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Abstract—The representation theorem for interval type-2 fuzzy
sets (IT2 FSs), proposed by Mendel and John, states that an IT2
FS is a combination of all its embedded type-1 (T1) FSs, which can
be nonconvex and/or subnormal. These nonconvex and/or subnor-
mal embedded T1 FSs are included in developing many theoretical
results for IT2 FSs, including uncertainty measures, the linguistic
weighted averages (LWAs), the ordered LWAs (OLWAs), the lin-
guistic weighted power means (LWPMs), etc. However, convex and
normal T1 FSs are used in most fuzzy logic applications, particu-
larly computing with words. In this paper, we propose a constrained
representation theorem (CRT) for well-shaped IT2 FSs using only
its convex and normal embedded T1 FSs, and show that IT2 FSs
generated from three word encoding approaches and four com-
puting with words engines (LWAs, OLWAs, LWPMs, and percep-
tual reasoning) are all well-shaped IT2 FSs. We also compute five
constrained uncertainty measures (centroid, cardinality, fuzziness,
variance, and skewness) for well-shaped IT2 FSs using the CRT.
The CRT and the associated constrained uncertainty measures can
be useful in computing with words, IT2 fuzzy logic system design
using the principles of uncertainty, and measuring the similarity
between two well-shaped IT2 FSs.

Index Terms—Convex fuzzy sets, interval type-2 fuzzy sets (IT2
FSs), normal fuzzy sets, representation theorem (RT), uncertainty
measures.

I. INTRODUCTION

TYPE-2 fuzzy sets (T2 FSs) and systems [21], [48] have
attracted wide-spread research interest in the last 15 years
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Fig. 1. Number of Google Scholar items on type-2 fuzzy logic.

and have been successfully applied to many problems [5], [7],
[8], [24], [31], [46], as evidenced in Fig. 1, which shows the num-
ber of publications per year, when searched in Google Scholar
using the exact phrase “type 2 fuzzy” excluding citations and
patents.1 Observe that the trend is almost exponential.

Interval type-2 (IT2) FSs are to date the most widely used
kind of T2 FSs. An IT2 FS Ã is described as [21]

Ã =
∫

x∈X

∫
u∈Jx

1/(x, u) =
∫

x∈X

[∫
u∈Jx

1/u

]/
x (1)

where x is the primary variable, Jx , an interval in [0, 1], is
the primary membership of x, u is the secondary variable, and∫

u∈Jx
1/u is the secondary membership function (MF) at x.

Uncertainty about Ã is conveyed by the union of all of the
primary memberships, called the footprint of uncertainty of Ã
[FOU(Ã)], i.e.,

FOU(Ã) =
⋃

x∈X

Jx. (2)

An IT2 FS is shown in Fig. 2. The FOU is shown as the
shaded region. It is bounded by an upper MF (UMF) Ā and a
lower MF (LMF) A, both of which are T1 FSs; consequently,
the membership of each element of an IT2 FS is an interval
[uA (x), uĀ (x)].

Trapezoidal IT2 FSs, whose UMF and LMF are both trape-
zoidal (triangular MFs are special cases of trapezoidal MFs),
are frequently used in practice, especially in computing with
words [24]. Nine numbers, shown as [a, b, c, d, e, f, g, l, h] in
Fig. 2, can be conveniently used to represent such an IT2 FS.

1We did not count the number of publications about interval-valued fuzzy
sets and systems here. The numbers would be larger if we did that.
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Fig. 2. Trapezoidal IT2 FS Ã. Ae is an embedded T1 FS, which can be
nonconvex and/or subnormal.

Among them, [a, b, c, d] determines the UMF, and [e, f, g, l, h]
determines the LMF, where h is the height of the LMF.

Note that an IT2 FS can also be represented as

Ã = 1/FOU(Ã) (3)

with the understanding that this means putting a secondary mem-
bership of 1 at all points of FOU(Ã).

For a continuous universe of discourse X , an embedded T1
FS Ae is represented as

Ae =
∫

x∈X

u(x)/x. (4)

An example of Ae is shown in Fig. 2. Observe that it is not
necessarily convex and normal.

Mendel and John [22] have presented a representation the-
orem (RT) for general T2 FSs, which when specialized to IT2
FSs can be expressed as follows.

Mendel–John RT for IT2 FSs: The FOU of an IT2 FS Ã is
the union of all its embedded T1 FSs, i.e.,

FOU(Ã) =
⋃

Ae. (5)

�
The embedded T1 FSs in the Mendel–John RT could be non-

convex and/or subnormal. This RT implies that all these embed-
ded T1 FSs should be considered in deriving theoretical results
for IT2 FSs, e.g., uncertainty measures [38], [41], similarity
measures [26], [27], [43], subsethood measures [26], [43], lin-
guistic weighted averages (LWA) [24], [36], [39], ordered LWAs
(OLWA) [35], [44], linguistic weighted power means (LWPM)
[28], and so on. However, in practice, most applications of T1
FLSs use only convex and normal T1 FSs. Additionally, the
interval approach (IA) [19], enhanced IA (EIA) [45], and Hao-
Mendel approach (HMA) [9], which are three popular methods
to construct IT2 FS models for words from surveyed end-point
data, are also based on convex and normal T1 FSs, and can
only generate convex and normal IT2 FSs. So, a constrained
RT (CRT), which considers only convex and normal embedded
T1 FSs for an IT2 FS, may be more intuitive. This is our main
motivation.

More specifically, this paper makes the following contribu-
tions.

1) We propose a CRT for well-shaped IT2 FSs, i.e., the FOU
of a well-shaped IT2 FS can be completely covered by its
convex and normal embedded T1 FSs.

Fig. 3. Four T1 FSs, where A and B are convex and normal, C is nonconvex
and normal, and D is convex and subnormal.

2) We show that IT2 FSs generated from the IA, EIA, and
HMA are well-shaped IT2 FSs, and hence the CRT can
be applied to them.

3) We show that IT2 FSs output by the LWAs, OLWAs,
LWPMs, or perceptual reasoning (PR) [23], [42] are also
well-shaped IT2 FSs, and hence the CRT can be applied
to them.

4) We develop algorithms for computing five constrained un-
certainty measures (centroid, cardinality, fuzziness, vari-
ance, and skewness) for well-shaped IT2 FSs.

Although we focus on trapezoidal IT2 FSs in this paper, our
results can also be extended to Gaussian and other IT2 FSs, as
long as they are well shaped.

The rest of this paper is organized as follows: Section II
introduces the proposed CRT and explains where well-shaped
IT2 FSs come from. Section III describes how five constrained
uncertainty measures (centroid, cardinality, fuzziness, variance,
and skewness) can be computed for well-shaped IT2 FSs based
on the CRT. Section IV discusses the advantages and limitations
of the CRT. Finally, Section V draws conclusions.

II. CRT FOR WELL-SHAPED IT2 FSS BASED ON CONVEX AND

NORMAL EMBEDDED T1 FSS

In this section, we propose a CRT for well-shaped IT2
FSs based on only convex and normal embedded T1 FSs.
Well-shaped IT2 FSs are the main kind of IT2 FSs used in
many applications of IT2 FLSs, particularly computing with
words [24].

A. Definitions

The definitions of convex and normal T1 FSs and well-shaped
IT2 FSs are given first.

Definition 1: [14] A T1 FS A is convex if and only if
uA (λx1 + (1 − λ)x2) ≥ min(uA (x1), uA (x2)) for ∀ x1 , x1 ∈
X and λ ∈ [0, 1]. �

Fig. 3 shows three convex T1 FSs A, B, and D, and a non-
convex T1 FS C.

Definition 2: [24] A T1 FS A is normal if and only if
supx∈X uA (x) = 1. �

Fig. 3 shows three normal T1 FSs A, B, and C, and a sub-
normal T1 FS D.

