we format the 
references. 
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Comments 6: Read your paper carefully and modify your spelling mistake 
throughout your manuscript. 
Reply: Thanks a lot for your reminder. We have carefully proofed the manuscript to 
correct grammatical errors. We also have asked a technical writer to polish the 
manuscript. We believe the quality of the revised manuscript has been improved 
significantly. 
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Response to Reviewer 4 

Comments 1: The method described in the manuscript appears to be sound and the 
structure is overall good. However, it needs major revision before it is accepted. My 
comments are as follows: 
The motivation of the proposed method should be strengthened. I suggest the authors 
to add a figure which can be used to clearly describe your proposed method. 
Reply: We would like to thank you for your comment. In response to both your 
comment and another referee’s suggestions, in our revised manuscript, we have added 
up the motivation of LSS-FTC-NTR in Section 1 (Ref to: the second paragraph of 
page 3): 
The motivation of LSS-FTC-NTR is shown in Fig.1. Two cluster centers presented as black triangle and 

circle have positive transfer influence to the clustering in the target domain, while the cluster center 

presented as Black Square has negative influence to the clustering in the target domain. LSS-FTC-NTR 

will automatically resist black square participating in the clustering in the target domain by using the 

negative-transfer-resistance strategy. 

Quality Images in Source Domain

Noisy Images in Target Domain

Shared Latent Space 

Knowledge Transfer

Negative-Transfer
Resistance

 

Fig.1  The motivation of LSS-FTC-NTR 
 
Comments 2: It seems to me that the performance of your proposed method depends 
on these predefined parameters. Thus, I suggest you to provide a sensitivity analysis 
of predefined parameters. 

Reply: Thank you. In the experiment, we select 1  and 2  in a given search grid. In 

our revised manuscript, we discuss the performance of LSS-FTC-NTR using different 
parameters. (Ref to: the subsection 4.3): 
Tables 15-16 show the means of NMI and ARI on the subject using different 1  and 2 , while fixing 

the parameter m=2.  

1) LSS-FTC-NTR is sensitive to parameters 1  and 2 . Different 1  and 2  lend to different 

cluster performance of LSS-FTC-NTR in terms of NMI and ARI. It can be found that in most situations 

when the value of NMI is better, the value of ARI is also better. Thus, it is feasible to use NMI and ARI 

as performance criterions to determine the suitable parameters.  

2) Fixed the value of m, LSS-FTC-NTR obtains the worst NMI and ARI when 1 0   and 2 0  . The 

clustering performance of LSS-FTC-NTR is improved when 1  and 2  are not equal to 0. Since 

when 1 0   and 2 0   LSS-FTC-NTR is degenerated to the classical FCM clustering.  
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3) We can find that when the value of 1  is large, LSS-FTC-NTR obtains the satisfactory 

performance in terms of NMI and ARI. This further demonstrates that the proposed 

negative-transfer-resistance mechanism has played an effective role. Thus, in the subsequent 

experiments, we can reduce the search grid of 1  in the range {10e1,10e1,...,10e6} . We can't find the 

rule to select parameter 2 . We think it is reasonable to select optimal 2  within the search grid. The 

range 2 {10e-4,10e-3,...,10e6}   is appropriate. 

 

Table 15 Means of NMI by LSS-FTC-NTR on the subject1+5% noise using different 1   and 2 , while 

fixing m=2 

  1  

2  

0 10e-4 10e-3 10e-2 10e-1 1 10e1 10e2 10e3 10e4 10e5 10e6 

0 0.4801  0.5006  0.5181  0.5501 0.6011 0.6250 0.6091 0.6375 0.6788 0.6397  0.6427  0.6378  

10e-4 0.4915  0.5326  0.5592  0.5662 0.6109 0.6161 0.6469 0.6499 0.6468 0.6493  0.6431  0.6425  

10e-3 0.5094  0.5436  0.5572  0.5866 0.7007 0.6540 0.6413 0.6456 0.6465 0.6457  0.6449  0.6438  

10e-2 0.5054  0.5605  0.5449  0.6980 0.7159 0.7006 0.6971 0.7075 0.6905 0.6766  0.7017  0.7106  

10e-1 0.5036  0.5025  0.5036  0.5017 0.5070 0.5140 0.5138 0.5216 0.5184 0.5140  0.5147  0.5195  

1 0.3540  0.3162  0.3118  0.3022 0.3340 0.3467 0.3500 0.3545 0.3517 0.3456  0.3630  0.3538  

10e1 0.2511  0.2533  0.2691  0.2531 0.2482 0.2995 0.3116 0.3147 0.3098 0.3054  0.3077  0.3213  

10e2 0.2104  0.2058  0.2204  0.2286 0.2035 0.2682 0.2794 0.2775 0.2786 0.2834  0.2765  0.2647  

10e3 0.1872  0.1861  0.1964  0.1803 0.1866 0.2560 0.2657 0.2775 0.2550 0.2749  0.2682  0.2654  

10e4 0.1727  0.1741  0.1636  0.1687 0.1650 0.2231 0.2297 0.2329 0.2270 0.2272  0.2208  0.2359  

10e5 0.1425  0.1313  0.1294  0.1229 0.1282 0.1500 0.1597 0.1594 0.1544 0.1574  0.1565  0.1541  

10e6 0.1386  0.1319  0.1385  0.1274 0.1313 0.1360 0.1375 0.1365 0.1325 0.1314  0.1391  0.1392  

 

Table 16 Means of ARI by LSS-FTC-NTR on the subject 1+5% noise using different 1  and 2 , while 

fixing m=2 

  1  

2  

0 10e-4 10e-3 10e-2 10e-1 1 10e1 10e2 10e3 10e4 10e5 10e6 

0 0.7254  0.7452  0.7332  0.7778 0.7948 0.7880 0.7879 0.7876 0.7997 0.7905  0.7989  0.7845  

10e-4 0.7534  0.7997  0.7590  0.8253 0.8656 0.8506 0.8670 0.8615 0.8579 0.8600  0.8460  0.8406  

10e-3 0.7618  0.7943  0.8057  0.8553 0.8715 0.8733 0.8780 0.8717 0.8767 0.8755  0.8781  0.8769  

10e-2 0.7586  0.8079  0.8055  0.8616 0.8906 0.8840 0.8840 0.8878 0.8837 0.8871  0.8849  0.8838  

10e-1 0.6952  0.6842  0.6858  0.6788 0.7073 0.7172 0.7190 0.7139 0.7167 0.7215  0.7187  0.7135  

1 0.6621  0.6716  0.6685  0.6733 0.6787 0.6788 0.6785 0.6797 0.6742 0.6813  0.6740  0.6748  

10e1 0.6514  0.6555  0.6601  0.6612 0.6671 0.6615 0.6668 0.6665 0.6668 0.6647  0.6613  0.6649  

10e2 0.6599  0.6637  0.6743  0.6744 0.6702 0.6724 0.6732 0.6746 0.6737 0.6720  0.6789  0.6771  

10e3 0.6621  0.6625  0.6721  0.6583 0.6612 0.6633 0.6613 0.6650 0.6696 0.6696  0.6694  0.6666  

10e4 0.6567  0.6497  0.6595  0.6536 0.6576 0.6562 0.6581 0.6597 0.6537 0.6537  0.6561  0.6512  

10e5 0.6495  0.6397  0.6462  0.6357 0.6378 0.6446 0.6451 0.6448 0.6408 0.6426  0.6412  0.6388  

10e6 0.6456  0.6403  0.6553  0.6402 0.6409 0.6506 0.6429 0.6419 0.6489 0.6466  0.6438  0.6439  

 
Comments 3: In Experiments, only compared your proposed method on 
5%/10%/15% noisy is insufficient. Hence, this part is a little weak. I suggest the 
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authors to compare your proposed method on higher noisy scene. I would like to see 
the performance changes of your proposed method on different noise scenes. 
Reply: We would like to thank you for your comment. In Experiments, we randomly 
select 20 brain CT images as the original target domain data, and the rest 236 brain 
CT images as source domain data. We consider the application of LSS-FTC-NTR in 
the scenario of target images polluted by noise. We add target images corrupted by 
20%, 25% and 30% Gaussian noise. The mean and standard deviation of NMI and 
ARI for all compared clustering methods are displayed in Tables 4-6 and 10-12, 
respectively. To better observe the behavior of all algorithms, Figs. 4-9 graphically 
shows the segmentation results of all comparison methods obtained on subject1 with 
different noise. Similar to the results in the Tables 1-12, LSS-FTC-NTR obtains the 
best segmentation results for distinguishing the bone, water and soft issues. The 
boundaries between different organizations are smooth and obvious are relatively 
clearer than the other three methods. 

 

Table 4 

 NMI performance of all comparison methods on 20% noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0246 0.0289 0.5095 0.1908 0.4782 0.0069 0.6000 0.0055 

Subject2 0.3092 0.1299 0.5796 0.1631 0.5596 0.0082 0.6348 0.0128 

Subject3 0.2597 0.0992 0.5556 0.1588 0.5029 0.0108 0.5926 0.0051 

Subject4 0.0102 0.0061 0.5136 0.2026 0.4778 0.0066 0.5254 0.0133 

Subject5 0.3071 0.0852 0.5654 0.1471 0.5333 0.0119 0.6237 0.0084 

Subject6 0.2998 0.0697 0.5662 0.1376 0.5247 0.0176 0.5875 0.0099 

Subject7 0.0994 0.1742 0.5298 0.2377 0.4804 0.0088 0.5719 0.0063 

Subject8 0.2557 0.1427 0.5683 0.1438 0.5426 0.0160 0.6023 0.0114  

Subject9 0.3098 0.0342 0.5852 0.1508 0.5366 0.0089 0.6433 0.0062 

Subject10 0.0966 0.2007 0.5788 0.2565 0.5309 0.0066 0.5991 0.0080 

Subject11  0.1196  0.2075 0.5818 0.2101 0.5525 0.0080 0.6516 0.0129 

Subject12 0.1530 0.1197  0.5707 0.1767 0.5466 0.0167 0.5869 0.0122 

 

Table 5 

 NMI performance of all comparison methods on 25% noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0107 0.0058 0.5078 0.2154 0.4969 0.0043 0.5469 0.0104 

Subject2 0.1708 0.1001 0.5792 0.1741 0.5842 0.0076 0.6572 0.0182 

Subject3 0.2460 0.0981 0.5503 0.1685 0.5232 0.0145 0.5940 0.0093 

Subject4 0.0121 0.0081 0.5177 0.2390 0.5045 0.0112 0.5717 0.0197 

Subject5 0.1503 0.1169  0.5621 0.1599 0.5580 0.0122 0.6090 0.0083 

Subject6 0.2199 0.0660 0.5662 0.1533 0.5434 0.0311 0.5935 0.0142 

Subject7 0.0284 0.0285 0.5331 0.2528 0.5156 0.0137 0.5677 0.0095 
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Subject8 0.1320 0.1375 0.5705 0.1577 0.5547 0.0156 0.6272 0.0136 

Subject9 0.2594 0.1054 0.5859 0.1542 0.5682 0.0124 0.6437 0.0127 

Subject10 0.1980 0.0293 0.5763 0.2203 0.5488 0.0073 0.6416 0.0157 

Subject11  0.2156 0.2697 0.5830 0.2349 0.5745 0.0184 0.6732 0.0117  

Subject12 0.3935 0.0908 0.5724 0.1827 0.5617 0.0122 0.6386 0.0078 

 

Table 6 

 NMI performance of all comparison methods on 30% noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0120 0.0093 0.5086 0.2028 0.5569 0.0124 0.6567 0.0084 

