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Abstract— Vehicle accidents are the primary cause of fatalities 

worldwide. Most often, experiencing fatigue on the road leads to 

operator errors and behavioral lapses. Thus, there is a need to 

predict the cognitive state of drivers, particularly their fatigue 

level. Electroencephalography (EEG) has been demonstrated to be 

effective for monitoring changes in the human brain state and 

behavior. Thirty-seven subjects participated in this driving 

experiment and performed a perform lane-keeping task in a 

visual-reality environment. Three domains, namely, frequency, 

temporal and 2D spatial information, of EEG channel location 

were comprehensively considered. A 4D convolutional neural 

network (4D CNN) algorithm was then proposed to associate all 

information from the EEG signals and the changes in the human 

state and behavioral performance. 4D CNN achieves superior 

forecasting performance over 2D CNN, 3D CNN and shallow 

networks. The results showed a 3.82% improvement in the RMSE, 

a 3.45% improvement in the error rate, and a 11.98% 

improvement in the correlation coefficient with 4D CNN 

compared with 3D CNN. The 4D CNN algorithm extracts the 

significant theta and alpha activations in the frontal and posterior 

cingulate cortices under distinct fatigue levels. This work 

contributes to enhancing our understanding of deep learning 

methods in the analysis of EEG signals. We even envision that deep 

learning might serve as a bridge between translation neuroscience 

and further real-world applications. 

 
Index Terms—EEG, driving, response time, deep learning, 

convolutional neural network 

I. INTRODUCTION 

riving safety is an important public issue. According to the 

World Health Organization, over 1.2 million people 

worldwide die in car accidents each year, while 20 to 50 

million people are nonfatally injured in car accidents [1]. 

Lapses in attention and other behavioral errors of drivers are 

responsible for 90% of such accidents [2]. If this urgent issue is 

not improved, road traffic injuries could become the seventh 

leading cause of death across the world by 2030 [3]. Among 

these issues, this study focuses on driving while drowsy, which 

results in a considerable number of road traffic fatalities and 

 

 
 

nonfatal injuries every year. There is a need to monitor drivers’ 

fatigue levels to control and reduce road traffic injures. 

  Previous studies have demonstrated that drowsy driving is 

highly correlated with behavioral lapses before accidents [4]–

[7]. There are two major approaches for monitoring drowsy 

driving. One approach targets the behavior of drivers by 

detecting the movement of the steering wheel or the deviation 

of the vehicle [8]. The other approach is to monitor 

physiological parameters, such as the driver’s heart rate, 

breathing, brain waves and respiratory rate [9]. 

Electroencephalography (EEG) has been shown to be a reliable 

indicator of human cognitive states. Many EEG-based driver 

assistance systems [8]–[15] have been proposed for observing 

the driving behaviors or fatigue levels of drivers. Some systems 

apply statistical models based on knowledge from previous 

research. The others apply machine learning methods, such as 

support vector machines (SVM) [10], Gaussian mixture models 

[16] and neural networks (NN) [13]. These studies suggest that 

EEG is a feasible tool for monitoring driving behavior by 

connecting the driver’s cognitive state with response time.  

Recently, several deep learning methods have exhibited high 

research value in many fields. Especially, the capacity of auto-

feature learning shows great success in computer vision society 

[23], [24]. Compared with shallow algorithms, deep learning 

algorithms learn the high-level features from raw data by using 

multiple stacked layers. Recently, several EEG studies have 

adopted deep learning algorithms [42-46]. Liu et al. applied a 

convolutional neural network (CNN) to motor imagery tasks 

[25]. Hajinoroozi et al. tried to predict drivers’ cognitive states 

(drowsy or alert) with a channel-wise convolutional neural 

network (CCNN) [26]. Lu et al. utilized restricted Boltzmann 

machines (RBM) for motor imagery tasks [27]. The researchers 

leverage the power of deep learning to explore the differences 

of brain dynamics as performing specific tasks or experiencing 

changes of cognitive state. 

However, how to better leverage the knowledge of EEG 

signals for different models has become a problem. In previous 

studies [17]–[20], frequency bands of EEG signals were shown 

to reflect psychological states [17], [18]. Dissanayaka’s study 
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showed that the power of the alpha band increased when the 

participants were drowsy [19]. Temporal information is also 

essential in the EEG analysis; connections of adjacent 

timeframes represent a trend in brain dynamic states [21]. 