Definition 3: An IT2 FS Ã is convex and normal if and only
if: 1) its UMF is convex and normal; and 2) its LMF is convex.

�
The IT2 FS Ã in Fig. 2 is convex and normal.
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Fig. 4. (a) Well-shaped IT2 FS, which is not necessarily trapezoidal.
(b) Trapezoidal IT2 FS, which is convex and normal, but not well shaped.

Fig. 5. Illustration of convex and normal embedded T1 FSs which pass through
(p, u(p)). (a) p < c. (b) p ≥ c.

Let [b, c] be the top base of Ā, and [f, g] be the top base of A,
as shown in Fig. 2. Then,

Definition 4: An IT2 FS Ã is well shaped if and only if: 1) it
is convex and normal; and 2) f ≥ b and g ≤ c, i.e., the top base
of the LMF is completely within the top base of the UMF. �

Ã in Figs. 2 and 4(a) are well shaped. Observe from Fig. 4(a)
that Ã does not need to be trapezoidal to be well shaped. Ã in
Fig. 4(b) is not well shaped, although it is convex and normal,
because g > c.

B. CRT for Well-Shaped IT2 FSs

In this subsection, we propose a CRT for well-shaped
IT2 FSs.

Theorem 1: (CRT for well-shaped IT2 FSs) The FOU of a
well-shaped IT2 FS is the union of all its convex and normal
embedded T1 FSs.

�
For this CRT to be correct, we need to verify that the union

of all convex and normal embedded T1 FSs can cover the entire
FOU of a well-shaped IT2 FS, as indicated by the following.

Lemma 1: The FOU of a well-shaped IT2 FS can be com-
pletely covered by its convex and normal embedded T1 FSs.

�
Proof: Consider an arbitrary point (p, u(p)) within the FOU

of a well-shaped IT2 FS, whose UMF has top base [b, c]. There
can be only two cases.

1) p < c: We can construct an embedded T1 FS Ae as shown
in Fig. 5(a), which starts from the LMF and then switches
to the UMF at x = p.

2) p ≥ c: We can construct an embedded T1 FS Ae as shown
in Fig. 5(b), which starts from the UMF and then switches
to the LMF at x = p.

In summary, for an arbitrary point within the FOU of a well-
shaped IT2 FS, we can find at least one convex and normal

embedded T1 FS which passes through it. So, the FOU of a well-
shaped IT2 FS can be completely covered by only its convex
and normal embedded T1 FSs. �

The requirement “f ≥ b and g ≤ c” in Definition 4 of a well-
shaped IT2 FS is very important, because of the following.2

Lemma 2: The FOU of a convex and normal IT2 FS cannot
be completely covered by only its convex and normal embedded
T1 FSs, if f < b and/or g > c. �

Proof: We use an example to demonstrate the case for f < b.
The case for g > c can be shown similarly.

Consider the point (p, u(p)) in Fig. 4(b), which belongs to
a convex and normal, but not well-shaped, IT2 FS. For any
normal embedded T1 FS to pass through (p, u(p)), it must have
membership 1 at at least one point on the left of x = p (because
no point on the right of x = p can have membership 1), i.e.,
at least one point on the left of x = p must have membership
larger than u(p). Because u(p) is smaller than h (the height of the
LMF), any embedded T1 FS passing through (p, u(p)) must also
have some memberships larger than u(p) on the right of x = p.
In summary, for every normal embedded T1 FS, there are points
on both sides of x = p whose memberships are larger than u(p).
So, every normal embedded T1 FS passing through (p, u(p)) is
nonconvex. In other words, (p, u(p)) cannot be covered by any
embedded T1 FS that is both convex and normal. In fact, no point
within the dark trapezoidal area in Fig. 4(b) can be covered by
any convex and normal embedded T1 FS. �
C. Where Well-Shaped IT2 FSs Come From

In this subsection, we will show that IT2 FSs constructed from
three different word encoding approaches (IA [19], EIA [45],
and HMA [9]) are well-shaped IT2 FSs, and IT2 FSs output
by the perceptual computer [24], with four different computing
with words engines (LWA [36], [39], OLWA [35], [44], LWPM
[28], and PR [23], [42]), are also well-shaped IT2 FSs.

Theorem 2: All IT2 FSs constructed from the IA are well
shaped. �

Proof: The IA [19] consists of two parts, the Data Part and
the FS Part. In the Data Part, the interval end-point data for each
word are first obtained from survey, and then they go through bad
data processing, outlier processing, tolerance limit processing,
and reasonable interval processing. In each step, some intervals
may be removed. In the FS Part, the nature of the FOU (interior,
left shoulder, or right shoulder, see Fig. 6) is first determined,
and then each of the word’s data intervals is individually mapped
into its respective T1 interior, left-shoulder or right-shoulder MF
(see Fig. 7), after which the LMF and UMF of the IT2 FS are
computed. This proof only concerns the last step, i.e., how the
LMF and UMF of the IT2 FSs in Fig. 6 are computed from the
T1 MFs in Fig. 7.

Consider first the case that the resulting IT2 FS is a left
shoulder, as shown in Fig. 6(a). Its parameters are computed
as [19]

aMF = min
i=1,...,m ∗

{
a

(i)
MF

}
(6)

2Note that this requirement was not considered in [33]. As a result, the CRT
in [33] has a flaw, which is corrected in this paper.
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Fig. 6. Examples of the union of (dashed) T1 MFs. The thick lines are
the LMFs and UMFs for the FOU. (a) Left-shoulder, (b) right-shoulder, and
(c) interior FOU.

Fig. 7. Examples of the T1 MFs mapped from interval end-points data.
(a) Left-shoulder, (b) right-shoulder, and (c) interior MF.

āMF = max
i=1,...,m ∗

{
a

(i)
MF

}
(7)

bMF = min
i=1,...,m ∗

{
b
(i)
MF

}
(8)

b̄MF = max
i=1,...,m ∗

{
b
(i)
MF

}
(9)

where a
(i)
MF and b

(i)
MF stand for aMF and bMF in Fig. 7(a) for

the ith T1 MF in the FS Part, and m∗ is the total number of T1
MFs in the FS Part. Because all m∗ such T1 MFs are normal, the
resulting left-shoulder IT2 FS is also normal. Since a

(i)
MF ≤ b

(i)
MF

∀i = 1, . . . , m∗, it follows from (6) and (8) that aMF ≤ bMF , and
from (7) and (9) that āMF ≤ b̄MF , i.e., the resulting IT2 FS is
convex. Together these mean the resulting left-shoulder IT2 FS
is convex and normal. Since the top base of the UMF is [0, āMF]
and the top base of the LMF is [0, aMF], whereas aMF ≤ āMF ,
the top base of the LMF is within the top base of the UMF. In
summary, the resulting left-shoulder IT2 FS is well shaped.

The proof for the right shoulder in Fig. 6(b) is very similar,
so it is omitted here.