Subject2 0.2553 0.1770 0.5833 0.1497 0.6333 0.0113 0.7439 0.0109 

Subject3 0.2010 0.0804 0.5526 0.1537 0.5872 0.0206 0.6602 0.0110  

Subject4 0.0891 0.1752 0.5143 0.2144 0.5664 0.0050 0.6720 0.0114  

Subject5 0.1820 0.1376 0.5663 0.1463 0.6172 0.0193 0.7080 0.0028 

Subject6 0.2316 0.1094 0.5695 0.1928 0.6062 0.0120 0.6872 0.0086 

Subject7 0.1080 0.1686 0.5316 0.2091 0.5769 0.0172 0.6966 0.0054 

Subject8 0.1755 0.1045 0.5696 0.1777 0.6231 0.0097 0.7037 0.0103 

Subject9 0.2584 0.0893 0.5913 0.1901 0.6295 0.0216 0.7356 0.0200 

Subject10 0.0113  0.0135 0.5751 0.2901 0.6247 0.0198 0.7441 0.0115  

Subject11  0.2121 0.2838 0.5827 0.2652 0.6343 0.0212 0.7491 0.0042 

Subject12 0.1547 0.1170  0.5702 0.1941 0.6226 0.0045 0.7256 0.0095 

 
Table 10 

ARI performance of all comparison methods on 20% noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0019 0.0080 0.3400 0.1486 0.3241 0.0059 0.6624 0.0098 

Subject2 0.1754 0.1208 0.3933 0.1522 0.3859 0.0059 0.6005 0.0116 

Subject3 0.1443 0.0831 0.4147 0.1533 0.3742 0.0102 0.5570 0.0066 

Subject4 0.0015 0.0060 0.3464 0.1713 0.3270 0.0090 0.5008 0.0139 

Subject5 0.1679 0.0931 0.3883 0.1370 0.3730 0.0056 0.6152 0.0068 

Subject6 0.1701 0.0682 0.4176 0.1304 0.3838 0.0091 0.5775 0.0079 

Subject7 0.0625 0.1226 0.3602 0.1912 0.3309 0.0064 0.4983 0.0083 

Subject8 0.1520 0.1066 0.3913 0.1339 0.3809 0.0088 0.5055 0.0102 

Subject9 0.1619 0.0404 0.4164 0.1424 0.3871 0.0056 0.5725 0.0053 

Subject10 0.0620 0.1394 0.3812 0.1927 0.3571 0.0027 0.5494 0.0065 

Subject11  0.0713 0.1457 0.3838 0.1649 0.3695 0.0065 0.5819 0.0122 

Subject12 0.0657 0.0780 0.3746 0.1617 0.3641 0.0048 0.4376 0.0106 
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Table 11 

ARI performance of all comparison methods on 25% noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0023 0.0020 0.3409 0.1786 0.3419 0.0056 0.5128 0.0139 

Subject2 0.0687 0.0687 0.3948 0.1626 0.4354 0.0132 0.6609 0.0156 

Subject3 0.1447 0.0664 0.4126 0.1659 0.4043 0.0113 0.5219 0.0102 

Subject4 0.0125 0.0047 0.3484 0.1856 0.3738 0.0138 0.5349 0.0204 

Subject5 0.0701 0.0553 0.3862 0.1545 0.4182 0.0235 0.6445 0.0077 

Subject6 0.1147  0.0392 0.4186 0.1502 0.4153 0.0305 0.5271 0.0151 

Subject7 0.0076 0.0109 0.3611 0.1885 0.3654 0.0088 0.5132 0.0116 

Subject8 0.0656 0.0666 0.3914 0.1499 0.4143 0.0176 0.5902 0.0148 

Subject9 0.1248 0.0841 0.4173 0.1462 0.4233 0.0152 0.6459 0.0121 

Subject10 0.1157  0.0035 0.3804 0.1958 0.3796 0.0046 0.5953 0.0165 

Subject11  0.1382 0.1889 0.3842 0.1686 0.4277 0.0200 0.6537 0.0123 

Subject12 0.2421 0.0869 0.3739 0.1749 0.4058 0.0177 0.6031 0.0091 

 

Table 12 

 ARI performance of all comparison methods on 30% noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0008 0.0052 0.3401 0.1505 0.5432 0.0294 0.7743 0.0062 

Subject2 0.1663 0.1180  0.3941 0.1505 0.5887 0.0309 0.8122 0.0136 

Subject3 0.0947 0.0389 0.4132 0.1584 0.5700 0.0397 0.7414 0.0125 

Subject4 0.0601 0.1242 0.3471 0.1760 0.5526 0.0094 0.7876 0.0146 

Subject5 0.0867 0.0967 0.3886 0.1351 0.5858 0.0488 0.7966 0.0044 

Subject6 0.1193  0.0774 0.4173 0.1744 0.5833 0.0131 0.7834 0.0053 

Subject7 0.0675 0.1173  0.3611 0.1547 0.5637 0.0408 0.7874 0.0079 

Subject8 0.0684 0.0490 0.3911 0.1728 0.6018 0.0277 0.7363 0.0144 

Subject9 0.1227 0.0787 0.4184 0.1823 0.6060 0.0214 0.8233 0.0176 

Subject10 0.0047 0.0076 0.3800 0.2041 0.5840 0.0421 0.8140 0.0134 

Subject11  0.1420 0.1947 0.3839 0.2030 0.6010 0.0318 0.8226 0.0052 

Subject12 0.0588 0.0640 0.3745 0.1792 0.5793 0.0106 0.7996 0.0093 

 
(a) (b) 

 

(c) (d) 

Fig.7 Clustering segmentations on subject1+20% noise, (a)FCM, (b)TSC, (c) T1-KT-FCM, 

(d)LSS-FTC-NTR 
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(a) (b) 

 
(c) (d) 

Fig.8 Clustering segmentations on subject1+25% noise, (a)FCM, (b)TSC, (c) T1-KT-FCM, 

(d)LSS-FTC-NTR 

  
(a) (b) 

 
(c) (d) 

Fig.9 Clustering segmentations on subject1+30% noise, (a)FCM, (b)TSC, (c) T1-KT-FCM, 

(d)LSS-FTC-NTR 

Comments 4: About the speed of the compared approaches, does the new proposed 
approach affect the speed? 
Reply: Thank you for your comments. The time complexity of LSS-FTC-NTR is 
dependent on matrix operation and the number of iterations of gradient descent 
algorithm. The time complexity of matrix inversion is the cubic of the scale of 
training set. Thus, LSS-FTC-NTR is slower than its baseliner method FCM. Thus, 
how to speed up LSS-FTC-NTR is worthy to be studied in the future. We aim to 
propose a fast version of LSS-FTC-NTR to handle with large scale brain CT image 
segmentation tasks. In response to your comments, we add this issue in the conclusion 
in the revised manuscript. (Ref to the conclusion section): 
Future work will extend our algorithm to other medical image segmentation applications. ...In addition, 

how to speed up LSS-FTC-NTR is worthy to be studied in the future. 

 
Comments 5: In the Conclusion section, the limitations of the proposed measure are 
scarcely discussed. 
Reply: Thank you for your comments. We have added more discussions about the 
limitations of the proposed method in the conclusion in the revised manuscript. (Ref 
to the conclusion section): 
Future work will extend our algorithm to other medical image segmentation applications. We will 

extend the framework so as to apply various clustering algorithms in order to obtain more satisfactory 

medical image segmentation results. We will also study how many images in the source domain can be 

considered sufficient, and how to select the important images to further improve the transfer. In 

addition, how to speed up LSS-FTC-NTR is worthy to be studied in the future. 
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Comments 6: The proposed method is very related to co-clustering, some latest 
important references should be included.  
Reply: Thank you for your comments. Co-clustering, also called simultaneously 
clustering, performs clustering on both rows and columns of data samples, which aims 
to exploit the clear duality between rows and columns of a contingency table. The 
difference between transfer learning and co-clustering is that transfer clustering 
promotes clustering performance in the current domain by leveraging knowledge from 
the other related domains, and transfer learning does not need the hypothesis that the 
given data samples satisfy the independent and identically distributed (IID) of training 
samples and testing samples. In practical, a model with very limited brain CT images 
will not be able to train for image segmentation. We try to use a large amount of 
samples of brain CT images collected from different hospitals as auxiliary knowledge. 
Thus, we prefer transfer learning in this study.  
In our revised manuscript, we discuss this issue in the subsection 2.2. (Ref to: the last 
paragraph of page 3): 
Currently, when the training data is not enough to represent the current domain, transfer learning, 

multi-task learning and co-clustering are three effective techniques that can enhance the clustering 

performance in the current domain. Multi-task learning performs multiple learning tasks together 

through by sharing certain knowledge among all tasks [30, 31]. Co-clustering performs clustering on 

both rows and columns of data samples to exploit the clear duality between rows and columns of a 

contingency table [32]. Transfer learning clustering enhances the clustering performance in the new 

domain by leveraging useful knowledge from different but related domains. Many researches show that 

the transfer clustering methods have better learning ability to obtain an effective model with the idea of 

transfer learning [28, 29, 33]. In real applications, due to the existences of noise and field offset etc, 

the insufficient medical images are inadequate to complete image segmentation. Therefore, we think 

transfer learning clustering is an effect technology to promote the segmentation of insufficient and 

noisy medical image in the new domain. 

 
Comments 7: The paper should be further proofread carefully. Some minor 
grammatical errors are in it. 
Reply: Thanks a lot for your reminder. We have carefully proofed the manuscript to 
correct grammatical errors. We also have asked a technical writer to polish the 
manuscript. We believe the quality of the revised manuscript has been improved 
significantly. 
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Response to Reviewer 5 

Comments 1: There is currently some weaknesses w.r.t. to other criteria which 
should be addressed in a minor revision round: For the comparison with related work, 
is the number of clusters initially assumed to be known for all algorithms used in the 
comparison? 
Reply: Thank you. In the experiments, we perform our experiments on ultrashort 
echo time (UTE) and modified Dixon brain image datasets. All CT images with 
corresponding manual segmentation are segmented into three classes: bone, water and 
soft issues. Thus, for the comparison with related work, the number of clusters is 
manually set to be three. 
 

Comments 2: Author should give a flowchart about the proposed algorithm, which 
increases our understanding. As a peer, my knowledge is very narrow and needs a 
large framework to understand. 
Reply: Thank you for your comments. In order to follow your suggestions, we have 
made the following changes in the revised manuscript: 
1) We have added up the motivation of LSS-FTC-NTR in Section 1 (Ref to: the 
second paragraph of page 3): 
The motivation of LSS-FTC-NTR is shown in Fig.1. Two cluster centers presented as black triangle and 

circle have positive transfer influence to the clustering in the target domain, while the cluster center 

presented as Black Square has negative influence to the clustering in the target domain. LSS-FTC-NTR 

will automatically resist black square participating in the clustering in the target domain by using the 

negative-transfer-resistance strategy. 

Quality Images in Source Domain

Noisy Images in Target Domain

Shared Latent Space 

Knowledge Transfer

Negative-Transfer
Resistance

 

Fig.1 The motivation of LSS-FTC-NTR 
 
2) We have added up the novelty of LSS-FTC-NTR in Section 1 (Ref to: the second 
paragraph of page 3): 
The novelty of this study is as follows.  

1) We formulate the problem of insufficient and noisy medical image segmentation as a model of 

transfer clustering task. To the best of our knowledge, our study is the first attempt to address this issue. 