Spatial information from EEG channels has received attention 

in recent studies. Studies have shown that the cognitive 

workload is strongly connected with the frontal and parietal 

lobes [35], [38]. In Hooi’s study, EEG signals were converted 

into a topographical image (topo-image), which is one method 

used to combine the electrode positions into an EEG readout 

[22]. Previous studies [40], [41] showed various techniques for 

processing multidimension data for cognitive workload 

assessment. Another approach for simultaneously processing 

multi-information is 3D CNN [23]. In 2013, a 3D CNN 

algorithm was proposed to process video data [23], [33]. These 

studies performed three-dimensional convolution and 

effectively extracted motion features embedded in the spatial 

and temporal domains. The performance of 3D CNN is 

promising over many applications.  

To better use the knowledge from the three domains, a CNN-

based deep learning algorithm named 4D CNN was applied to 

predict fatigue levels during a driving task. The strategy used 

for the utilization of spatial information as a topo-image in the 

analysis helps narrow down the position of significant features 

in the brain-lobe view. Temporal information is also preserved 

for tracking the signal trends. With this advantage, we are able 

to monitor the activated brain area over time. In this study, 

response times (RTs) were recorded to evaluate the cognitive 

performance of drivers, and the system took 6-second baseline 

EEG signals as the input data to predict the RTs. 

II. MATERIALS AND METHODS 

A. Experimental Design 

The data used in this study were recorded at the Brain 

Research Center (BRC), National Chiao Tung University 

(NCTU), Hsinchu, Taiwan. The experimental task was lane-

keeping. The experiment was conducted in a 360-degree 

virtual-reality laboratory with a motion platform using a 

response-detecting steering wheel (Fig. 1), which simulates the 

real-world driving environment [11], [28]. The vehicle in the 

experiment was set at 100 km/h on a four-lane road at night. 

The vehicle deviated randomly from the position at the center 

of the cruising lane (3rd lane, as shown in Fig. 2). The 

participants were asked to drive the vehicle back to the center 

of the lane using the steel wheel as soon as possible when the 

participant became aware of the deviation. There was one 

resting period between two continuous trials, and this period 

was one random number from 7 to 12 seconds to avoid 

 
Figure 1: Experimental environment: (a) a 360-degree virtual-reality lab with a 

motion platform in BRC, NCTU. (b) The experimental setup: the computer used 

for recording can synchronize all response and brain dynamics from the 
participants and the relevant events from the experimental scenario and thus 
detects the responses of the participants. 
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Figure 2: Experimental scenario in this study. The cruising car randomly drifted to the left (2nd) or right (4th) lane, and the participants were asked to control 
the car back to the cruising (3rd) lane. We used 6-second EEG data before the event onset (baseline, marked by bold green lines) as the input data for 4D CNN, 

and the period between the event onset and the response onset was defined as the response time. The period between two continuous trials was approximately 

7 to 12 seconds.  
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participants’ expectation of coming deviation. The RT was 

measured to evaluate the driver’s driving performance in the 

study. RT is the latency between the onset of the deviation and 

the onset of the response (as shown in Fig. 2). A high RT 

indicates that the participant is relatively drowsy in this VR-

highway driving scenario, and a low RT indicates that the 

participant that is relatively alert. 

The driving experiment was conducted in the early 

afternoon (13:00–15:00) after lunch, when the circadian rhythm 

of drowsiness is at its peak [29]. In addition, the VR-highway 

scene was monotonous, and the task demand was low to induce 

drowsiness [11], [30], [31]. Under such conditions, the subjects 

had difficulty regulating attention and performance, which 

resulted in long RTs [32]. If the participants did not properly 

react to the designed tasks during the alert situation, the related 

data were excluded from the subsequent analyses.  