Next we consider the case that the resulting IT2 FS is an
interior FOU, as shown in Fig. 6(c). In addition to aMF , āMF ,
bMF , and b̄MF in (6)–(9), its parameters cMF , c̄MF , p, and u(p)
are computed from the interior T1 MF in Fig. 7(c) as [19]

cMF = min
i=1,...,m ∗

{
c
(i)
MF

}
, c̄MF = max

i=1,...,m ∗

{
c
(i)
MF

}
(10)

Fig. 8. Examples of the FOUs generated from the HMA. (a) Left-shoulder,
(b) right-shoulder, and (c) interior FOU.

p =
bMF(c̄MF − āMF) + āMF(bMF − cMF)

(c̄MF − āMF) + (bMF − cMF)
(11)

u(p) =
bMF − p

bMF − cMF
(12)

where

c
(i)
MF =

a
(i)
MF + b

(i)
MF

2
. (13)

Because all m∗ T1 MFs are normal, the resulting interior IT2
FS is normal. Because a

(i)
MF ≤ c

(i)
MF ≤ b

(i)
MF , ∀i = 1, . . . , m∗, it

follows that āMF ≤ p ≤ bMF and aMF ≤ cMF ≤ c̄MF ≤ b̄MF ,
i.e., the resulting interior IT2 FS is also convex. Together these
mean that the resulting interior IT2 FS is convex and normal.
The LMF from the IA is always a triangle with apex (p, u(p)).
From Fig. 6(c), we can observe that this apex is the intersection
of the line connecting cMF and bMF with the line connecting
c̄MF and āMF , so cMF ≤ p ≤ c̄MF , i.e., the apex of the LMF
is within the top base of the UMF. Consequently, the resulting
interior IT2 FS is well shaped. �

Theorem 3: All IT2 FSs constructed from the EIA are well
shaped. �

This proof is very similar to the proof for Theorem 2, so it is
left to the reader.

Theorem 4: All IT2 FSs constructed from the HMA are well
shaped. �

Proof: The HMA [9] can construct an FOU from a group of
subjects and also a single subject. We only give the proof for
the first case here, as the proof for the second is very similar.

The HMA for a group of subjects also has two parts: the data
part and the FS part. Its data part is the same as that in the EIA and
similar to that in the IA, i.e., it uses bad data/outlier removal,
tolerance-limit processing, and reasonable interval processing
to clean up the intervals obtained from survey. The FS part
computes the overlap [ol , or ] of the remaining intervals, and
[ol , or ] then becomes the common top base of both the UMF and
the LMF, as shown in Fig. 8. The FS part also computes al , ar ,
bl , and br next from the remaining intervals (the details are not
important to this proof), and makes sure al ≤ ar ≤ ol ≤ or ≤
bl ≤ br . It then connects the four points (al , 0), (ol , 1), (or , 1),
and (br , 0) to form a trapezoidal normal UMF, and the four
points (ar , 0), (ol , 1), (or , 1), and (bl , 0) to form a trapezoidal
normal LMF, as shown in Fig. 8 (al = ar = ol = 0 for the left
shoulder, and bl = br = or = M for the right shoulder). Clearly,
both the UMF and the LMF are convex and normal, and hence
the IT2 FS is convex and normal. Additionally, the top base of
the LMF is always the same as the top base of the UMF, and
hence the IT2 FS is well shaped. �
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Fig. 9. LWA. (a) X̃i . (b) W̃i . (c) ỸLWA.

Theorem 5: If all input IT2 FSs are well shaped, then the IT2
FS computed from the LWA is also well shaped. �

Proof: Let X̃i , W̃i , and Ỹ be IT2 FSs shown in Fig. 9. An
LWA [36], [39] is defined as

ỸLWA =
∑n

i=1 W̃iX̃i∑n
i=1 W̃i

. (14)

It has been shown [36], [39] that the UMF ȲLWA and the LMF
Y LWA can be computed by fuzzy weighted averages

ȲLWA =
∑n

i=1 W̄iX̄i∑n
i=1 W̄i

(15)

Y LWA =
∑n

i=1 WiXi∑n
i=1 Wi

. (16)

The height of Y LWA is h, which is the minimum height of all
Xi and Wi .

ȲLWA and Y LWA are computed using α-cut decomposition
[18]. When all X̃i and W̃i are well-shaped IT2 FSs, all X̄i and
W̄i are normal; consequently, ȲLWA is also normal. Next we
need to show ȲLWA is also convex.

Consider two α-cuts α1 and α2 , where α1 < α2 . Let the
αj α-cut on X̄i be [xij,l , xij,r ], on W̄i be [wij,l , wij,r ], and
the corresponding α-cut on ȲLWA be [yj,l , yj,r ], i = 1, . . . , n,
j = 1, 2. Then, xi1,l ≤ xi2,l , xi1,r ≥ xi2,r , wi1,l ≤ wi2,l , and

wi1,r ≥ wi2,r . yj,l and yj,r are computed as [36], [39]

yj,l = min
wi ∈[wi j , l ,wi j , r ]

∑n
i=1 wixij,l∑n

i=1 wi
, j = 1, 2 (17)

yj,r = max
wi ∈[wi j , l ,wi j , r ]

∑n
i=1 wixij,r∑n

i=1 wi
, j = 1, 2. (18)

To show ȲLWA is convex, we only need to show that yj,l is
nondecreasing with the increase of αj , and yj,r is nonincreasing
with the increase of αj , i.e., y2,l ≥ y1,l and y2,r ≤ y1,r when
α1 < α2

y2,l = min
wi ∈[wi 2 , l ,w i 2 , r ]

∑n
i=1 wixi2,l∑n

i=1 wi

≥ min
wi ∈[wi 2 , l ,w i 2 , r ]

∑n
i=1 wixi1,l∑n

i=1 wi

≥ min
wi ∈[wi 1 , l ,w i 1 , r ]

∑n
i=1 wixi1,l∑n

i=1 wi
= y1,l (19)

y2,r = max
wi ∈[wi 2 , l ,w i 2 , r ]

∑n
i=1 wixi2,r∑n

i=1 wi

≤ max
wi ∈[wi 2 , l ,w i 2 , r ]

∑n
i=1 wixi1,r∑n

i=1 wi

≤ max
wi ∈[wi 1 , l ,w i 1 , r ]

∑n
i=1 wixi1,r∑n

i=1 wi
= y1,r . (20)

So, ȲLWA is convex. In a similar way, we can also show that
Y LWA is convex. Consequently, ỸLWA is convex and normal.

Let the top base of ȲLWA be [b, c], and the top base of Y LWA
be [f, g], as shown in Fig. 9(c). Next we need to show f ≥ b and
g ≤ c. From the LWA algorithm [36], [39], we have

b = min
wi ∈[b ′i ,c

′
i ]

∑n
i=1 biwi∑n
i=1 wi

, c = max
wi ∈[b ′i ,c

′
i ]

∑n
i=1 ciwi∑n
i=1 wi

f = min
wi ∈[f ′

i ,g
′
i ]

∑n
i=1 fiwi∑n
i=1 wi

, g = max
wi ∈[f ′

i ,g
′
i ]

∑n
i=1 giwi∑n
i=1 wi

.

Because fi ≥ bi , and gi ≤ ci , it follows that

f = min
wi ∈[f ′

i ,g
′
i ]

∑n
i=1 fiwi∑n
i=1 wi

≥ min
wi ∈[f ′

i ,g
′
i ]

∑n
i=1 biwi∑n
i=1 wi

≥ min
wi ∈[b ′i ,c

′
i ]

∑n
i=1 biwi∑n
i=1 wi

= c (21)

g = max
wi ∈[f ′

i ,g
′
i ]

∑n
i=1 giwi∑n
i=1 wi

≤ max
wi ∈[f ′

i ,g
′
i ]

∑n
i=1 ciwi∑n
i=1 wi

≤ max
wi ∈[b ′i ,c

′
i ]

∑n
i=1 ciwi∑n
i=1 wi

= c. (22)

So, ỸLWA is a well-shaped IT2 FS. �
Theorem 6: If all input IT2 FSs are well shaped, then the IT2

FS computed from the OLWA is also well shaped. �
The OLWA is defined as [35], [44]

ỸOLWA =
∑n

i=1 W̃iX̃σ (i)∑n
i=1 W̃i

(23)
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where σ : {1, . . . , n} → {1, . . . , n} is a permutation function
such that {X̃σ (1) , X̃σ (2) , . . . , X̃σ (n)} are in descending order.
Clearly, once ordered, the OLWA becomes an LWA, and hence
Theorem 6 is true.