2) The negative-transfer-resistance mechanism is proposed to identify and resist negative source 

transfer knowledge.  

3) The MMD is introduced into LSS-FTC-NTR to unify the representation of image data of different 

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on July 06,2020 at 15:12:11 UTC from IEEE Xplore.  Restrictions apply. 



1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2963873,
IEEE/ACM Transactions on Computational Biology and Bioinformatics

domains in the shared latent space, which helps transferring knowledge across domains.  

4) Clustering centers based transfer matching scheme is used to deal with the inconsistency problem of 

clustering numbers between source and target domains, so that more robust and cluster performance 

can be promoted. 
3) To clearly describe the algorithm of LSS-FTC-NTR, we have re-written some steps 
of Algorithm1 (Ref to: the second paragraph of page 3): 

Algorithm 1: LSS-FTC-NTR model 

Initialize Set the maximum number of iterations tmax, the fuzzy 

index m, the regularization parameters 1  and 2 , and 

the learning rate  .  

Repeat:  

Exacting transfer knowledge form the source domain; 

Perform soft-partition clustering methods in the source domain, such as 

FCM, and obtain the cluster centers of data in the source domain; 

t = t+1;  

Initialize the clustering centers of data in the target domain;   

 Compute the weight of transfer knowledge jhS  using Eq. (10); 

 Fix U(t) and Θ (t), obtain TDV (t) using Eq. (12); 

 Fix TDV (t) and Θ (t), obtain U(t) using Eq. (14); 

   Fix U(t) and TDV (t), obtain Θ (t) using Eq. (18) and Eq.(19); 

   Compute J (t) using Eq. (9); 

Until ( ) ( 1)J t J t     or maxt t ; 

 
Comments 3:  Are there any specific restrictions for \lambda_{\a} and \lambda_{\b} 
in Eq.(9)? 

Reply: Thank you. In the experiments, we select 1  and 2  in a given search grid. 

In our revised manuscript, in response to both your comment and another referee’s 
suggestions, we discuss the performance of LSS-FTC-NTR using different parameters. 
(Ref to: the second paragraph of page 3): 
Tables 15-16 show the means of NMI and ARI on the subject using different 1  and 2 , while fixing 

the parameter m=2. We can see that  

1) LSS-FTC-NTR is sensitive to parameters 1  and 2 . Different 1  and 2  lend to different 

cluster performance of LSS-FTC-NTR in terms of NMI and ARI. It can be found that in most situations 

when the value of NMI is better, the value of ARI is also better. Thus, it is feasible to use NMI and ARI 

as performance criterions to determine the suitable parameters.  

2) Fixed the value of m, LSS-FTC-NTR obtains the worst NMI and ARI when 1 0   and 2 0  . The 

clustering performance of LSS-FTC-NTR is improved when 1  and 2  are not equal to 0. Since 

when 1 0   and 2 0   LSS-FTC-NTR is degenerated to the classical FCM clustering.  

3) We can find that when the value of 1  is large, LSS-FTC-NTR obtains the satisfactory 

performance in terms of NMI and ARI. This further demonstrates that the proposed 
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negative-transfer-resistance mechanism has played an effective role. Thus, in the subsequent 

experiments, we can reduce the search grid of 1  in the range {10e1,10e1,...,10e6} . We can't find the 

rule to select parameter 2 . We think it is reasonable to select optimal 2  within the search grid. The 

range 2 {10e-4,10e-3,...,10e6}   is appropriate. 

 
Table 15 Means of NMI by LSS-FTC-NTR on the subject1+5% noise using different 1   and 2 , while 

fixing m=2 

  1  

2  

0 10e-4 10e-3 10e-2 10e-1 1 10e1 10e2 10e3 10e4 10e5 10e6 

0 0.4801  0.5006  0.5181  0.5501 0.6011 0.6250 0.6091 0.6375 0.6788 0.6397  0.6427  0.6378  

10e-4 0.4915  0.5326  0.5592  0.5662 0.6109 0.6161 0.6469 0.6499 0.6468 0.6493  0.6431  0.6425  

10e-3 0.5094  0.5436  0.5572  0.5866 0.7007 0.6540 0.6413 0.6456 0.6465 0.6457  0.6449  0.6438  

10e-2 0.5054  0.5605  0.5449  0.6980 0.7159 0.7006 0.6971 0.7075 0.6905 0.6766  0.7017  0.7106  

10e-1 0.5036  0.5025  0.5036  0.5017 0.5070 0.5140 0.5138 0.5216 0.5184 0.5140  0.5147  0.5195  

1 0.3540  0.3162  0.3118  0.3022 0.3340 0.3467 0.3500 0.3545 0.3517 0.3456  0.3630  0.3538  

10e1 0.2511  0.2533  0.2691  0.2531 0.2482 0.2995 0.3116 0.3147 0.3098 0.3054  0.3077  0.3213  

10e2 0.2104  0.2058  0.2204  0.2286 0.2035 0.2682 0.2794 0.2775 0.2786 0.2834  0.2765  0.2647  

10e3 0.1872  0.1861  0.1964  0.1803 0.1866 0.2560 0.2657 0.2775 0.2550 0.2749  0.2682  0.2654  

10e4 0.1727  0.1741  0.1636  0.1687 0.1650 0.2231 0.2297 0.2329 0.2270 0.2272  0.2208  0.2359  

10e5 0.1425  0.1313  0.1294  0.1229 0.1282 0.1500 0.1597 0.1594 0.1544 0.1574  0.1565  0.1541  

10e6 0.1386  0.1319  0.1385  0.1274 0.1313 0.1360 0.1375 0.1365 0.1325 0.1314  0.1391  0.1392  

 

Table 16 Means of ARI by LSS-FTC-NTR on the subject 1+5% noise using different 1  and 2 , while 

fixing m=2 

  1  

2  

0 10e-4 10e-3 10e-2 10e-1 1 10e1 10e2 10e3 10e4 10e5 10e6 

0 0.7254  0.7452  0.7332  0.7778 0.7948 0.7880 0.7879 0.7876 0.7997 0.7905  0.7989  0.7845  

10e-4 0.7534  0.7997  0.7590  0.8253 0.8656 0.8506 0.8670 0.8615 0.8579 0.8600  0.8460  0.8406  

10e-3 0.7618  0.7943  0.8057  0.8553 0.8715 0.8733 0.8780 0.8717 0.8767 0.8755  0.8781  0.8769  

10e-2 0.7586  0.8079  0.8055  0.8616 0.8906 0.8840 0.8840 0.8878 0.8837 0.8871  0.8849  0.8838  

10e-1 0.6952  0.6842  0.6858  0.6788 0.7073 0.7172 0.7190 0.7139 0.7167 0.7215  0.7187  0.7135  

1 0.6621  0.6716  0.6685  0.6733 0.6787 0.6788 0.6785 0.6797 0.6742 0.6813  0.6740  0.6748  

10e1 0.6514  0.6555  0.6601  0.6612 0.6671 0.6615 0.6668 0.6665 0.6668 0.6647  0.6613  0.6649  

10e2 0.6599  0.6637  0.6743  0.6744 0.6702 0.6724 0.6732 0.6746 0.6737 0.6720  0.6789  0.6771  

10e3 0.6621  0.6625  0.6721  0.6583 0.6612 0.6633 0.6613 0.6650 0.6696 0.6696  0.6694  0.6666  

10e4 0.6567  0.6497  0.6595  0.6536 0.6576 0.6562 0.6581 0.6597 0.6537 0.6537  0.6561  0.6512  

10e5 0.6495  0.6397  0.6462  0.6357 0.6378 0.6446 0.6451 0.6448 0.6408 0.6426  0.6412  0.6388  

10e6 0.6456  0.6403  0.6553  0.6402 0.6409 0.6506 0.6429 0.6419 0.6489 0.6466  0.6438  0.6439  

 

Comments 4: Please let us know what is the most important factor to affect the 
proposed method? 
Reply: Thank you for your comments. There are three free parameters in 
LSS-FTC-NTR, including fuzzy index m, parameters 1  and 2 . The fuzzy index m 
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is fixed to be 2, and 1  and 2  is selected in a given search grid. In our revised 
manuscript, in response to both your comment and another referee’s suggestions, we 
discuss the performance of LSS-FTC-NTR using different parameters. The 
experimental results are shown in Tables 15-16, respectively. We can find that 
LSS-FTC-NTR is sensitive to parameters 1  and 2 . Different 1  and 2  lend to 
different cluster performance of LSS-FTC-NTR in terms of NMI and ARI. It can be 
found that in most situations when the value of NMI is better, the value of ARI is also 
better. We can find that when the value of 1  is large, LSS-FTC-NTR obtains the 
satisfactory performance in terms of NMI and ARI. This further demonstrates that the 
proposed negative-transfer-resistance mechanism has played an effective role. Thus, 
in the subsequent experiments, we can reduce the search grid of 1  in the range 
{10e1,10e1,...,10e6} . We can't find the rule to select parameter 2 . We think it is 
reasonable to select optimal 2  within the search grid. The range 

2 {10e-4,10e-3,...,10e6}   is appropriate. 
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A Novel Negative-Transfer-Resistant Fuzzy 
Clustering Model with a Shared Cross-
Domain Transfer Latent Space and its 

Application to Brain CT Image Segmentation 
Yizhang Jiang, Senior Member, IEEE, Xiaoqing Gu, Dongrui Wu, Senior Member, IEEE, Wenlong 

Hang, Jing Xue, Shi Qiu，Chin-Teng Lin, Fellow, IEEE 

 
Abstract—Traditional clustering algorithms for medical image segmentation can only achieve satisfactory clustering 
performance under relatively ideal conditions, in which there is adequate data from the same distribution, and the data is 
seldom disturbed by noise or outliers. However, a sufficient amount of medical images with representative manual labels are 
often not available, because medical images are frequently acquired with different scanners (or different scan protocols) or 
polluted by various noises. Transfer learning improves learning in the target domain by leveraging knowledge from related 
domains. Given some target data, the performance of transfer learning is determined by the degree of relevance between the 
source and target domains. To achieve positive transfer and avoid negative transfer, a negative-transfer-resistant mechanism is 
proposed by computing the weight of transferred knowledge. Extracting a negative-transfer-resistant fuzzy clustering model with 
a shared cross-domain transfer latent space (called LSS-FTC-NTR) is proposed by integrating negative-transfer-resistant and 
maximum mean discrepancy (MMD) into the framework of fuzzy c-means clustering. Experimental results show that the 
proposed LSS-FTC-NTR model outperformed several traditional non-transfer and related transfer clustering algorithms.  