The entire dataset included 71 sessions from 37 healthy 

participants, and there were 60 EEG epochs in each session. The 

participants did not have any history of psychological or sleep 

disorders. All EEG data were collected through a 32-channel 

EEG cap with Neuroscan system, including 30 regular channels 

and two reference channels. The impedances of the electrodes 

were all less than 5 kΩ, and the sampling rate of the EEG 

signals was 500 Hz. To ensure that the brain state of the 

participants would not be affected by external factors, 

consumption of alcohol or caffeinated drinks and strenuous 

exercise were prohibited for the one week prior to the 

experiments. All participants were clearly informed about the 

operation of the related equipment and the procedure of the 

experiment and had practiced the procedure sufficiently before 

participating in the experiment. Furthermore, before the 

experiment, all of the subjects were asked to read and sign an 

informed consent form. Finally, this experiment was approved 

by the Institutional Review Board of the Veterans General 

Hospital, Taipei, Taiwan. 

B. Data processing 

   Fig. 3 shows the diagram for processing EEG signals 

including three major components, EEG data pre-processing, 

feature extraction, and Data Arrangement for 4D CNN. 

EEG data pre-processing 

We applied EEGLAB for EEG data pre-processing [39]. 

EEGLAB is an open source Matlab toolbox and widely applied 

to EEG data processing [11], [29], [34], [36], [39]. The noises 

associated with eye movements and muscle activities were 

removed manually, followed by 250-Hz downsampling, a high-

pass filter (1 Hz) and a low-pass filter (50 Hz). The EEG signals 

were later segmented into a 6-second baseline signal, which 

began 6 seconds before event onset [11], [29]-[31]. To 

eliminate inter-subject differences, the measured RTs and EEG 

dynamics were normalized by the trails with 10% fastest RTs 

in every single subject [11], [12]. The datasets collected from 

each individual subject were then normalized by subtracting the 

mean and dividing by the standard deviation. 

Feature Extraction 

The EEG signals were then transformed into a 4D format 

that included a frequency power of 1-20 Hz, 6-second temporal 

information and a two-dimension topo-image. The bottom of 

Fig. 3 shows the data structure of our 4D input data, and each 

topo-image was converted from the frequency power of all 30 

EEG channels in one single timeframe using the linear 

interpolation function of EEGLAB [39], one of the most 

powerful EEG analysis toolboxes in MATLAB. This 

interpolation is able to map the scalp data into a 2D view, and 

each topology image depicts the power distributions for one 

specific frequency and one single timeframe. The more details 

about temporal information, power distributions and channel 

locations are as the following paragraphs.  
  The major advantage of EEG signals is high temporal 

resolution. To capture cognitive changes within consecutive 

time points, temporal convolution was introduced in this study. 

A previous study [33] demonstrated that motion patterns on 

video were successfully extracted by temporal convolution in 

the consecutive images. Following this path, 4D CNN uses data 

from a 1-second time window as one input frame, and the 

overlap between two input frames was 600 milliseconds. 
  In previous EEG studies [32], [34]- [37], frequency 

oscillations in the delta (1-4 Hz) theta (4-7 Hz), alpha (8-13 Hz) 

and low beta (13-20 Hz) bands were significant indicators for 

monitoring cognitive performance. Especially, the power 

oscillations in theta and alpha bands were highly associated 

   
Figure 3: Structure of data pre-processing and feature extraction in the 4D 

CNN algorithm. For each trial, the re-sampling, bandpass filter and noise 

removal were adopted to the 6-second EEG baseline. FFT was then applied 
to translate the frequency information. Each of the 2D topo-images included 

the frequency power of 30 EEG channels in a single timeframe. 
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with sustained attention [17]–[20]. However, most EEG studies 

observe the data orientation by averaging in one frequency band. 

There is a high possibility of ignoring essential information due 

to the elimination of fluctuations in frequency bands. To 

explore hidden information in frequency domains, this study 

considered the frequencies between 1 and 20 Hz. Fast Fourier 

Transform (FFT) was adopted. 

Data Arrangement for 4D CNN 

Fig. 3 shows the 4D data format of input data. The human 

brain is dominated by four major lobes, the frontal, parietal, 

temporal and occipital lobes. Each lobe is responsible for 

distinct cognitive functions [9], [31]-[34]. Electrodes are placed 

around the scalp to acquire brain information, and a 32-channel 

EEG cap was used in this study. In a previous study [22], the 

approach of using the topographic map (topo-map) was shown 

to be effective for tracking brain activity, which implies that the 

signals are inseparably associated with the electrode positions. 