Theorem 7: If all input IT2 FSs are well shaped, then the IT2
FS computed from the LWPM is also well shaped. �

Proof: The LWPM is defined as3 [28]

ỸLWPM = lim
q→q ∗

(∑n
i=1 W̃iX̃

q
i∑n

i=1 W̃i

)1/q

. (24)

Clearly, the LWA is a special case of the LWPM when q∗ = 1.
As in the LWA, the UMF and LMF of ỸLWPM are also computed
as4 [28]

ȲLWPM = lim
q→q ∗

(∑n
i=1 W̄iX̄

q
i∑n

i=1 W̄i

)1/q

(25)

Y LWPM = lim
q→q ∗

(∑n
i=1 WiX

q
i∑n

i=1 Wi

)1/q

(26)

from α-cut decomposition.
When q∗ = ∞, ỸLWPM is independent of W̃i , and it equals the

maximum X̃i . When q∗ = −∞, ỸLWPM is also independent of
W̃i , and it equals the minimum X̃i . Since all X̃i are well-shaped
IT2 FSs, ỸLWPM is also a well-shaped IT2 FS when q∗ = ±∞.

Next we consider a finite q∗. Without loss of generality, we
focus only on q∗ > 0. The case for q∗ < 0 can be shown very
similarly.

When all X̄i and W̄i are normal, ȲLWPM is normal. Next we
show that ȲLWPM is convex when q∗ > 0.

Consider two α-cuts α1 and α2 , where α1 < α2 . Let the
αj α-cut on X̄i be [xij,l , xij,r ], on W̄i be [wij,l , wij,r ], and
the corresponding α-cut on ȲLWPM be [yj,l , yj,r ], i = 1, . . . , n,
j = 1, 2. Then, xi1,l ≤ xi2,l , xi1,r ≥ xi2,r , wi1,l ≤ wi2,l , and
wi1,r ≥ wi2,r . yj,l and yj,r are computed as [28]

yj,l = min
wi ∈[wi j , l ,wi j , r ]

(∑n
i=1 wix

q ∗
ij,l∑n

i=1 wi

)1/q ∗

, j = 1, 2 (27)

yj,r = max
wi ∈[wi j , l ,wi j , r ]

(∑n
i=1 wix

q ∗
ij,r∑n

i=1 wi

)1/q ∗

, j = 1, 2. (28)

To show that ȲLWA is convex, we only need to show that yj,l is
nondecreasing with the increase of αj , and yj,r is nonincreasing
with the increase of αj , i.e., y2,l ≥ y1,l and y2,r ≤ y1,r when
α1 < α2 .

Because both zq ∗
and z1/q ∗

increase with z when q∗ > 0, we
have

y2,l = min
wi ∈[wi 2 , l ,w i 2 , r ]

(∑n
i=1 wix

q ∗
i2,l∑n

i=1 wi

)1/q ∗

3[28] used q → r; however, r has been used in this paper to denote right; to
avoid confusion, we use q → q∗ in this paper.

4[28] states that In the IT2 case, this computation (weighted power mean
interval computation) is applied to both the upper and lower bounding functions
for the scores and weights to determine the corresponding upper and lower
bounding functions of the global score.

Fig. 10. ỸLWPM in the LWPM. X̃i and W̃i are shown in Fig. 9(a) and (b),
respectively.

≥ min
wi ∈[wi 2 , l ,w i 2 , r ]

(∑n
i=1 wix

q ∗
i1,l∑n

i=1 wi

)1/q ∗

≥ min
wi ∈[wi 1 , l ,w i 1 , r ]

(∑n
i=1 wix

q ∗
i1,l∑n

i=1 wi

)1/q ∗

= y1,l (29)

y2,r = max
wi ∈[wi 2 , l ,w i 2 , r ]

(∑n
i=1 wix

q ∗
i2,r∑n

i=1 wi

)1/q ∗

≤ max
wi ∈[wi 2 , l ,w i 2 , r ]

(∑n
i=1 wix

q ∗
i1,r∑n

i=1 wi

)1/q ∗

≤ max
wi ∈[wi 1 , l ,w i 1 , r ]

(∑n
i=1 wix

q ∗
i1,r∑n

i=1 wi

)1/q ∗

= y1,r . (30)

So, ȲLWPM is convex. In a similar way, we can also show that
Y LWPM is convex. Consequently, ỸLWPM is convex and normal.

Next we need to show f ≥ b and g ≤ c in Fig. 10

b = min
wi ∈[b ′i ,c

′
i ]

(∑n
i=1 wib

q ∗
i∑n

i=1 wi

)1/q ∗

(31)

c = max
wi ∈[b ′i ,c

′
i ]

(∑n
i=1 wic

q ∗
i∑n

i=1 wi

)1/q ∗

(32)

f = min
wi ∈[f ′

i ,g
′
i ]

(∑n
i=1 wif

q ∗
i∑n

i=1 wi

)1/q ∗

(33)

g = max
wi ∈[f ′

i ,g
′
i ]

(∑n
i=1 wig

q ∗
i∑n

i=1 wi

)1/q ∗

. (34)

Because z1/q ∗
increases with z when q∗ > 0, to show that f ≥ b

and g ≤ c, we only need to show that

min
wi ∈[f ′

i ,g
′
i ]

∑n
i=1 wif

q ∗
i∑n

i=1 wi
≥ max

wi ∈[b ′i ,c
′
i ]

∑n
i=1 wib

q ∗
i∑n

i=1 wi
(35)

min
wi ∈[f ′

i ,g
′
i ]

∑n
i=1 wig

q ∗
i∑n

i=1 wi
≤ max

wi ∈[b ′i ,c
′
i ]

∑n
i=1 wic

q ∗
i∑n

i=1 wi
(36)

which can be proved similarly as (21) and (22) in the LWA. So,
ỸLWPM is a well-shaped IT2 FS. �

Theorem 8: If all input IT2 FSs are well shaped, then the IT2
FS computed from PR is also well shaped. �

Proof: There are two types of PR.
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1) Firing interval based PR [23], where

ỸFI =
∑n

i=1 X̃iFi∑n
i=1 Fi

(37)

in which Fi = [f
i
, f̄i ] is the firing interval of the ith rule.

We can view Fi as a special well-shaped IT2 FS F̃i , where

uF̄i
(f) = uF i

(f) =

{
1, f ∈ [f

i
, f̄i ]

0, otherwise.
(38)

Then, ỸFI in (37) becomes an LWA. It follows from The-
orem 4 that ỸFI is a well-shaped IT2 FS.

2) Similarity-based PR [42], where

ỸS =
∑n

i=1 X̃ifi∑n
i=1 fi

(39)

in which fi is the firing level of the ith rule computed
from the similarities. Again, we can view fi as a special
well-shaped IT2 FS F̃i where

uF̄i
(f) = uF i

(f) =

{
1, f = fi

0, otherwise.
(40)

Then, ỸS in (39) becomes an LWA. It follows from The-
orem 4 that ỸS is also a well-shaped IT2 FS. �

III. CONSTRAINED UNCERTAINTY MEASURES OF

WELL-SHAPED IT2 FSS USING THE CRT

As pointed out by Zadeh [51], uncertainty is an attribute
of information. He proposed to use the generalized theory of
uncertainty (GTU) to handle it. In GTU, uncertainty is linked
to information through the concept of granular structure – a
concept which plays a key role in human interaction with the
real world [11], [49], [50].

FSs are natural granules in GTU. However, before they can
be used in GTU, there is a need to quantify the uncertainty as-
sociated with them. Klir [15] states that once uncertainty (and
information) measures become well justified, they can very ef-
fectively be utilized for managing uncertainty and the associated
information. For example, they can be utilized for extrapolat-
ing evidence, assessing the strength of relationship between
given groups of variables, assessing the influence of given in-
put variables on given output variables, measuring the loss of
information when a system is simplified, and the like.