Index Terms—medical image segmentation, fuzzy clustering, transfer learning, negative transfer  

——————————      —————————— 

1 INTRODUCTION

ITH the development of electronic information 
and computer technology, medical imaging and 

image processing technology have developed rapidly. 
Medical imaging equipments collect images for a short 
time, and are less affected by external factors. Today, 
medical imaging technology has become a powerful 
tool and core technology for modern clinical diagnosis 
and treatment. Commonly used medical imaging 
techniques include Magnetic Resonance Imaging 

(MRI), Computed Tomography (CT), Computed 
Radiography (CR), Ultrasound, and so on. CT scans 
produce clearer images than conventional x-ray for 
internal organs, bone and soft tissues. MRI scans 
furnish greater clearness and higher resolution than 
CT scans with lower resolution [1]. Medical image 
segmentation is a basic and important step in medical 
image processing and analysis. It is also the basis of 
medical image registration, medical image information 
fusion and 3D visualization. In the current clinical 
practice, manual segmentation based on visual 
recognition and empirical judgment by doctors is still the 
most typical and common segmentation method. 
However, manual segmentation is tedious, time 
consuming and subjective. For example, in the Isointense 
Infant Brain Segmentation Challenge (ISEG2017), manual 
segmentation of each brain MRI scan took an average of 
one week for neuroradiologists [2]. Furthermore, the 
differences in physician experience and uncertain 
factors such as visual fatigue will affect the correct 
analysis of segmentation results. 
  With the rapid growth of the image processing 
technology, many automatic image processing 
techniques have appeared in recent years [3-5]. Image 
segmentation approaches can be broadly classified into 
four categories: graph based methods, classification 
methods, deep learning methods and clustering 
methods [6]. A medical image in graph based image 
segmentation is presented as a weighted undirected 
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graph [7]. Each pixel or region in the image is treated 
as a vertex of a graph, and the set of edges can be 
connected by adjacent pixels or two adjacent regions. 
Then the image is divided into several parts according 
to the relationship of the adjacent pixels. The second 
category, also called supervised methods, use labeled 
segmented images to extract features and train a 
segmentation model, such as k-nearest neighbor (KNN) 
[8], neural network [9], support vector machine (SVM) 
[10], and so on. A major drawback of classification 
method is that it requires sufficient labeled training 
images. But in the areas of medical imaging, it is 
relatively easy and inexpensive to obtain a large 
amount of unlabeled data [11]. Deep learning learns 
the feature representation of tissue contour based on 
deep convolutional neural networks [12, 13]. Deep 
learning methods have successfully applied for medical 
image segmentation in recent years. However, deep 
learning methods usually need a large number of training 
dataset and special hardware devices. It is known that 
the medical image segmentation problem can be 
considered as classifying the pixels of images into 
homogeneous regions. This process can be viewed as 
clustering problem. Clustering method, as an 
unsupervised machine learning approach, is the 
process of grouping a set of data points into subsets so 
that data points in the same subset are similar 
(according to some criteria). Widely used clustering 
methods include expectation-maximization, spectral 
clustering, fuzzy clustering, and so on. In the last 
decade, clustering-based algorithms have attracted 
great interest in the segmentation of medical images 
[14]. Portela et al [15] proposed clustering based semi-
supervised classification for brain image segmentation, 
which used K-means clustering as initial processing to 
select brain slices. Ortiz et al [16] improved brain 
image segmentation by using self-organizing maps 
(SOMs) based voxel clustering to extract features, and 
then used entropy-gradient clustering to segment 
brain images. Based on the idea of multiobjective 
optimization, Saha et al [17] proposed semi-supervised 
clustering in the intensity space for medical image 
segmentation. Abdel-Maksouda et al [18] combined K 
means and FCM clustering to propose a hybrid 
clustering approach for tumour segmentation from 
brain image.  
  In order for clustering based segmentation methods 
to perform well, the training medical image data needs 
to be representative of the target data. However, 
medical images are often collected with different 
scanners and scanning parameters, medical images 
may have large differences in image quality due to 
machine performance or scanning technology, such as 
varying degrees of rotation, noise, etc. The 
requirement of training and target data under the same 
distribution prevents the use of clustering algorithms 
in larger research and clinical practice. Since the above 
scenarios exist in a large number of real-world 
environments, this leads to unsatisfactory 
segmentation results and the risk of algorithm failure. 

To solve this problem, researchers have introduced the 
idea of transfer learning into clustering algorithms [19, 
20]. With the help of some knowledge of auxiliary 
domain (called source domain), transfer learning 
handles the cases where the distribution, feature space 
or tasks are different between source domain and test 
domain (called target domain). In transfer learning, the 
auxiliary knowledge from the source domain involves 
the data sample, feature representations, parameters 
and relationships [21-23]. The knowledge is usually 
obtained from certain precise procedures and reliable 
theory through some specific perspectives. Jiang et al 
[24] proposed a transfer spectral clustering approach, 
which uses both data manifold and feature manifold 
between related clustering tasks. Deng et al [25] 
proposed a transfer prototype-based fuzzy clustering 
approach, which incorporated prototype knowledge 
induced from source domain to implement the 
clustering in the target domain. Qian et al [20] 
proposed a cross-domain maximum entropy clustering 
approach, which utilized the auxiliary knowledge 
from cluster centers and fuzzy memberships belonging to 
source data. However, these algorithms have a common 
assumption that source domain and target domain 
must have the same number of clusters. Moreover, 
most existing transfer clustering methods are not 
developed for noisy scenarios. Thus, these methods 
may be not suitable for noisy medical image 
segmentation.  
  Since the medical images of different domains may 
have variations due to changes caused by noise, field 
offset and bias field, in this paper, we study the 
problem of medical image segmentation in a noisy 
scenario by transferring medical images collected from 
related scenarios. We consider the new noisy scenario 
as the target domain and the existing medical image 
dataset from related scenario elsewhere as the source 
domain, and then use the learning on clean images of 
source data to improve the clustering in target data. To 
improve the transfer learning performance, we 
consider learning the negative-transfer-resistant 
mechanism, so that the influence of positive transfer 
knowledge is reinforced and the influence of negative 
transfer knowledge is reduced or even eliminated. 
Meanwhile, we think medical images in different 
scenarios share certain common representations such 
as bone and soft tissue, and the shared representations 
could be preserved in a shared space. Inspired of 
maximum mean discrepancy (MMD)[26], we learn the 
shared latent space for source and target domains such 
that the distributions in different domains are close to 
each other. We investigate transferring ability of each 
cluster belonging to source domain in the shared latent 
space for medical image segmentation modeling. We 
use the clustering centers in the source domain as the 
transfer knowledge, regardless of whether the number 
of clusters in the source domain is the same as that in 
the target domain. With the above ideas, we propose a 
negative-transfer-resistant fuzzy clustering model with 
a shared cross-domain transfer latent space (called 
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LSS-FTC-NTR). The motivation of LSS-FTC-NTR is 
shown in Fig.1. Two cluster centers presented as black 
triangle and circle have positive transfer influence to 
the clustering in the target domain, while the cluster 
center presented as Black Square has negative 
influence to the clustering in the target domain. LSS-
FTC-NTR will automatically resist black square 
participating in the clustering in the target domain by 
using the negative-transfer-resistance strategy. We 
evaluate the proposed LSS-FTC-NTR method on real 
world datasets, and compare with several non-transfer 
and related transfer clustering methods. The results on 
real world brain CT dataset demonstrate that LSS-FTC-
NTR is more robust than the comparison methods. 
  The novelty of this study is as follows. 1) We 
formulate the problem of insufficient and noisy 
medical image segmentation as a model of transfer 
clustering task. To the best of our knowledge, our 
study is the first attempt to address this issue. 2) The 

negative-transfer-resistance mechanism is proposed to 
identify and resist negative source transfer knowledge. 
3) The MMD is introduced into LSS-FTC-NTR to unify 
the representation of image data of different domains 
in the shared latent space, which helps transferring 
knowledge across different domains. 4) Clustering 
centers based transfer matching scheme is used to deal 
with the inconsistency problem of clustering numbers 
between source and target domains, so that more 
robust cluster performance can be promoted. 
  The rest of this paper is organized as follows. 
Concepts related to FCM, transfer learning and MMD 
are reviewed in Section II. In Section III, the negative-
transfer-resistant mechanism and new LSS-FTC-NTR 
algorithm is introduced. Its parameter learning based 
on iteratively optimization strategy is then presented 
accordingly. The experimental results in real-world 
brain CT image datasets are reported in Section IV. 
Conclusions are given in the last section. 

 

Fig.1  The motivation of LSS-FTC-NTR

2 RELATED WORK 
2.1 Conventional FCM for Image Segmentation 
  Fuzzy C-means (FCM) clustering [27] is one of most 
commonly used fuzzy clustering algorithms. FCM 
allows data points to belong to more than one cluster 
defined by a membership matrix. Let 1 2{ , ,..., }NX x x x  
be a given dataset where d and N are data dimension 
and capacity, respectively. Suppose there exist C 
clusters in X, FCM derives the following objection 
function:  
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m
ij i j

i j
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U V

x v ,                                      

  s.t. 
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0 1, 1
C

ij ij
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   ,                                            (1) 

where [ ]ij N C U  denotes the fuzzy membership 

matrix, and 1 2[ , ,..., ]T
CV v v v  denotes the clustering 

center matrix. m (m>1) denotes the fuzzy index.  
FCM finds an optimal group of sets to explain the 

data samples into C clusters via matrixes Y and U. 
FCM minimizes the total membership weighted 

distance of each sample ix  to the clustering center jv . 
FCM can easily optimize the objective functions by an 
iterative technique. Among cluster center-based 
clustering methods, FCM was simple, efficient and 
high popularity. It is widely used in transfer clustering 
methods.  

For example, a FCM-based transfer learning was 
proposed in [28], which is combined with Gini-
Simpson diversity index and quadratic weights on 
membership. A knowledge-leveraged transfer FCM 
(KL-TFCM) is proposed in [29], which uses three-
interlinked framework of knowledge extraction, 
knowledge matching, and knowledge utilization to 
leverage source information to help the FCM 
clustering in the target domain. However, the above 
FCM-based transfer learning clustering methods are 
completed in the original space, and while they do not 
consider resisting negative transfer.   

2.2 Transfer Learning and Maximum Mean 
Discrepancy 
   Currently, when the training data is not enough to 
represent the current domain, transfer learning, multi-
task learning and co-clustering are three effective 
techniques that can enhance the clustering 

Quality Images in Source Domain

Noisy Images in Target Domain

Shared Latent Space 

Knowledge Transfer

Negative-Transfer
Resistance
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performance in the current domain. Multi-task 
learning performs multiple learning tasks together 
through by sharing certain knowledge among all tasks [30, 
31]. Co-clustering performs clustering on both objects and 
features to exploit the clear duality between rows and 
columns of a contingency table [32]. Transfer learning 
clustering enhances the clustering performance in the 
new domain by leveraging useful knowledge from 
different but related domains. Many researches show 
that the transfer clustering methods have better 
learning ability to obtain an effective model with the 
idea of transfer learning [28, 29, 33]. In real 
applications, due to the existences of noise and field 
offset etc, the insufficient medical images are 
inadequate to complete image segmentation. Therefore, 
we think transfer learning clustering can be used as an 
effect technology to promote the segmentation of 
insufficient and noisy medical image in the new 
domain.  
  In transfer learning, a fundamental problem is to 
evaluate the distribution difference between source 
domain and target domain. Many criteria, like 
Kullback-Leibler (KL) divergence can be used for 
distribution estimation. But some need density 
estimation, are parametric and not suitable for high-
dimensional data [34, 35]. In these cases, maximum 
mean discrepancy (MMD) as a nonparametric estimate 
criterion receives is widely used for comparing 
distributions. Let 1, 2, ,{ , ,..., }

ss s s N sX x x x  and 

1, 2, ,{ , ,..., }
tt t t N tX x x x  denote the samples from each 

distribution ( )source sP X  and ( )target tP X  belonging to 

source domain and target domain, respectively. The 
MMD for comparing distributions between ( )source sP X  

and ( )target tP X is defined as 
2

, ,1 1
( , )

1 1
( ) ( ) ( ) ( )s tN N

source s target t i s i ti i
s t

Dist P P f f
N N 

  X X x x          (2) 

MMD is based on reproducing kernel Hilbert space 
(RKHS). Suppose :f X Η , H is a universal RKHS. 
By inducing nonlinear mapping  , function 

evaluation can be represented ( ) ( ),f f x x , then 
equation (2) can be rewritten as 

2

, ,1 1
( , )

1 1
( ) ( ) ( ) ( )t sN N
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N N

 
 

  X X x x .      (3) 

When the difference between source and target 
domains is small, the relationship between two 
domains is strong and the transfer knowledge can be 
taken full advantage of. However, when the data in the 
source domain is not sufficiently related, the clustering 
performance in the target domain may not only fail to 
promote, it may even actually decrease. Thus, transfer 
learning would resist negative transfer when source 
and target domains are not a good match. One strategy 
of resisting negative transfer is to identify and reject 
unhelpful knowledge from source domain. Some data 

selection and source selection algorithms have been 
proposed. The former implements some rules to select 
data samples to reconstruct the training set of source 
domain. For example, Rosenstein et al. [36] proposed a 
detecting negative transfer algorithm based on naive 
Bayes classification model. Croonenborghs et al. [37] 
proposed an option-based transfer in reinforcement 
learning algorithm to achieve a balance between 
positive and negative transfer. The source selection 
algorithms are applicable for multiple source scenarios, 
which select the best source domain (task) for transfer 
learning. An example of this strategy is Talvitie and 
Singh [38] proposed a Markov decision process to 
select the proper source task. 