To include channel location in the input data, a 2D topology 

image with a size of 32×32. For each trial, the brain dynamics 

6 seconds before the deviation were extracted as the baseline 

signals. The extracted baseline signals were segmented into 

overlapping 1000-ms samples that were advanced in 600-ms 

steps, which totally resulted in 13 samples from each 6000-ms 

baseline. For each sample, 20 frequency bins (1 Hz - 20 Hz) 

were extracted by FFT. The feature dimension of each 1000-ms 

sample is 20 (20 frequency bins). By organizing input data into 

a 4D format, we were able to access the hidden information in 

the three domains (spatial, frequency and temporal domains) 

with a size of 32*32*20*13. 

The strength of learning visual patterns from local 

neighboring area (pixel) saves us from designing hand-craft 

feature extractors [23]. A typical CNN structure is composed of 

convolutional layers, pooling layers and fully connected layers. 

Along with dataflow, the low-level features (edges, lines, 

corners) are combined, evolved into high-level features and 

form abstract interpretations. 

C. 4D CNN 

This study proposes a 4D CNN for forecasting driving 

performance. 4D CNN is a CNN-based deep learning algorithm 

that is designed for the analysis of EEG signals, which includes 

more data dimensions than 2D and 3D CNNs. At the 

convolutional layer, 4D convolution is performed and defined 

as follows: 

 

𝑣𝑖𝑗
𝑤𝑥𝑦𝑧

= 𝑟𝑒𝑙𝑢 (𝑏𝑖𝑗 + ∑ ∑ ∑ ∑ ∑ 𝑊𝑖 𝑖𝑗𝑚
𝑝𝑞𝑟𝑠𝑣(𝑖−1)𝑚

(𝑤+𝑝)(x+q)(y+r)(𝑧+𝑠)

𝑆𝑖−1

𝑠=0

𝑅𝑖−1

𝑟=0

𝑄𝑖−1

𝑞=0

𝑃𝑖−1

𝑝=0𝑚

) 

 

where 𝑣𝑖𝑗
𝑤𝑥𝑦𝑧

 is the unit of the 𝑤, 𝑥, 𝑦 and 𝑧 positions 

of the feature map between the 𝑖th and 𝑗th layers; 𝑏𝑖𝑗  is the 

bias between the two layers; 𝑚 represents the 𝑚𝑡ℎ  filter in 

the convolutional layer; 𝑃, 𝑄, 𝑅 and S are the kernel size of 

the filters; 𝑊𝑖𝑖𝑗𝑚
𝑝𝑞𝑟𝑠are the kernel weights at the 𝑝𝑞𝑟 position of 

the 𝑚𝑡ℎ  filter; and relu is an activation function for 

accelerating the convergence speed during training [23]. 

Each unit in the output feature map is the result of the inner 

product of kernels and feature map of the previous layer, where 

𝑣(𝑖−1)𝑚
(𝑤+𝑝)(x+q)(y+r)(𝑧+𝑠)

 is the feature map of the previous layer. 

Bias and kernel weights are trained by backpropagation, 

following the same approach as in CNN. In the pooling layer, a 

4D pooling layer is adopted to down-sample the data points of 

the feature maps.  

In the current study, the 4D CNN net was designed as nine 

layers including an input layer, a convolutional layer (16 filters), 

a max-pooling layer, a convolutional layer (32 filters), a max-

pooling layer, a convolutional layer (64 filters), a max-pooling 

layer, a fully connected layer (128 nodes) and an output layer. 

All of the activation functions in the convolutional layers and 

the fully connected layer were applied using rectified linear 

units (ReLUs).  

The 4D CNN algorithm was trained through 

backpropagation with a batch size of eight. The optimizer was 

Adaptive Moment Estimation (ADAM). The initial learning 

Table 1: Configuration of 4D CNN, 3D CNN, CNN, ANN and LSTM 

 

 4D CNN 3D CNN CNN 
ANN,  

LSTM 

Input layer 

1st convolutional layer 16 kernels at size 3333 16 kernels at size 333 16 kernels at size 33 

128 nodes 

1st max-pooling layer kernel size 2222 kernel size 222 kernel size 22 

2nd convolutional layer 32 kernels at size 3333 32 kernels at size 333 32 kernels at size 33 

2nd pooling layer kernel size 2222 kernel size 222 kernel size 22 

3rd convolutional layer 64 kernels at size 3333 64 kernels at size 333 64 kernels at size 33 

3rd pooling layer kernel size 2211 kernel size 211 kernel size 21 

Fully connected layer 128 nodes 128 nodes 128 nodes 

Output layer 
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rate was 0.001 and was divided by five when the validating 

error improvement (10% of the training data) was less than 1%. 