Centroid, cardinality, fuzziness, variance, and skewness are
all uncertainty measures for FSs. They have been extensively
studied in the literature for T1 FSs. In [38], we defined these
five uncertainty measures for arbitrary IT2 FSs based on the
Mendel–John RT, and our definitions have been extended to
general T2 FSs [53]. In this section, we define and compute
them for well-shaped IT2 FSs using the CRT.

A. Constrained Centroid of a Well-Shaped IT2 FS Using the
CRT

The centroid c(A) of a T1 FS A is defined as

c(A) =
∑N

i=1 xiuA (xi)∑N
i=1 uA (xi)

. (41)

Definition 5: [38] The (unconstrained) centroid CÃ of an
IT2 FS Ã, based on the Mendel–John RT, is the union of the
centroids of all its embedded T1 FSs Ae , i.e.,

CÃ ≡
⋃
∀Ae

c(Ae) =
[
cl(Ã), cr (Ã)

]
(42)

where

cl(Ã) = min
∀Ae

c(Ae) (43)

cr (Ã) = max
∀Ae

c(Ae). (44)

�
It has been shown [6], [12], [20], [21], [25] that cl(Ã) and

cr (Ã) can be expressed as

cl(Ã) = min
k∈[1,N −1]

∑k
i=1 xiuĀ (xi) +

∑N
i=k+1 xiuA (xi)∑k

i=1 uĀ (xi) +
∑N

i=k+1 uA (xi)

≡
∑L

i=1 xiuĀ (xi) +
∑N

i=L+1 xiuA (xi)∑L
i=1 uĀ (xi) +

∑N
i=L+1 uA (xi)

(45)

cr (Ã) = max
k∈[1,N −1]

∑k
i=1 xiuA (xi) +

∑N
i=k+1 xiuĀ (xi)∑k

i=1 uA (xi) +
∑N

i=k+1 uĀ (xi)

≡
∑R

i=1 xiuA (xi) +
∑N

i=R+1 xiuĀ (xi)∑R
i=1 uA (xi) +

∑N
i=R+1 uĀ (xi)

. (46)

Switch points L and R, as well as cl(Ã) and cr (Ã), can be com-
puted by using the iterative Karnik–Mendel (KM) algorithms
[12], [21], or many other more efficient algorithms [34].

Definition 6: The constrained centroid Cc
Ã

of a well-shaped

IT2 FS Ã, based on the CRT, is the union of the centroids of all
its convex and normal embedded T1 FSs AC N

e , i.e.,

Cc
Ã
≡
⋃

∀AC N
e

c
(
AC N

e

)
=
[
cc
l

(
Ã
)

, cc
r

(
Ã
)]

(47)

where

cc
l

(
Ã
)

= min
∀AC N

e

c
(
AC N

e

)
, cc

r

(
Ã
)

= max
∀AC N

e

c
(
AC N

e

)
.

(48)

�
Similar to the unconstrained centroid, for cc

l (Ã), we still need
a large weight for small x and a small weight for large x, i.e.,
the corresponding embedded T1 FS must switch from the UMF
to the LMF at some point. However, since this AC N

e must be
convex and normal, we have two constraints.

1) Because AC N
e must be normal, at least one point on it

must have membership 1. So, the left switch point Lc

must satisfy xLc ≥ b, where b is the left-most point on the
top base of Ā, as shown in Fig. 11(a).
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Fig. 11. (a) A′, the LMF that should be used in the KM algorithm for com-
puting cc

l (Ã). (b) A′′, the LMF that should be used in the KM algorithm for

computing cc
r (Ã).

2) Because AC N
e must be convex, if the switch point is be-

tween b and f , as shown in Fig. 11(a), then the MF of
AC N

e between b and f must be raised to h, the height of
the LMF, to ensure that it is convex.

Though these two constraints seem complex, they can be
simultaneously satisfied by smartly redefining the LMF of Ã
and then using it in the KM algorithm, as explained in the
following algorithm for computing cc

l (Ã).

The algorithm for computing cc
l (Ã), the left end point of

the constrained centroid of a well-shaped IT2 FS:
(1) define

uA ′(x) =

⎧⎨
⎩

uĀ (x), x ≤ b
h, b < x < f
uA (x), x ≥ f ;

(2) use uA ′(x) and uĀ (x) in the KM algorithm to compute

cc
l (Ã).

The motivation for defining uA ′(x) = uĀ (x) for x ≤ b is to
ensure that b is included in every embedded T1 FS, i.e., every
embedded T1 FS is normal.

Similarly, to compute cc
r (Ã), a small weight should be used

for small x and large weight for large x, i.e., the corresponding
AC N

e should still switch from the LMF to the UMF at some
point. Because AC N

e must be normal, at least one point on it
must have membership 1. So, the right switch point Rc must
satisfy xRc ≤ c, where c is the right-most point on the top base
of the UMF of Ã, as shown in Fig. 11(b). Again, by smartly
redefining the LMF of Ã, the KM algorithm can be used to
compute cc

l (Ã).

The algorithm for computing cc
r (Ã), the right end point of

the constrained centroid of a well-shaped IT2 FS:
1) define

uA ′′(x) =

⎧⎪⎨
⎪⎩

uA (x), x ≤ f

h, f < x < c

uĀ (x), x ≥ c;

2) use uA ′′(x) and uĀ (x) in the KM algorithm to compute

cc
r (Ã).

Fig. 12. Embedded T1 FSs determining, (a) cl (Ã) (red dashed curve) and
cc
l (Ã) (blue solid curve), and (b) cr (Ã) (red dashed curve) and cc

r (Ã) (blue
solid curve).

The motivation for defining u′′
Ã
(x) = uĀ (x) for x ≥ c is to

ensure that c is included in every embedded T1 FS, i.e., every
embedded T1 FS is normal.

Example 1: Consider the FOU shown in Fig. 12. The do-
main of x, [0, 6], was discretized into 1000 equally-spaced
points in the computation, i.e., N = 1000. In this example,
CÃ = [2.6733, 4.5745] and Cc

Ã
= [2.7901, 4.5604]. Observe

that Cc
Ã
⊂ CÃ , which is intuitive, because Cc

Ã
is computed

from only a subset of those embedded T1 FSs used to compute
CÃ . Also, observe from Fig. 12 that the actual embedded T1
FSs used for computing Cc

Ã
and CÃ are quite different: the em-

bedded T1 FSs for Cc
Ã

are convex and normal, but those for CÃ

can be nonconvex and/or subnormal. �

B. Constrained Cardinality of a Well-Shaped IT2 FS Using
the CRT

Definition 7: [38] The normalized cardinality of a T1 FS A
is defined as

p(A) =
|X|
N

N∑
i=1

uA (xi) (49)

where |X| = xN − x1 is the length of the universe of discourse
used in the computation. �

Definition 8: [38] The (unconstrained) cardinality of an IT2
FS Ã, based on the Mendel–John RT, is the union of normalized
cardinalities of all its embedded T1 FSs Ae , i.e.,

PÃ ≡
⋃
∀Ae

p(Ae) =
[
pl

(
Ã
)

, pr

(
Ã
)]

(50)

where

pl

(
Ã
)

= min
∀Ae

p(Ae), pr

(
Ã
)

= max
∀Ae

p(Ae). (51)

�
In [38] we have shown that pl(Ã) and pr (Ã) can be

computed as

pl(Ã) = p(A) (52)

pr (Ã) = p(Ā). (53)

Definition 9: The constrained cardinality of a well-shaped
IT2 FS Ã, based on the CRT, is the union of normal-
ized cardinalities of all its convex and normal embedded
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Fig. 13. Embedded T1 FSs determining, (a) pl (Ã) (red dashed curve) and
pc

l (Ã) (blue solid curve), and (b) pr (Ã) (red dashed curve) and pc
r (Ã) (blue

solid curve).