3 NEGATIVE-TRANSFER-RESISTANT FUZZY 

CLUSTERING MODEL WITH A SHARED CROSS-
DOMAIN TRANSFER LATENT SPACE 

The schematic diagram of LSS-FTC-NTR is shown in 
Fig.2. In the noisy transfer learning scenario, compared 
with data sample,  feature  representations, parameters 
and relationships are usually considered as being more 
insightful and more resistant to noise. In this study, we 
use  the  cluster  centers  in  the  source  domain  as 
auxiliary knowledge. The reason is that cluster centers 
are computed by certain reliable theories and rigorous 
procedures; such  that  the obtained cluster centers can 
well represent a cluster and all affiliated samples  in a 
cluster.  

Fig.2  The schematic diagram of LSS-FTC-NTR 
 

3.1 Negative-transfer-resistant mechanism 

  To  resist  the  negative  transfer,  our  objective  is  to 

discard bad  cluster  centers  in  the  source domain and 

select  helpful  cluster  centers  that  can  help  the 

clustering task satisfactorily. Let we have a total of  SDN  

training  images  in  the  source  domain 
1

, ,( , 1,2,..., )d SD
i s i s i N x x R  and  TDN  training  images 

in  the  target  domain  1
, ,( , 1,2,..., )d TD

i t i t i N x x R , 

where TD SDN N . We  consider  there  exists  a  shared 

latent space, spanned by a projection matrix r dΘ R , 
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where r is the dimensions of the shared latent space. In 

this way,  the  known  cluster  centers  ˆ SD
hv (h=1,  2,..., SD

C ) 

in  the source domain obtained by a certain clustering 

algorithm  could  be  represented  as  ˆ SD
hΘv .  The 

projection  of  a  target  domain  sample ,i tx  could  be 

represented  as ,i tΘx . Suppose  TD
jv (j=1,  2,..., TD

C )  is  the 

unsolved  cluster  centers  in  the  target  domain  in  the 

shared  latent  space.  We  consider  the  following 

optimization term for resisting negative transfer: 
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1 1

ˆmin ( )
TD SDC C

TD SD
j jh h

j h

J S
 

 
 

v
V v Θv ,                              (4) 

where  the  parameter 
TD SDC C

jhS S  is  called weight  of 

transfer knowledge, and its value is in the range [0, 1]. 

jhS  denotes  the  matching  degree  between  the  j‐th 

cluster center of the target domain and the h‐th cluster 

center  of  the  source  domain.  To  find  useful  transfer 

knowledge from cluster centers  in the source domain, 

it is needed to devise a strategy to set the values of  jhS  

to high values for positive transfer and low values for 

negative transfer. In Eq.(4), we set  jhS  as follows: 
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When jhS  tends to 1, TD
jv  exactly matches ˆ SD

hΘv . In 

this case, the clustering results will be coherent and 
these two centers clusters of different domains are 

much closer to each other. When jhS  tends to 0, TD
jv  

does not match ˆ SD
hΘv . In this case, we make ˆ SD

hΘv  
participate in transfer learning as little as possible. 
That is to say, the transfer performance will be at least 
no worse than performing the target clustering 
without transfer. In other words, if the source 

clustering transfer ability of ˆ SD
hΘv decreases cluster 

performance of target domain data, it means the 
partial source clustering may be not related or the 
relationship is not sufficiently leveraged, then the 
negative transfer has occurred. By adjusting the value 

of ˆ SD
hΘv , Eq. (4) can help the transfer method make 

positive transfer when two domains are appropriately 
matched and resist negative transfer when two 
domains are not matched. At one extreme, jhS  is set to 

be 1, the transferred knowledge from the source 
domain are completely helpful, such that the cluster 
centers in the source and target domains are coincided 
with each other, and all transferred knowledge are 
completely adopted. At the other extreme, when jhS  

tends to 0, it means the transferred knowledge from 
the source domain are unhelpful. The clustering on the 
target domain will disregard the transferred 
knowledge. But in most cases part transferred 
knowledge are selectively keep and the other parts are 
disregard. 

 
3.2 The Proposed LSS-FTC-NTR 

   To  find a proper projection matrix Θ , we think the 
difference between source  and  target domains in the 
shared latent space should be as small as possible, such 
that the relationship between domains is strengthened, 

and  the  transfer  knowledge  of  data  in  the  source 

domain  will  be  more  helpful  to  complete  medical 

segmentation  in  the  target  domain.   Based on the 
definition of MMD, the difference between two 
domains in the shared latent space can be computed as 
follows 
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The distribution difference between source and  target 
domains  is simply  the distance between  the  two mean 

in the shared latent space. Let 
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The optimization of  ( , )source targetd P P can be simplified as 

min ( , ) min ,

. .   .

T
source target

T
r r

d P P

s t 




Θ Θ

ΘΩΘ

ΘΘ I
                                 (8) 

where  r rI  is  a  r r identity  matrix,  such  that 

projection matrix H is orthogonal.  

   Coming to the transfer learning tasks, we incorporate 

the Eqs.(4) and (8) into the FCM framework. We obtain 

the objective function of LSS‐FTC‐NTR as follows: 

   2 2

1 2
1 1 1 1
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TD TD TD SDN C C CmTD TD TD SD T

ij i t j j jh h
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J S  
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 ,                                            (9) 

where parameters 1 0   and 2 0   are the 
coefficients of transfer optimization term and MMD 
term, respectively. In LSS-FTC-NTR, the parameter 1  
is used to control the influence of transfer optimization 

term 
2

1 1

ˆ
TD SDC C

TD SD
j jh h

j h

S
 

 v Θv to the entire objective 

function. The larger the 1  value, the greater the 
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contribution of the transfer term will be. In this case, 
the unsolved cluster centers TD

jv  in the target domain 

should be close to ˆ SD
jh hS Θv  in the shared latent space. 

Conversely, when 1  tends to 0, the contribution of the 
transfer term is weakened, the difference between the 
unsolved cluster centers and known cluster centers in 
two different domains can be relaxed. 

 
3.3 Optimization of LSS-FTC-NTR 

The solution of objective function in Eq.(9) relates to 
the matrixes Θ , U and V . In the following, we 
optimize them one by one using the iteratively 
optimization strategy. In terms of the Lagrange 
optimization, the minimization of J  in Eq.(9) by 
introducing the Lagrangian multiplier in Eq. (9) can 
be converted to the following unconstrained 
minimization problem: 
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 (10) 
In the first step, we fix parameters Θ  and U, and only 

consider V . To minimize this objective on 

parameter V , we set the derivative with regard to V  
to zero: 
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We can get V in a closed form as follows  
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 (12)   
Likewise, in the next step, we fix parameters Θ  and V , 
and only consider U. The minimization problem of 
Eq.(10) with respect to U can be equivalent to the 
following problem, 
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In the next step, we update matrix Θ  and fix 

parameters V and U . Let  
TD

TD

1
1 11 1 1

[ , , , , ] N
i N

    U R     ,                               (15) 

where 
TD TD TD TD TD TD

TD

1
1[ , , ] , ( ) .C N C N C N

C
diag    U U U R U U R

   
Let 

TD TD TD
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[ , , ] N C N

C

 ω E E R ,                                      (16) 

where 
TD TDN NE R . Let 

TD TD

TD1[ ,..., ] r C N
C

 Q q q R , 

where 
TD

TD

TD TD[ , , ] r N
i i i

N

 q v v R . Substituting 

Eqs.(16), (17) and (18) back to Eq.(9), the minimization 
problem of Eq.(10) with respect to Θ  can be 
equivalent to the following problem,  
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Likewise, the minimization problem of Eq.(10) with 
respect to Θ  can be equivalent to the following 
problem, 
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               (18) 

In this study, the widely gradient descent method is 
adopted to compute the optimal Θ . By setting the 

initial value Θ  as 0Θ , the gradient descent method 
successively optimal Θ  as follows 

1
1 | l

l l  





 

 Θ Θ
Θ Θ

Θ


,                                           (19) 

where   is the learning rate and l is the iteration 

number. Considering the constraint of T ΘΘ I . After 

each updating step of lΘ , let 
'l lΘ Θ R  be the QR 

decomposition of lΘ , where 
'lΘ  has orthogonal 

columns and R is an upper triangle. Then we replace 
lΘ  with 

'lΘ  for the next iteration. Eq. (19) will be 
iteratively solved until the convergence condition is 
satisfied.  
  Based on the above analysis, the proposed LSS-FTC-
NTR model is presented in Algorithm 1. 
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Algorithm 1: LSS-FTC-NTR model 
Initialize Set the maximum number of iterations tmax, 

the fuzzy index m, the regularization 
parameters 1  and 2 , and the learning rate 
  .  

Repeat:  
Exacting transfer knowledge form the source domain; 
Perform soft-partition clustering methods in the source 
domain, such as FCM, and obtain the cluster centers of 
data in the source domain; 
t = t+1;  
Initialize the clustering centers of data in the target 
domain;   
 Compute the weight of transfer knowledge jhS  using 

Eq. (10); 
   Fix U(t) and Θ (t), obtain TDV (t) using Eq. (12); 

   Fix TDV (t) and Θ (t), obtain U(t) using Eq. (14); 
   Fix U(t) and TDV (t), obtain Θ (t) using Eq. (18) and 
Eq.(19); 
   Compute J (t) using Eq. (9); 
Until ( ) ( 1)J t J t     or maxt t ; 

 

   
(a)   (b)   (c)   

   
(e)  (f)  (g) 

Fig. 3. The example brain CT images in source and target 
domains, (a) images in source domain, (b) Subject1 in 
target domain with 5% noise, (c) Subject1 in target 
domain with 10% noise, (d) Subject1 in target domain 
with 15% noise, (e) Subject1 in target domain with 20% 
noise, (f) Subject1 in target domain with 25% noise, (g) 
Subject1 in target domain with 30% noise 

4 EXPERIMENTS 
4.1 Data Sets and Settings 
We use ultrashort echo time (UTE) and modified 
Dixon brain image datasets [39, 40]. It consists of 256 
brain CT image slices of 10 patients, with each image 
of a resolution of 256 x 256 pixels. All CT images with 
corresponding manual segmentation are segmented 
into three classes: bone, water and soft issues. These 
class labels are assigned by physicians or technicians. 
We randomly select 20 brain CT images as the original 
target domain data, and the rest 236 brain CT images 

as source domain data. We consider the application of 
LSS-FTC-NTR in the scenario of target images polluted 
by noise. To this aim, all target images were corrupted 
by 5%, 10%, 15%, 20%, 25% and 30% Gaussian noise. 
The example images in the source and target domains 
are shown in Fig.3. Following the training protocol 
established in [41], we construct a total training data 
set combining 236 source brain images and random 8 
target brain images, while the remaining 12 target 
brain images are used as testing brain images. We 
repeat the experiment for 10 runs and record the 
experimental results.  