D. Evaluation Criteria 

This study compared the system performance with state-of-

the-art algorithms, namely, 3D CNN, CNN, artificial neural 

network (ANN), support vector regression (SVR) and Long 

Short-Term Memory (LSTM). Table 1 lists the structures and 

parameters of 4D CNN, 3D CNN, CNN, ANN and LSTM. To 

ensure comparability, the network configurations for 4D CNN, 

3D CNN and CNN are identical, e.g., the width of the 

convolutional layer is 1. The only difference is the kernel size 

for fitting with input data. For input data, the 4D CNN 

algorithm uses a 4D topo-image of size 32×32×20×13 (x-axis 

and y-axis of the topo-image, timeframes and frequency bins). 

3D CNN and LSTM takes data of size 32 × 13 × 20 (EEG 

channels, timeframes and frequency bins). CNN, ANN and 

SVR takes in 2D images of size 32×20 (EEG channels and 

frequency). 

In the experiments, leave-one-subject-out cross validation 

was used. Seventy sections (4200 epochs) were taken as the 

training set, 10% of the training set was used as the validation 

set (420 epochs), and one section was used as the testing set (60 

epochs). These steps were repeated 71 times to complete the 

cross validation (71 experimental sessions). To prevent 

overfitting, this study adopted an early stop: the training was 

terminated if there was no significant improvement in the 

validation performance for consecutive 700 iterations. 

The root mean square error (RMSE), correlation coefficient 

and the error ratio between the predicted driving performance 

and the ground truth (the observed driving performance) were 

introduced to evaluate the performance. The RMSE represented 

the standard deviation between the predicted driving 

performance and ground truth. The error ratio and correlation 

Table 2: Results of 4D CNN, 3D CNN, CNN, ANN, LSTM and SVR 

 

Model 
RMSE Error rate Correlation coefficient Number of 

trainable 

parameters Average Improvement Average Improvement Average Improvement 

ANN 0.619±0.137 8.89 % 0.316±0.047 10.40 % 0.210±0.186 31.65% 76,928 

CNN 0.599±0.149 5.91 % 0.297±0.061 4.88 % 0.217±0.171 27.47% 121,857 

LSTM 0.616±0.145 8.50 % 0.318±0.045 10.96 % 0.106±0.082 161% 373,377 

SVR 0.620±0.249 9.00 % 0.317±0.047 10.74 % 0.216±0.135 28.11% — 

3D CNN 0.586±0.136 3.82 % 0.293±0.052 3.45 % 0.247±0.187 11.98% 1,544,481 

4D CNN 0.564±0.139 — 0.283±0.066 — 0.277±0.182 — 2,830,465 

 

 
Figure 4: Performance of (a) RMSE (b) correlation coefficient among all models. Star indicates p-value is less than 0.05. 
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coefficient were used to evaluate the overall performance, 

which is calculated as follows: 

 
|𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒|

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
 

 
  4D CNN was programmed using Python 2.7 and 

TensorFlow 1.0 and was run on a cluster with 128 GB RAM, 

2400 MHz, DDR4, Intel Xeon E5-2680 v3 CPU and NVIDIA 

Quadro K2200 GPU to boost the training speed. 

III. RESULTS AND DISCUSSION 

A. Prediction Performance 

  Table 2 shows the predicted driving performance obtained 

with 4D CNN, 3D CNN, CNN, ANN, SVR and LSTM. The 

first two columns show the RMSE values and improvement 

rates. The RMSE of 4D CNN was 0.5638±0.1391, which 

corresponds to an improvement in performance of 3.82%, 

5.91%, 8.89%, 9.00% and 28.11% compared with 3D CNN, 

CNN, ANN, SVR and LSTM, respectively. The error rate of 4D 

CNN also outperformed the error rates of the other algorithms: 

the error rate of 4D CNN was 3.45% better than that of 3D CNN 

and 4.88% better than that of CNN. Similarly, 4D CNN showed 

10.4% and 10.74% improved error rates compared with those 

of the shallow algorithms ANN and SVR, respectively, and a 

10.96% improvement in the error rate compared with LSTM. 