T1 FSs AC N
e , i.e.,

Pc
Ã
≡
⋃

∀AC N
e

p
(
AC N

e

)
=
[
pc

l

(
Ã
)

, pc
r

(
Ã
)]

(54)

where

pc
l

(
Ã
)

= min
∀AC N

e

p
(
AC N

e

)
(55)

pc
r

(
Ã
)

= max
∀AC N

e

p
(
AC N

e

)
. (56)

�
Observe that Ā in (53) is already convex and normal; so,

pc
r (Ã) = pr (Ã) = p(Ā). However, A in (52) is generally not

normal. So, generally pc
l (Ã) �= pl(Ã).

Theorem 9: pc
l (Ã) in (55) is the cardinality of a minimally

modified convex and normal embedded T1 FS from A, by bring-
ing any single point on its top base to membership 1 and keeping
all other points untouched. �

Proof: As shown in [38], the LMF A of a well-shaped IT2
FS Ã [an example is shown in Fig. 13(a)] has the smallest
cardinality among all the embedded T1 FSs. It is convex, but
generally subnormal. We need to bring at least one point on
A to membership 1 to make it normal. At the same time, we
need to make sure this modification introduces the smallest
increase to the cardinality of A. Clearly, this can be achieved
by bringing any single point on its top base to membership 1
and keeping all other points untouched, because the points on
the top base are the closest to membership 1. �

Consequently, the following procedure can be used to com-
pute Pc

Ã
.

The algorithm for computing Pc
Ã

=
[
pc

l (Ã), pc
r (Ã)

]
, the

constrained cardinality of a well-shaped IT2 FS:
1) pc

l (Ã) = p(A) + |X |
N (1 − h), where h is the height of

the LMF;
2) pc

r (Ã) = p(Ā), which equals the cardinality of the
UMF.

Note that when computing pc
l (Ã) in the continuous space,

the modification to A may not be reflected numerically, as
lim

N →∞
|X |
N (1 − h) = 0. However, theoretically there should be

a “spike” at the top of A in computing pc
l (Ã).

Fig. 14. A (solid lines) is more fuzzy than B (dashed lines).

Example 2: For the IT2 FS Ã shown in Fig. 13, which is the
same as the one shown in Fig. 12, PÃ = [0.7992, 3.9960] and
Pc

Ã
= [0.8004, 3.9960]. Observe that Pc

Ã
⊂ PÃ . �

C. Constrained Fuzziness (Entropy) of a Well-Shaped IT2 FS
Using the CRT

The fuzziness (entropy) of a T1 FS is used to quantify the
amount of vagueness in it. A T1 FS C is most fuzzy when all its
memberships equal 0.5. A T1 FS A is more fuzzy than a T1 FS
B if A is nearer to such a C than B is. For example, in Fig. 14 A
is more fuzzy than B because the memberships of A are closer
to u = 0.5.

Different fuzziness measures have been proposed [13] for
T1 FSs. In this paper, we use the following general fuzziness
measure [16].

Definition 10: [16] A general fuzziness measure of a T1 FS
A, f(A), is defined as

f(A) = h

(
N∑

i=1

g(uA (xi))

)
(57)

where h is a monotonically increasing function from R+ to R+ ,
and, g : [0, 1] → R+ is a function associated with each xi . Ad-
ditionally, 1) g(0) = g(1) = 0; 2) g(0.5) is a unique maximum
of g; and 2) g must be monotonically increasing on [0, 0.5] and
monotonically decreasing on [0.5, 1]. �

Theoretically, f(A) can be any T1 fuzziness definition satis-
fying the requirements in Definition 10; however, we prefer a
normalized version such as Yager’s definition [47]

f
Y
(A) = 1 −

[∑N
i=1 |2uA (xi) − 1)|β

] 1
β

N
1
β

(58)

where β is a positive constant, because it converges as N
increases.

Several researchers have proposed definitions of the fuzziness
for IT2 FSs [2], [4], [30], [32], [38], [52]. The most popular one
is Wu and Mendel’s interval fuzziness definition.

Definition 11: [38] The (unconstrained) fuzziness FÃ of an
IT2 FS Ã, based on the Mendel–John RT, is the union of the
fuzziness of all its embedded T1 FSs Ae , i.e.,

FÃ ≡
⋃
∀Ae

f(Ae) =
[
fl

(
Ã
)

, fr

(
Ã
)]

(59)
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where fl(Ã) and fr (Ã) are the minimum and maximum of the
fuzziness of all Ae , respectively, i.e.,

fl

(
Ã
)

= min
∀Ae

f(Ae) (60)

fr

(
Ã
)

= max
∀Ae

f(Ae) (61)

and f(Ae) satisfies Definition 3. �
The unconstrained fuzziness of an IT2 FS is computed by the

following theorem.
Theorem 10: [38] Let Ae1 be defined as

uAe 1 (x) =

{
uĀ (x), |uĀ (x) − 0.5| > |uA (x) − 0.5|
uA (x), |uĀ (x) − 0.5| ≤ |uA (x) − 0.5| (62)

and Ae2 be defined as

uAe 2 (x) =

⎧⎪⎨
⎪⎩

uĀ (x), uĀ (x) < 0.5, uA (x) < 0.5

uA (x), uĀ (x) > 0.5, uA (x) > 0.5

0.5, otherwise.

(63)

Then (60) and (61) can be computed as

fl

(
Ã
)

= f(Ae1) (64)

fr

(
Ã
)

= f(Ae2) (65)

where f(A) is defined in (57). �
In this paper, we define the constrained fuzziness of a well-

shaped IT2 FS as follows.
Definition 12: The constrained fuzziness Fc

Ã
of a well-

shaped IT2 FS Ã, based on the CRT, is the union of the fuzziness
of all its convex and normal embedded T1 FSs AC N

e , i.e.,

Fc
Ã
≡
⋃

∀AC N
e

f(AC N
e ) =

[
fc

l

(
Ã
)

, f c
r

(
Ã
)]

, (66)

where

fc
l (Ã) = min

∀AC N
e

f(AC N
e ) (67)

fc
r (Ã) = max

∀AC N
e

f(AC N
e ). (68)

�
The following two theorems show how the constrained fuzzi-

ness of a well-shaped IT2 FS can be computed.
Theorem 11: fc

l (Ã) in (67) is the same as fl(Ã) in (64). �
Proof: fl(Ã) in (64) is the smallest fuzziness of all possible

embedded T1 FSs, no matter convex or not, or normal or not. We
only need to show that the corresponding Ae1 in (62) is convex
and normal. Then it follows that fc

l (Ã) = fl(Ã) = f(Ae1).
Let x′ be the solution that

uĀ (x′) − 0.5 = 0.5 − uA (x′) (69)

i.e., uĀ (x′) and uA (x′) are at the same distance to membership
0.5. (69) is equivalent to

uA (x′) + uĀ (x′) = 1. (70)

Generally the solution of x′ consists of two intervals, [x′
l,1 , x

′
l,2 ]

and [x′
r,1 , x

′
r,2 ]. [x′

r,1 , x
′
r,2 ] ⊆ [g, d] in Fig. 15, because

Fig. 15. Illustration of Ae1 (the red dashed curve).

Fig. 16. Illustration of Ae2 (red dashed curve) for different heights of the
LMF.

uA (g) + uĀ (g) > 1, uA (d) + uĀ (d) = 0, and uA (x) + uĀ (x)
is nonincreasing in [g, d] according to the definition of a well-
shaped IT2 FS. Similarly, we can show [x′

l,1 , x
′
l,2 ] ⊆ [a, f ], and

Fig. 15 shows a special case that x′
l,1 = x′

l,2 = x′
l .