To compare the segmentation performance of LSS-
FTC-NTR with that of existing methods, complete 
image segmentation is obtained and compared with 
segmentations obtained by FCM [27], transfer spectral 
clustering (TSC) [24], and type-I knowledge-transfer-
oriented c-means (T1-KT-FCM) [28]. As introduced in 
section II, FCM is the baseline algorithm of LSS-FTC-
NTR. TSC performs transfer learning based on 
bipartite graph co-clustering, which adopts both the 
data manifold and sample manifold shared among 
different domains. T1-KT-FCM makes the cluster 
centers in the source domain as the transfer 
information to control the knowledge transfer in the 
test images. T1-KT-FCM incorporates this idea into 
FCM to achieve automatic image segmentation. To 
obtain the optimal parameters in all four methods, the 
common used grid search is conducted. Fuzzy index m 
in all fuzzy clusters is set within the grid 
{1.1,  1.5,  2,  2.5} . The K-nearest parameters in TSC are 
set within the grid {0, 0.005, 0.1, 0.5, 0.7, 1, 1.5, 10, 50, 
100}. The ,  parameters in T1-KT-FCM are set within 

the grid {10e-4,10e-3,...,10e4} . The parameters 1 2,   in 
LSS-FTC-NTR are set within the grid 
{0,10e-4,10e-3,...,10e6} , learning rate   in LSS-FTC-
NTR are set within the grid {1e-4,1e-3,1e-2} , and the 
maximum number of iterations is 10e5.  

In this study, the performance of image 
segmentation by clustering methods is evaluated in 
terms of two validity indicators: normalized mutual 
information (NMI) [42] and adjusted rand index (ARI) 
[43]. NMI and ARI can efficiently evaluate the 
agreement degree between the known clusters and the 
estimated data structure. Both NMI and ARI take 
values from 0 to 1, and larger value means better 
cluster performance. Experimental environment is 
Intel Core i3-4170 3.7GHz CPU and 12GM RAM, 
Windows 10, and MATLAB R2016a in this study. 

 
4.2 Performance Comparison 
The clustering performance of four methods is 
reported in the following. The mean and standard 
deviation of NMI and ARI for all compared clustering 
methods are displayed in Tables 1-6, respectively. The 
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experimental results show that three transfer learning 
methods are superior to FCM. The introduction of 
transfer knowledge from source domain has indeed 
promoted the cluster performance of data in the target 
domain. FCM is not a transfer learning cluster method 
which simply combines the source domain and target 
domain data as the training data. Due to underlying 
noise or outliers in the target domain, the distribution 
difference between source and target domains are 
significant different. Thus, FCM can not obtain good 
clustering performance in terms of NMI and ARI. Our 
model achieves the best performance in all datasets. 
TSC may be not suitable for the transfer scenario in 
noisy medical image segmentation, since the character 
of medical image are usually different in noisy 
scenario, while the manifold and sample manifold 
shared among different domains can not resist 
negative transfer for TSC. T1-KT-FCM exploits the 
transfer knowledge across domains in the original data 
space; however, the limited transfer knowledge can 
not be fully exploited in such original space. LSS-FTC-
NTR has shown better performance than the other 
comparison methods in terms of NMI and ARI. Both 
the reliable knowledge obtained in the source domain 
and the ability of resisting negative transfer has the 
important influence on the segmentation performance 
of LSS-FTC-NTR. To better observe the behavior of all 
algorithms, Figs. 4-9 graphically shows the 
segmentation results of all comparison methods 
obtained on subject1 with different noise. Similar to 
the results in the Tables 1-12, LSS-FTC-NTR obtains 
the best segmentation results for distinguishing the 
bone, water and soft issues. The boundaries between 
different organizations are smooth, and obvious are 
relatively clearer than the other three methods. 

Table 1  
NMI performance of all comparison methods on 5% noisy 

CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0112  0.0041  0.5085  0.2249  0.5802  0.0254  0.7146  0.0056  

Subject2 0.1515  0.1468  0.5801  0.1632  0.6359  0.0148  0.7526  0.0142  

Subject3 0.1583  0.1040  0.5573  0.1591  0.6438  0.0290  0.7253  0.0059  

Subject4 0.0137  0.0062  0.5149  0.1868  0.6091  0.0590  0.7256  0.0138  

Subject5 0.2333  0.1355  0.5649  0.1840  0.6329  0.0254  0.7432  0.0094  

Subject6 0.1823  0.1094  0.5659  0.1446  0.6505  0.0234  0.7441  0.0116  

Subject7 0.0086  0.0046  0.5283  0.2242  0.6096  0.0212  0.7352  0.0110  

Subject8 0.1324  0.1157  0.5664  0.1917  0.6603  0.0245  0.7586  0.0108  

Subject9 0.1188  0.1240  0.5845  0.1638  0.6700  0.0399  0.7693  0.0111  

Subject10  0.0185  0.0083  0.5765  0.2749  0.6512  0.0258  0.7781  0.0127  

Subject11  0.1178  0.2362  0.5882  0.2124  0.6580  0.0179  0.7862  0.0068  

Subject12 0.0642  0.0376  0.5719  0.1542  0.6631  0.0358  0.7759  0.0079  

 
 
 

Table 2 
NMI performance of all comparison methods on 10% 

noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0155  0.0098  0.5063  0.2137  0.4748  0.0095  0.6337  0.0091  

Subject2 0.2943  0.1666  0.5797  0.1689  0.5792  0.0194  0.7230  0.0045  

Subject3 0.2182  0.0813  0.5502  0.1716  0.5224  0.0366  0.6908  0.0117  

Subject4 0.0196  0.0163  0.5061  0.1966  0.4706  0.0110  0.6475  0.0127  

Subject5 0.1959  0.1420  0.5635  0.1591  0.5273  0.0205  0.7056  0.0122  

Subject6 0.2868  0.0777  0.5683  0.1421  0.5310  0.0162  0.6894  0.0177  

Subject7 0.0076  0.0038  0.5336  0.2612  0.4696  0.0106  0.6710  0.0162  

Subject8 0.2006  0.1377  0.5680  0.1448  0.5357  0.0217  0.7077  0.0158  

Subject9 0.2052  0.1502  0.5923  0.1901  0.5409  0.0165  0.7274  0.0104  

Subject10  0.0153  0.0136  0.5755  0.2609  0.5103  0.0186  0.7244  0.0046  

Subject11  0.0814  0.1664  0.5846  0.2263  0.5231  0.0215  0.7203  0.0122  

Subject12 0.1534  0.1036  0.5694  0.1864  0.5409  0.0062  0.7144  0.0149  

Table 3 
 NMI performance of all comparison methods on 15% 

noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0130  0.0106  0.5053  0.2261  0.4470  0.0181  0.5684  0.0082  

Subject2 0.2346  0.1282  0.5815  0.1536  0.5631  0.0172  0.6452  0.0118  

Subject3 0.2155  0.0679  0.5541  0.2003  0.4881  0.0175  0.5978  0.0024  

Subject4 0.1789  0.2392  0.5076  0.2182  0.4509  0.0171  0.5849  0.0157  

Subject5 0.2061  0.0862  0.5621  0.1394  0.5341  0.0121  0.6220  0.0030  

Subject6 0.2592  0.1368  0.5691  0.1526  0.5079  0.0163  0.6261  0.0096  

Subject7 0.0963  0.1848  0.5274  0.1991  0.4664  0.0168  0.5939  0.0130  

Subject8 0.1826  0.1223  0.5674  0.1458  0.5087  0.0223  0.6198  0.0101  

Subject9 0.2245  0.1570  0.5869  0.1486  0.5118  0.0120  0.6419  0.0157  

Subject10  0.0735  0.1450  0.5697  0.2271  0.4975  0.0197  0.6098  0.0169  

Subject11  0.0937  0.1846  0.5826  0.2770  0.5267  0.0242  0.6107  0.0075  

Subject12 0.2454  0.1816  0.5720  0.2135  0.5328  0.0129  0.6537  0.0117  

Table 4 
 NMI performance of all comparison methods on 20% 

noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0246  0.0289  0.5095  0.1908  0.4782  0.0069  0.6000  0.0055  

Subject2 0.3092  0.1299  0.5796  0.1631  0.5596  0.0082  0.6348  0.0128  

Subject3 0.2597  0.0992  0.5556  0.1588  0.5029  0.0108  0.5926  0.0051  

Subject4 0.0102  0.0061  0.5136  0.2026  0.4778  0.0066  0.5254  0.0133  

Subject5 0.3071  0.0852  0.5654  0.1471  0.5333  0.0119  0.6237  0.0084  

Subject6 0.2998  0.0697  0.5662  0.1376  0.5247  0.0176  0.5875  0.0099  

Subject7 0.0994  0.1742  0.5298  0.2377  0.4804  0.0088  0.5719  0.0063  

Subject8 0.2557  0.1427  0.5683  0.1438  0.5426  0.0160  0.6023  0.0114  

Subject9 0.3098  0.0342  0.5852  0.1508  0.5366  0.0089  0.6433  0.0062  

Subject10  0.0966  0.2007  0.5788  0.2565  0.5309  0.0066  0.5991  0.0080  

Subject11  0.1196  0.2075  0.5818  0.2101  0.5525  0.0080  0.6516  0.0129  

Subject12 0.1530  0.1197  0.5707  0.1767  0.5466  0.0167  0.5869  0.0122  
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Table 5 
 NMI performance of all comparison methods on 25% 

noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0107  0.0058  0.5078  0.2154  0.4969  0.0043  0.5469  0.0104  

Subject2 0.1708  0.1001  0.5792  0.1741  0.5842  0.0076  0.6572  0.0182  

Subject3 0.2460  0.0981  0.5503  0.1685  0.5232  0.0145  0.5940  0.0093  

Subject4 0.0121  0.0081  0.5177  0.2390  0.5045  0.0112  0.5717  0.0197  

Subject5 0.1503  0.1169  0.5621  0.1599  0.5580  0.0122  0.6090  0.0083  

Subject6 0.2199  0.0660  0.5662  0.1533  0.5434  0.0311  0.5935  0.0142  

Subject7 0.0284  0.0285  0.5331  0.2528  0.5156  0.0137  0.5677  0.0095  

Subject8 0.1320  0.1375  0.5705  0.1577  0.5547  0.0156  0.6272  0.0136  

Subject9 0.2594  0.1054  0.5859  0.1542  0.5682  0.0124  0.6437  0.0127  

Subject10  0.1980  0.0293  0.5763  0.2203  0.5488  0.0073  0.6416  0.0157  

Subject11  0.2156  0.2697  0.5830  0.2349  0.5745  0.0184  0.6732  0.0117  

Subject12 0.3935  0.0908  0.5724  0.1827  0.5617  0.0122  0.6386  0.0078  

Table 6 
 NMI performance of all comparison methods on 30% 

noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0120  0.0093  0.5086  0.2028  0.5569  0.0124  0.6567  0.0084  