4D CNN also showed a relatively high correlation coefficient 

among the other models. 

To evaluate whether the improvement was statistically 

significant, the RMSE and correlation coefficient were 

evaluated using a T-test, as shown in Fig. 4. A star indicates a 

p-value less than 0.05. As shown in Fig. 4(a), the RMSE 

performance of 4D CNN was significantly different compared 

with that of the other models. The same finding was obtained 

 
Figure 5: The topo-images of brain activity. (a)-(d) show the topo-images of delta band for four trails. (e)-(h) show the topo-images of theta band for four 

trails. (i)-(l) show the topo-images of alpha band for four trails. (m) A comparison of the predicted RT of 4D CNN (orange line) and the true RT (black line) 

in a single session. 
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for the correlation coefficients of the other models, with the 

exception of 3D CNN, as illustrated in Fig. 4(b). 

B. Changes in the Human Brain 

It is worth investigating whether the features learned by 4D 

CNN can effectively predict the fatigue level. Thus, we focused 

on exploring the relationships between the changes in driving 

performance and human brain dynamics. In the following 

discussion, we show the topo-images in the delta, theta and 

alpha bands under alert and drowsy conditions. 
Fig. 5(m) depicts the true driving performance (black line) 

and predicted driving performance by 4D CNN (orange line) in 

one session. To investigate the brain dynamics under good 

driving performance (shorter RTs) and bad driving performance 

(long RTs), four EEG epochs were selected for further 

discussions. Epochs 13 and 24 were selected due to the short 

real RTs. Epochs 29 and 32 listed longer real RTs. The 

predicted RTs and the real RTs for these four selected EEG 

epochs are listed in Fig. 5. Moreover, there were two EEG 

epochs (epoch 13 and epoch 29) with large errors (bad 

performance) and two trials (epoch 24 and epoch 32) with small 

predicted errors (good performance). The participant might not 

feel drowsy while responding to the car deviation in EEG epoch 

13 since there were low real RTs in the previous and following 

EEG epochs. Therefore, the participant may still be at a high 

arousal level, and the low RT was predicted based on the 

recorded EEG signals. In EEG epoch 29, a large difference 

between the real RT and predicted RT was discovered. The 

trend in real RTs was increased from epoch 24, and the 

increased trend indicates that the participant might start to feel 

drowsy. However, the participant may still handle the lane-

keeping task with accepted performance as he/she notices the 

deviation in the beginning of EEG epoch. One can have similar 

experiences in real life; for example, one can still maintain the 

car to avoid accidents despite feeling tired. In this case, low real 

RT and brain patterns with a low level of arousal should be 

recorded. In this study, the RTs were predicted based on the 

brain dynamics and the 4D CNN model. The high predicted RT 

can be imaged in this trained 4D CNN model since the recorded 

brain patterns in EEG epoch 29 might indicate that the 

participant already feels sleepy. 

Brain Dynamics 

Fig. 5(a)-(l) depict the human brain changes in the selected 

EEG epochs with long and short RTs to explore the 

relationships between brain dynamics in specific bands and 

driving performance. Fig. 5(a)-(d), (e)-(h), and (i)-(l) show the 

topo-images of the delta (1-3 Hz), theta (4-7 Hz) and alpha (8-

13 Hz) bands, respectively. The subfigures in the second and 

third rows were extracted from the EEG epoch with a small 

difference between the real RTs and predicted RTs. On the 

other hand, the subfigures in the first and fourth rows list the 

brain patterns in the EEG epochs with large differences between 

the predicted RTs and real RTs. 