Then according to (62), Ae1 is the red dashed curve in Fig. 15,
i.e., it first stays on the LMF, then switches to the UMF at x =
x′

l,2 , and then switches back to the LMF at x = x′
r,1 . Clearly,

Ae1 is convex and normal. This completes the proof. �
Theorem 12: fc

r (Ã) in (68) is the fuzziness of a minimally
modified convex and normal embedded T1 FS from Ae2 in (63),
by bringing any single point on its top base to membership 1
and keeping all other points untouched. �

Proof: Ae2 defined in (63) of a well-shaped IT2 FS Ã has the
largest fuzziness. It is convex, but generally subnormal, as shown
in Fig. 16. We need to bring one point on Ae2 to membership
1 to make it normal, but at the same time, keep it convex and
minimize the reduction to its fuzziness.

Consider x = p ∈ [f, g], as shown in Fig. 16. Then, according
to the definition of a well-shaped IT2 FS, uĀ (p) = 1. If uA (x) ≤
0.5, as shown in Fig. 16(a), then according to the definition of
Ae2 in (63), uAe 2 (p) = 0.5, i.e., every point on the top base
of Ae2 has membership 0.5. We can bring any such point to
membership 1 to make the modified Ae2 normal and convex.
At the same time, because the points on the top base of Ae2 are
closest to membership 1, this introduces the minimum decrease
to its fuzziness. Note that we cannot choose a point not on the
top base because then the modified Ae2 is nonconvex.

On the other hand, if uA (x) > 0.5, as shown in Fig. 16(b),
then according to the definition of Ae2 in (63), uAe 2 (p) =
uA (p). Again, we can bring (p, uAe 2 (p)) to membership
1 to make the modified Ae2 normal and convex. Because
(p, uAe 2 (p)) is the closest point on Ae2 to membership 1, this
introduces the minimum decrease to its fuzziness. �

In summary, the following procedure can be used to compute
the constrained fuzziness of a well-shaped IT2 FS.
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Fig. 17. Embedded T1 FSs determining, (a) fl (Ã) (red dashed curve) and
f c

l (Ã) (blue solid curve), and (b) fr (Ã) (red dashed curve) and f c
r (Ã) (blue

solid curve).

Fig. 18. Illustration of the variance of T1 FSs.

The algorithm for computing Fc
Ã

=
[
fc

l (Ã), f c
r (Ã)

]
, the

constrained fuzziness of a well-shaped IT2 FS:
1) fc

l (Ã) = fl(Ã) = f(Ae1), where Ae1 is defined in
(62);

2) fc
r (Ã) = f(Ae3), where Ae3 = Ae2 in (63), except

that a single x ∈ [f, g] on Ae2 is modified to have
membership 1.

Note that when computing fc
r (Ã) in the continuous space,

the modification to Ae2 may not be reflected numerically, as
the integral on the “spike” is zero. However, theoretically there
should be a “spike” at the top of Ae2 in computing fc

r (Ã).
Example 3: Consider the IT2 FS Ã in Fig. 17 , which is the

same as the IT2 FS shown in Fig. 12. According to (62) and (63),
Ae1 and Ae2 are as shown in Fig. 17(a) and (b), respectively, as
the red dashed curve. When Yager’s definition is used and β =
1, FÃ = [0.0303, 0.7763], and Fc

Ã
= [0.0303, 0.7759]. Observe

that Fc
Ã
⊂ FÃ . �

D. Variance of an IT2 FS

The variance of a T1 FS A measures its compactness, i.e., a
smaller (larger) variance means A is more (less) compact. For
example, in Fig. 18, A has smaller variance than B because it is
more compact.

There are different definitions of the variance of a T1 FS [3],
[17]. In this paper, we use the following relative variance of Ae

to Ã [38].
Definition 13: [38] The relative variance of an embedded

T1 FS Ae to an IT2 FS Ã, vÃ (Ae), is defined as

vÃ (Ae) =

∑N
i=1

[
xi − c

(
Ã
)]2

μAe
(xi)∑N

i=1 μAe
(xi)

(71)

where

c
(
Ã
)

=
cl

(
Ã
)

+ cr

(
Ã
)

2
(72)

is the center of the centroid of Ã, CÃ , that is given in (42). �
Definition 14: [38] The variance of an IT2 FS Ã, VÃ , is the

union of relative variance of all its embedded T1 FSs Ae , i.e.,

VÃ ≡
⋃
∀Ae

vÃ (Ae) =
[
vl

(
Ã
)

, vr

(
Ã
)]

(73)

where vl(Ã) and vr (Ã) are the minimum and maximum relative
variance of all Ae , respectively, i.e.,

vl

(
Ã
)

= min
∀Ae

vÃ (Ae) (74)

vr

(
Ã
)

= max
∀Ae

vÃ (Ae). (75)

�
The iterative KM Algorithms can be used to compute vl(Ã)

and vr (Ã) [38].
In this paper, we define the constrained variance of a well-

shaped IT2 FS as follows.
Definition 15: The constrained variance V c

Ã
of a well-

shaped IT2 FS Ã, based on the CRT, is the union of the relative
variance of all its convex and normal embedded T1 FSs AC N

e ,
i.e.,

V c
Ã
≡

⋃
∀AC N

e

vÃ

(
AC N

e

)
=
[
vc

l

(
Ã
)

, vc
r

(
Ã
)]

(76)

where

vc
l

(
Ã
)

= min
∀AC N

e

vÃ

(
AC N

e

)
(77)

vc
r

(
Ã
)

= max
∀AC N

e

vÃ

(
AC N

e

)
. (78)

�
The computation of the constrained variance is much more

complicated that the constrained centroid/cardinality/fuzziness,
and we do not have a closed-form solution for it. So, the follow-
ing algorithm is used to compute vc

l (Ã) and vc
r (Ã), by minimally

modifying the corresponding Ae in computing vl(Ã) and vr (Ã).

The algorithm for computing V c
Ã

=
[
vc

l (Ã), vc
r (Ã)

]
, the

constrained variance of a well-shaped IT2 FS.
1) For vc

l (Ã):
a) use the KM algorithm to compute vl(Ã), and

identify the corresponding Ae ;
b) if Ae is not already normal, then minimally mod-

ify it to make it normal;
c) if Ae is not already convex, then minimally mod-

ify it to make it convex.
2) For vc

r (Ã):
a) use the KM algorithm to compute vr (Ã), and

identify the corresponding Ae ;
b) if Ae is not already normal, then minimally mod-

ify it to make it normal;
c) if Ae is not already convex, then minimally mod-

ify it to make it convex.

To minimally modify a subnormal Ae to make it normal, we
pick a point on Ae that is also on Ā and is closest to either
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Fig. 19. Procedure to compute vc
l (Ã). (a) Ae for computing vl (Ã). (b) Min-

imal modification to make Ae normal. (c) Minimal modification to make Ae

convex.

Fig. 20. Procedure to compute vc
r (Ã). (a) Ae for computing vr (Ã).

(b) Minimal modification to make Ae normal. (c) Minimal modification to
make Ae convex.

Fig. 21. Embedded T1 FSs determining, (a) vl (Ã) (red dashed curve) and
vc

l (Ã) (blue solid curve), and (b) vr (Ã) (red dashed curve) and vc
r (Ã) (blue

solid curve).

(b, 1) or (c, 1) on the top base of Ā (for example, the blue point
in Fig. 19(a) for vc

l (Ã), and the blue point in Fig. 20(a) for
vc

r (Ã)), and then bring it to (b, 1) or (c, 1), whichever is closer
(for example, Fig. 19(b) for vc

l (Ã), and Fig. 20(b) for vc
r (Ã)).