Subject2 0.2553  0.1770  0.5833  0.1497  0.6333  0.0113  0.7439  0.0109  

Subject3 0.2010  0.0804  0.5526  0.1537  0.5872  0.0206  0.6602  0.0110  

Subject4 0.0891  0.1752  0.5143  0.2144  0.5664  0.0050  0.6720  0.0114  

Subject5 0.1820  0.1376  0.5663  0.1463  0.6172  0.0193  0.7080  0.0028  

Subject6 0.2316  0.1094  0.5695  0.1928  0.6062  0.0120  0.6872  0.0086  

Subject7 0.1080  0.1686  0.5316  0.2091  0.5769  0.0172  0.6966  0.0054  

Subject8 0.1755  0.1045  0.5696  0.1777  0.6231  0.0097  0.7037  0.0103 

Subject9 0.2584  0.0893  0.5913  0.1901  0.6295  0.0216  0.7356  0.0200  

Subject10  0.0113  0.0135  0.5751  0.2901  0.6247  0.0198  0.7441  0.0115  

Subject11  0.2121  0.2838  0.5827  0.2652  0.6343  0.0212  0.7491  0.0042  

Subject12 0.1547  0.1170  0.5702  0.1941  0.6226  0.0045  0.7256  0.0095  

 

Table 7 
 ARI performance of all comparison methods on 5% noisy 

CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0021  0.0043  0.3399  0.1756  0.7579  0.0301  0.8880  0.0028 

Subject2 0.0854  0.0814  0.3931  0.1561  0.8032  0.0160  0.9111  0.0109 

Subject3 0.0861  0.0521  0.4144  0.1478  0.8072  0.0318  0.8839  0.0031 

Subject4 0.0013 0.0041  0.3466  0.1701  0.7730  0.0629  0.8913  0.0107 

Subject5 0.1186  0.0877  0.3884  0.1761  0.8085  0.0316  0.9080  0.0078 

Subject6 0.0839  0.0560  0.4153  0.1393  0.8069  0.0264  0.8950  0.0108 

Subject7 0.0012  0.0026  0.3593  0.1594  0.7728  0.0243  0.8922  0.0119 

Subject8 0.0651  0.0732  0.3902  0.1753  0.8293  0.0276  0.9169  0.0095 

Subject9 0.0658  0.0682  0.4153  0.1524  0.8305  0.0378  0.9187  0.0102 

Subject10  0.0071  0.0055  0.3806  0.2090  0.8036  0.0304  0.9242  0.0106 

Subject11  0.0771  0.1614  0.3858  0.1903  0.8089  0.0215  0.9299  0.0053 

Subject12 0.0094  0.0109  0.3744  0.1365  0.8131  0.0424  0.9269  0.0081 

 

Table 8 
ARI performance of all comparison methods on 10% 

noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0028 0.0113  0.3403  0.1791  0.5742  0.0284  0.8155  0.0056 

Subject2 0.1798  0.1182  0.3955  0.1613  0.5515  0.0292  0.8812  0.0056 

Subject3 0.1158  0.0542  0.4121  0.1696  0.6163  0.0635  0.8515  0.0148 

Subject4 0.0046  0.0063  0.3433  0.1729  0.5650  0.0237  0.8281  0.0134 

Subject5 0.1051  0.0953  0.3848  0.1535  0.6339  0.0317  0.8777  0.0093 

Subject6 0.1523  0.0812  0.4168  0.1373  0.6359  0.0297  0.8467  0.0136 

Subject7 0.0008  0.0012  0.3607  0.1920  0.5573  0.0211  0.8482  0.0125 

Subject8 0.1140  0.0988  0.3915  0.1311  0.6423  0.0301  0.8522  0.0149 

Subject9 0.1202  0.1143  0.4210  0.1781  0.6382  0.0300  0.8839  0.0101 

Subject10  0.0011  0.0089  0.3800  0.1963  0.5939  0.0328  0.8849  0.0037 

Subject11  0.0493  0.1062  0.3848  0.1608  0.6045  0.0401  0.8742  0.0118 

Subject12 0.0484  0.0401  0.3737  0.1681  0.6302  0.0112  0.8738  0.0125 

Table 9 
ARI performance of all comparison methods on 15% 

noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0009  0.0031  0.3389  0.1753  0.3607  0.0262  0.6833  0.0089 

Subject2 0.1206  0.1058  0.3935  0.1414  0.4404  0.0126  0.6679  0.0107 

Subject3 0.1083  0.0540  0.4127  0.1807  0.4323  0.0238  0.5997  0.0032 

Subject4 0.1239  0.1680  0.3439  0.1746  0.3620  0.0344  0.7034  0.0137 

Subject5 0.0847  0.0405  0.3859  0.1306  0.4408  0.0298  0.7278  0.0046 

Subject6 0.1421  0.1255  0.4182  0.1430  0.4259  0.0204  0.6636  0.0077 

Subject7 0.0639  0.1304  0.3588  0.1519  0.3662  0.0287  0.5863  0.0161 

Subject8 0.0729  0.0824  0.3902  0.1349  0.4120  0.0355  0.5671  0.0136 

Subject9 0.1302  0.0900  0.4174  0.1444  0.4186  0.0102  0.6287  0.0148 

Subject10  0.0398  0.0848  0.3778  0.2008  0.4098  0.0241  0.5256  0.0122 

Subject11  0.0593  0.1239  0.3843  0.2049  0.4230  0.0250  0.6560  0.0087 

Subject12 0.1478  0.1185  0.3750  0.1692  0.4119  0.0303  0.6518  0.0128 

Table 10 
ARI performance of all comparison methods on 20% 

noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0019  0.0080  0.3400  0.1486  0.3241  0.0059  0.6624  0.0098 

Subject2 0.1754  0.1208  0.3933  0.1522  0.3859  0.0059  0.6005  0.0116 

Subject3 0.1443  0.0831  0.4147  0.1533  0.3742  0.0102  0.5570  0.0066 

Subject4 0.0015  0.0060  0.3464  0.1713  0.3270  0.0090  0.5008  0.0139 

Subject5 0.1679  0.0931  0.3883  0.1370  0.3730  0.0056  0.6152  0.0068 

Subject6 0.1701  0.0682  0.4176  0.1304  0.3838  0.0091  0.5775  0.0079 

Subject7 0.0625  0.1226  0.3602  0.1912  0.3309  0.0064  0.4983  0.0083 

Subject8 0.1520  0.1066  0.3913  0.1339  0.3809  0.0088  0.5055  0.0102 

Subject9 0.1619  0.0404  0.4164  0.1424  0.3871  0.0056  0.5725  0.0053 

Subject10  0.0620  0.1394  0.3812  0.1927  0.3571  0.0027  0.5494  0.0065 

Subject11  0.0713  0.1457  0.3838  0.1649  0.3695  0.0065  0.5819  0.0122 

Subject12 0.0657  0.0780  0.3746  0.1617  0.3641  0.0048  0.4376  0.0106 
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Table 11 
ARI performance of all comparison methods on 25% 

noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0023  0.0020  0.3409  0.1786  0.3419  0.0056  0.5128  0.0139 

Subject2 0.0687  0.0687  0.3948  0.1626  0.4354  0.0132  0.6609  0.0156 

Subject3 0.1447  0.0664  0.4126  0.1659  0.4043  0.0113  0.5219  0.0102 

Subject4 0.0125 0.0047  0.3484  0.1856  0.3738  0.0138  0.5349  0.0204 

Subject5 0.0701  0.0553  0.3862  0.1545  0.4182  0.0235  0.6445  0.0077 

Subject6 0.1147  0.0392  0.4186  0.1502  0.4153  0.0305  0.5271  0.0151 

Subject7 0.0076  0.0109  0.3611  0.1885  0.3654  0.0088  0.5132  0.0116 

Subject8 0.0656  0.0666  0.3914  0.1499  0.4143  0.0176  0.5902  0.0148 

Subject9 0.1248  0.0841  0.4173  0.1462  0.4233  0.0152  0.6459  0.0121 

Subject10  0.1157  0.0035  0.3804  0.1958  0.3796  0.0046  0.5953  0.0165 

Subject11  0.1382  0.1889  0.3842  0.1686  0.4277  0.0200  0.6537  0.0123 

Subject12 0.2421  0.0869  0.3739  0.1749  0.4058  0.0177  0.6031  0.0091 

Table 12 
 ARI performance of all comparison methods on 30% 

noisy CT image datasets 

Dataset 
FCM TSC T1-KT-FCM LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0008 0.0052  0.3401  0.1505  0.5432  0.0294  0.7743  0.0062 

Subject2 0.1663  0.1180  0.3941  0.1505  0.5887  0.0309  0.8122  0.0136 

Subject3 0.0947  0.0389  0.4132  0.1584  0.5700  0.0397  0.7414  0.0125 

Subject4 0.0601  0.1242  0.3471  0.1760  0.5526  0.0094  0.7876  0.0146 

Subject5 0.0867  0.0967  0.3886  0.1351  0.5858  0.0488  0.7966  0.0044 

Subject6 0.1193  0.0774  0.4173  0.1744  0.5833  0.0131  0.7834  0.0053 

Subject7 0.0675  0.1173  0.3611  0.1547  0.5637  0.0408  0.7874  0.0079 

Subject8 0.0684  0.0490  0.3911  0.1728  0.6018  0.0277  0.7363  0.0144 

Subject9 0.1227  0.0787  0.4184  0.1823  0.6060  0.0214  0.8233  0.0176 

Subject10  0.0047  0.0076  0.3800  0.2041  0.5840  0.0421  0.8140  0.0134 

Subject11  0.1420  0.1947  0.3839  0.2030  0.6010  0.0318  0.8226  0.0052 

Subject12 0.0588  0.0640  0.3745  0.1792  0.5793  0.0106  0.7996  0.0093 

 

 
(a) (b) 

  
(c) (d) 

Fig.4 Clustering segmentations on subject1+5% noise, (a)FCM, 
(b)TSC, (c)T1-KT-FCM, (d)LSS-FTC-NTR 

(a) (b) 

(c) (d) 
Fig.5 Clustering segmentations on subject1+10% noise, 
(a)FCM, (b)TSC, (c)T1-KT-FCM, (d)LSS-FTC-NTR 

(a) (b) 

(c) (d) 
Fig.6 Clustering segmentations on subject1+15% noise, (a)FCM, 
(b)TSC, (c) T1-KT-FCM, (d)LSS-FTC-NTR 

 
(a) (b) 

(c) (d) 
Fig.7 Clustering segmentations on subject1+20% noise, (a)FCM, 
(b)TSC, (c) T1-KT-FCM, (d)LSS-FTC-NTR 

  
(a) (b) 

  
(c) (d) 

Fig.8 Clustering segmentations on subject1+25% noise, (a)FCM, 
(b)TSC, (c) T1-KT-FCM, (d)LSS-FTC-NTR 

 
(a) (b) 

(c) (d) 
Fig.9 Clustering segmentations on subject1+30% noise, (a)FCM, 
(b)TSC, (c) T1-KT-FCM, (d)LSS-FTC-NTR 
 
4.3 Flexibility Evaluation of LSS-FTC-NTR 
To validate the effect of two regularization terms on 
the performance of LSS-FTC-NTR, we present two 
comparison methods LSS-FTC-NTR ( 1=0 ) and LSS-

FTC-NTR ( 2 =0 ), obtained with the parameter 1=0  
and 2 =0  in LSS-FTC-NTR, respectively. We compare 
them with FCM and LSS-FTC-NTR on Subjects 1-8 and 
show their mean and standard deviation of NMI and 
ARI in Tables 13-14, respectively. The experimental 
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results show that the performances of both LSS-FTC-
NTR ( 1=0 ) and LSS-FTC-NTR ( 2 =0 ) are better than 
baseline method FCM. The regularization term in LSS-

FTC-NTR ( 2 =0 ) is 
2

1 1

ˆ
TD SDC C

TD SD
j jh h

j h

S
 

 v Θv , which can 

effectively resist negative transform by using the 
transfer optimization strategy and improve the 
segmentation performance in noisy scenario. The 
regularization term in LSS-FTC-NTR ( 1=0 ) is TΘ ΩΘ , 
which finds a shared latent space for data cross 
domains, so that the projection data distributions of 
the source and target domains are close to each other. 
LSS-FTC-NTR has the advantages of both LSS-FTC-
NTR ( 1=0 ) and LSS-FTC-NTR ( 2 =0 ). It can exploit 
more transfer knowledge; meanwhile, and achieve a 
good balance between making use of positive transfer 
and resisting negative transfer. 