According to previous studies, the brain dynamics in the 

theta and alpha bands are positively correlated with the 

attentional demands or levels of arousal [31], [38]. In particular, 

researchers have mainly focused on the changes in the frontal 

and posterior cingulate cortex (parietal and occipital lobes) 

[36]-[38]. The longer predicted RTs in epochs 32 (2.37 seconds) 

and 29 (2.65 seconds) show that the brain patterns can be linked 

to the related phenomenon at a low level of arousal. In EEG 

epochs 32 (Fig. 5(f) and (j)) and 29 (Fig. 5(h) and (j)), the higher 

posterior theta, frontal alpha, and posterior alpha can also be 

observed. On the other hand, the brain dynamics in epochs 13 

(1.56 seconds) and 24 (1.27 seconds) are associated with a high 

level of arousal due to the shorter predicted RTs. The decreased 

posterior theta and alpha activations can also be extracted 

through the proposed 4D CNN model (ref. Fig. 5(e), (i), (g) and 

(k)). In short, the proposed 4D CNN obtained a higher RT while 

there were increased theta and alpha activations in the posterior 

region. These results in Table 2 and Fig. 5 show that 4D CNN 

has better ability to extract the significant brain features for 

forecasting driving performance.  

Deep learning is a powerful tool which can be applied to 

various fields. In the current research, the EEG patterns with 

spatial (32 channels, two dimensions), frequency (1-20 Hz, one 

dimension) and temporal (13 frames, one dimension) 

information have been used. As the results are shown in Table 

2, the performance is the best but more trainable parameters are 

also required. The time cost for EEG feature processing and 

driving performance prediction is associated with capabilities 

of hardware. Previous researches indicated the normal driving 

performance (without drowsiness) was in the range of 0.6 – 1.2 

second [31], [34]-[36]. In this experiment, it takes 0.1441 ± 

0.0036 second for EEG feature processing and 0.2197 ± 0.0075 

second for driving performance prediction on the well-trained 

4DCNN model which is less than the real driving performance 

in the awake situation. There is no doubt that the processing 

time of applying 4DCNN model on driving performance 

estimation can be further improved with state-of-the-art 

technology such as cloud, fog and parallel computing. 

Moreover, the size of data set is relatively small. First, the size 

of data set is relatively small. There are totally 71 experimental 

sessions from 37 participants in the current research. The 

subjective difference is always a big problem in modelling 

biosignals and brain-computer interface, especially the real-life 

application. We will conduct large scale experiment to collect 

more physiological information in a long-term period. Second, 

more cognitive tasks can be included to simulate the real 

driving environment in which the changes of cognitive 

workload, stress or fatigue can be assessed for building more 

stable models. Finally, the 71 experimental sessions are 

collected in one VR-based driving scenario. However, the real-

world applications are the goals in near future. Therefore, some 

real-world experiments will be conducted to test the 

performance and stability as getting ethics approval from 

Institutional Review Board. 

IV. CONCLUSION 

  This study proposes a 4D CNN-based algorithm to forecast 

driver performance based on recorded EEG signals. This 4D 

CNN approach helps narrow down the position of significant 

features and preserve the signal trend for monitoring purposes. 

To demonstrate the capability of 4D CNN, three indexes 

(RMSE, error rate and correlation coefficient) were evaluated 

for comparison purposes. The RMSE of 4D CNN was improved 

compared with those of 3D CNN, CNN, ANN, SVR and LSTM 

by 3.82%, 5.91%, 8.89%, 9.00% and 8.5%, respectively. 
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Meanwhile, the error rate of 4D CNN was better than the error 

rates of 3D CNN, CNN, ANN, SVR and LSTM by 3.45%, 

4.88%, 10.4%, 10.74% and 10.96%, respectively. The analysis 

of the correlation coefficients showed the competitive 

performance of 4D CNN compared with the other models. The 

P-values of the RMSE and correlation coefficient demonstrated 

the significant improvement of the application of 4DCNN over 

the other methods. The relationships between the changes in 

driving performance and human brain dynamics were also 

explored through the characteristics of the CNN. These results 

indicate that 4D CNN can extract essential features from high-

dimensional EEG data to accurately forecast the fatigue level. 

Based on the final performance and these significant features, 

we envision that deep learning might open a new branch 

between translation neuroscience and real-world applications, 

but the current research is far from real-life application. In 

further research, we will leverage the pretrained model and 

image processing technologies to build a closed-loop system for 

monitoring the fatigue level and detecting the onset of lane 

deviation, respectively. This new research might benefit real-

world applications (e.g., autonomous driving) in the near future. 
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