 
Table 13  

NMI performance of all comparison methods on 5% noisy 
CT image datasets 

Dataset 
FCM 

LSS-FTC-NTR 

( 1=0 ) 

LSS-FTC-NTR 

( 2 =0 ) 
LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0112  0.0041  0.1312  0.0087  0.7009  0.0101  0.7146  0.0056  

Subject2 0.1515 0.1468 0.4187 0.0121 0.7483 0.0135 0.7526 0.0142 

Subject3 0.1583 0.1040 0.3852 0.0099 0.7011 0.0074 0.7253 0.0059 

Subject4 0.0137 0.0062 0.1474 0.0137 0.7088 0.0062 0.7256 0.0138 

Subject5 0.2333 0.1355 0.3566 0.0173 0.7304 0.0121 0.7432 0.0094 

Subject6 0.1823 0.1094 0.4366 0.0075 0.7231 0.0071 0.7441 0.0116 

Subject7 0.0086 0.0046 0.2283 0.0108 0.7184 0.0069 0.7352 0.0110 

Subject8 0.1324 0.1157 0.4831 0.0078 0.7389 0.0082 0.7586 0.0108 

 
Table 14 

 ARI performance of all comparison methods on 5% noisy 
CT image datasets 

Dataset 
FCM 

LSS-FTC-NTR 

( 1=0 ) 

LSS-FTC-NTR 

( 2 =0 ) 
LSS-FTC-NTR 

Means Std Means Std Means Std Means Std 

Subject1  0.0021  0.0043  0.4671  0.0069  0.8621  0.0042  0.8880  0.0028 

Subject2 0.0854  0.0814  0.6893  0.0114  0.9017  0.0089  0.9111  0.0109 

Subject3 0.0861  0.0521  0.7022  0.0093  0.8702 0.0047  0.8839  0.0031 

Subject4 0.0013 0.0041  0.4705 0.0078  0.8856  0.0122  0.8913  0.0107 

Subject5 0.1186  0.0877  0.6244  0.0086  0.8901  0.0099   0.9080  0.0078 

Subject6 0.0839  0.0560  0.5921  0.0077  0.8901  0.0058  0.8950  0.0108 

Subject7 0.0012  0.0026  0.5156  0.0143  0.8815  0.0103 0.8922  0.0119 

Subject8 0.0651  0.0732  0.5702  0.0084  0.8977  0.0127  0.9169  0.0095 

 
Next, we discuss the influence of the number of 
samples in the source domain on the performance of 
LSS-FTC-NTR. We randomly select 10%, 30%, 50%, 
70%, 90% and 100% proportion of training samples in 
the source domain as the source training dataset. To 

make the results fair, we repeat the above sampling 10 
times for each sample size. NMI and ARI 
performances of LSS-FTC-NTR on Subject1 and 
Subject2 with 5% noisy are shown in Fig.10 and Fig.11, 
respectively. The experimental results show that the 
values of NMI and ARI increase with the increase of 
the number of samples in the source domain. The 
reason is that LSS-FTC-NTR can not mine enough 
transfer knowledge from source domain when training 
samples in the source domain are too few. On the 
other hand, exploiting clear and concise transfer 
knowledge need a certain amount of high quality 
samples in the source domain. Thus, it can be inferred 
that the more samples in the source domain, the more 
helpful the knowledge obtained in the source domain 
and the more efficient the LSS-FTC-NTR will be in the 
target domain. 

 
Fig.10 NMI performance of LSS-FTC-NTR with different 

proportion of samples in the source domain on 5% 
noisy Subject1 and Subject2 

 
Fig.11 ARI performance of LSS-FTC-NTR with different 

proportion of samples in the source domain on 5% 
noisy Subject1 and Subject2 

 
4.3 Parameter Sensitive 
In the experiments, the parameters 1  and 2  are 
determined in a given search grid. In the following, we 
discuss the performance of LSS-FTC-NTR using 
different parameters. Tables 15-16 show the means of 
NMI and ARI on the subject using different 1  and 2 , 
while fixing the parameter m=2.  
1) LSS-FTC-NTR is sensitive to parameters 1  and 2 . 
Different 1  and 2  lend to different cluster 
performance of LSS-FTC-NTR in terms of NMI and 
ARI. It can be found that in most situations when the 
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value of NMI is better, the value of ARI is also better. 
Thus, it is feasible to use NMI and ARI as performance 
criterions to determine the suitable parameters.  
2) Fixed the value of m, LSS-FTC-NTR obtains the 
worst NMI and ARI when 1 0   and 2 0  . The 
clustering performance of LSS-FTC-NTR is improved 
when 1  and 2  are not equal to 0. Since when 1 0   
and 2 0   LSS-FTC-NTR is degenerated to the 
classical FCM clustering.  
3) We can find that when the value of 1  is large, LSS-
FTC-NTR obtains the satisfactory performance in terms 

of NMI and ARI. This further demonstrates that the 
proposed negative-transfer-resistance mechanism has 
played an effective role. Thus, in the subsequent 
experiments, we can reduce the search grid of 1  in the 

range {10e1,10e1,...,10e6} . We can't find the rule to 
select parameter 2 . We think it is reasonable to select 
optimal 2  within the search grid. The range 

2 {10e-4,10e-3,...,10e6}   is appropriate. 
 

Table 15  
Means of NMI by LSS-FTC-NTR on the subject1+5% noise using different 1  and 2 , while fixing m=2 

  1  

2  
0 10e-4 10e-3 10e-2 10e-1 1 10e1 10e2 10e3 10e4 10e5 10e6 

0 0.4801  0.5006  0.5181  0.5501  0.6011  0.6250  0.6091  0.6375  0.6788  0.6397  0.6427  0.6378  
10e-4 0.4915  0.5326  0.5592  0.5662  0.6109  0.6161  0.6469  0.6499  0.6468  0.6493  0.6431  0.6425  
10e-3 0.5094  0.5436  0.5572  0.5866  0.7007  0.6540  0.6413  0.6456  0.6465  0.6457  0.6449  0.6438  
10e-2 0.5054  0.5605  0.5449  0.6980  0.7159  0.7006  0.6971  0.7075  0.6905  0.6766  0.7017  0.7106  
10e-1 0.5036  0.5025  0.5036  0.5017  0.5070  0.5140  0.5138  0.5216  0.5184  0.5140  0.5147  0.5195  
1 0.3540  0.3162  0.3118  0.3022  0.3340  0.3467  0.3500  0.3545  0.3517  0.3456  0.3630  0.3538  
10e1 0.2511  0.2533  0.2691  0.2531  0.2482  0.2995  0.3116  0.3147  0.3098  0.3054  0.3077  0.3213  
10e2 0.2104  0.2058  0.2204  0.2286  0.2035  0.2682  0.2794  0.2775  0.2786  0.2834  0.2765  0.2647  
10e3 0.1872  0.1861  0.1964  0.1803  0.1866  0.2560  0.2657  0.2775  0.2550  0.2749  0.2682  0.2654  
10e4 0.1727  0.1741  0.1636  0.1687  0.1650  0.2231  0.2297  0.2329  0.2270  0.2272  0.2208  0.2359  
10e5 0.1425  0.1313  0.1294  0.1229  0.1282  0.1500  0.1597  0.1594  0.1544  0.1574  0.1565  0.1541  
10e6 0.1386  0.1319  0.1385  0.1274  0.1313  0.1360  0.1375  0.1365  0.1325  0.1314  0.1391  0.1392  

Table 16  
Means of ARI by LSS-FTC-NTR on the subject 1+5% noise using different 1  and 2 , while fixing m=2 

  1  

2  
0 10e-4 10e-3 10e-2 10e-1 1 10e1 10e2 10e3 10e4 10e5 10e6 

0 0.7254  0.7452  0.7332  0.7778  0.7948  0.7880  0.7879  0.7876  0.7997  0.7905  0.7989  0.7845  
10e-4 0.7534  0.7997  0.7590  0.8253  0.8656  0.8506  0.8670  0.8615  0.8579  0.8600  0.8460  0.8406  
10e-3 0.7618  0.7943  0.8057  0.8553  0.8715  0.8733  0.8780  0.8717  0.8767  0.8755  0.8781  0.8769  
10e-2 0.7586  0.8079  0.8055  0.8616  0.8906  0.8840  0.8840  0.8878  0.8837  0.8871  0.8849  0.8838  
10e-1 0.6952  0.6842  0.6858  0.6788  0.7073  0.7172  0.7190  0.7139  0.7167  0.7215  0.7187  0.7135  
1 0.6621  0.6716  0.6685  0.6733  0.6787  0.6788  0.6785  0.6797  0.6742  0.6813  0.6740  0.6748  
10e1 0.6514  0.6555  0.6601  0.6612  0.6671  0.6615  0.6668  0.6665  0.6668  0.6647  0.6613  0.6649  
10e2 0.6599  0.6637  0.6743  0.6744  0.6702  0.6724  0.6732  0.6746  0.6737  0.6720  0.6789  0.6771  
10e3 0.6621  0.6625  0.6721  0.6583  0.6612  0.6633  0.6613  0.6650  0.6696  0.6696  0.6694  0.6666  
10e4 0.6567  0.6497  0.6595  0.6536  0.6576  0.6562  0.6581  0.6597  0.6537  0.6537  0.6561  0.6512  
10e5 0.6495  0.6397  0.6462  0.6357  0.6378  0.6446  0.6451  0.6448  0.6408  0.6426  0.6412  0.6388  
10e6 0.6456  0.6403  0.6553  0.6402  0.6409  0.6506  0.6429  0.6419  0.6489  0.6466  0.6438  0.6439  

5. CONCLUSION 

In this study, we have addressed the problem of 
medical image segmentation with insufficient and 
noisy samples, and proposed LSS-FTC-NTR model for 
leveraging source knowledge to improve the 
segmentation performance of target domain. We 
explore the negative-transfer-resistant mechanism to 
reinforce the influence of positive transfer and reduce, 
or even eliminate, the negative transfer. In particular, 
we find a shared latent space based on the idea of 

MMD, in which the mapped data distributions of 
source domain and target domain are close to each 
other. The experiments focus on noisy brain CT images. 
The experimental results show that with insufficient 
and noisy medical images, it is possible to build an 
efficient segmentation model with the help of medical 
images from the related scenarios. Future work will 
extend our algorithm to other medical image 
segmentation applications. We will extend the 
framework so as to apply various clustering 
algorithms in order to obtain more satisfactory medical 
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image segmentation results. We will also study how 
many images in the source domain can be considered 
sufficient, and how to select the important images to 
further improve the transfer. In addition, how to speed 
up LSS-FTC-NTR is worthy to be studied in the future. 
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