To minimally modify a nonconvex Ae to make it convex, we
first compute

h1 = max
x ′<x

u(x′), h2 = max
x ′>x

u(x′) (79)

and then change u(x) to min(h1 , h2) if u(x) < h1 and u(x) <
h2 . Usually most u(x) will remain unchanged, as shown in
Fig. 19(c) for vc

l (Ã) and Fig. 20(c) for vc
r (Ã).

Example 4: Consider the IT2 FS Ã in Fig. 21, which
is the same as the IT2 FS shown in Fig. 12. We have
VÃ = [0.3301, 2.3215] and V c

Ã
= [0.3301, 2.0031]. Observe

that V c
Ã
⊂ VÃ . �

E. Skewness of an IT2 FS

The skewness of a T1 FS A, s(A), is an indicator of its
symmetry. For example in Fig. 22, A has skewness smaller than
zero because it skews to the right, B has skewness larger than
zero because it skews to the left, and C has skewness zero
because it is symmetrical.

There are different definitions of skewness for T1 FSs [1],
[29], [37]. In this paper, we use the following relative skewness
of Ae to Ã [38].

Fig. 22. Illustration of the skewness of T1 FSs.

Definition 16: The relative skewness of an embedded T1 FS
Ae to an IT2 FS Ã, sÃ (Ae), is defined as

sÃ (Ae) =

∑N
i=1

[
xi − c

(
Ã
)]3

μAe
(xi)∑N

i=1 μAe
(xi)

(80)

where c(Ã) is the center of the centroid of Ã [see (72)]. �
Definition 17: The skewness of an IT2 FS Ã, SÃ , is the union

of the relative skewness of all its embedded T1 FSs Ae , i.e.,

SÃ ≡
⋃
∀Ae

sÃ (Ae) =
[
sl

(
Ã
)

, sr

(
Ã
)]

(81)

where sl(Ã) and sr (Ã) are the minimum and maximum relative
skewness of all Ae , respectively, i.e.,

sl

(
Ã
)

= min
∀Ae

sÃ (Ae) (82)

sr

(
Ã
)

= max
∀Ae

sÃ (Ae). (83)

�
The iterative KM Algorithms can also be used to compute

sl(Ã) and sr (Ã) [38].
The computation of the constrained skewness is

also much more complicated that the constrained cen-
troid/cardinality/fuzziness, and we do not have a closed-form
solution for it. So, the following algorithm is used to compute
sc

l (Ã) and sc
r (Ã), by minimally modifying the corresponding

Ae in computing sl(Ã) and sr (Ã).

The algorithm for computing Sc
Ã

=
[
sc

l (Ã), sc
r (Ã)

]
, the

constrained variance of a well-shaped IT2 FS.
1) For sc

l (Ã):
a) use the KM algorithm to compute sl(Ã), and

identify the corresponding Ae ;
b) if Ae is not already normal, then minimally mod-

ify it to make it normal;
c) if Ae is not already convex, then minimally mod-

ify it to make it convex.
2) For sc

r (Ã):
a) use the KM algorithm to compute sr (Ã), and

identify the corresponding Ae ;
b) if Ae is not already normal, then minimally mod-

ify it to make it normal;
c) if Ae is not already convex, then minimally mod-

ify it to make it convex.
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Fig. 23. Procedure to compute sc
l (Ã). (a) Ae for computing sl (Ã). (b) Min-

imal modification to make Ae normal. (c) Minimal modification to make Ae

convex.

Fig. 24. Procedure to compute sc
r (Ã). (a) Ae for computing sr (Ã).

(b) Minimal modification to make Ae normal. (c) Minimal modification to
make Ae convex.

Fig. 25. Embedded T1 FSs determining, (a) sl (Ã) (red dashed curve) and
sc
l (Ã) (blue solid curve), and (b) sr (Ã) (red dashed curve) and sc

r (Ã) (blue
solid curve).

Fig. 26. Completely filled-in Ã and B̃ , and the corresponding embedded T1
FSs used by the CRT to compute their centroids.

The procedures for minimally modifying a subnormal Ae to
make it normal, and for minimally modifying a nonconvex Ae to
make it convex, are the same as those in the previous subsection.
Illustrative examples for sc

l (Ã) and sc
r (Ã) are shown in Figs. 23

and 24, respectively.
Example 5: Consider the IT2 FS Ã in Fig. 25 , which is

the same as the IT2 FS shown in Fig. 12. We have SÃ =
[−4.1481, 2.0321] and Sc

Ã
= [−3.1735, 1.9299]. Observe that

Sc
Ã
⊂ SÃ . �

IV. ADVANTAGES AND LIMITATIONS OF THE CRT

The Mendel–John RT [22] has been widely used to compute
the centroid of IT2 FSs. However, its output may be counter
intuitive for completely filled-in FOUs, as shown in Fig. 26.

Fig. 27. Homotopic embedded T1 FS of Ã.

When the Mendel–John RT is used, CÃ = [a, d] = CB̃ , which
is counter intuitive. In contrast, the CRT gives Cc

Ã
= [cl , cr ] ⊂

[a, d], where cl is the centroid of the red dashed T1 FS in Fig. 26,
and cr is the centroid of the red dotted T1 FS. Similarly, the CRT
gives Cc

B̃
= [c′l , c

′
r ] ⊂ [a, d], where c′l is the centroid of the blue

dashed T1 FS in Fig. 26, and c′r is the centroid of the blue dotted
T1 FS. We have Cc

B̃
⊂ Cc

Ã
, which is more reasonable than the

Mendel–John RT result.
The FOU of an IT2 FS may also be completely covered by

homotopic embedded T1 FSs of the LMF and the UMF, i.e.,
Aλ

e = λĀ + (1 − λ)A, α ∈ [0, 1]. However, when both Ā and
A are symmetric about x = p, as shown in Fig. 27, Aλ

e is always
symmetric about x = p regardless of λ. So, the centroid of Aλ

e

is always p, and the centroid of Ã becomes a single number p,
which is counter intuitive. Additionally, most Ae are subnormal.
The CRT does not have these problems.

Finally, we need to point out a limitation of the CRT. In a
Mamdani IT2 fuzzy logic system [21] that combines the fired
rules by using the union, the resulting FOU will be subnormal
and nonconvex, so the CRT cannot be applied. In contrast, the
Mendel–John RT can accommodate this. Nevertheless, we sug-
gest that the main applications of the CRT should be computing
with words [24], as we have shown in Section II-C that IT2
FSs constructed from three different word encoding approaches
(IA, EIA, and HMA) are well shaped, and IT2 FSs output by
the perceptual computer with four different computing with
words engines (LWAs, OLWAs, LWPMs, and PR), are also well
shaped.

V. CONCLUSION

The Mendel–John RT has been widely used in developing
many theoretical results for IT2 FSs, including uncertainty mea-
sures, similarity measures, subsethood measures, LWAs, OL-
WAs, LWPMs, and so on. Nonconvex and/or subnormal em-
bedded T1 FSs are included in such RT, whereas in practice, we
almost always use only convex and normal FSs. In this paper, we
have proposed a CRT for well-shaped IT2 FSs, and shown that
IT2 FSs generated by three different word encoding approaches
(IA, EIA, and HMA) and four different computing with words
engines (LWA, OLWA, LWPM, and PR) are all well-shaped
IT2 FSs. We have also proposed algorithms for computing the
constrained centroid, cardinality, fuzziness, variance and skew-
ness of well-shaped IT2 FSs based on the CRT. These measures
can be used to extend the principles of uncertainty [10], [14]
from T1 FSs to IT2 FSs, and to compute the similarity of two
well-shaped IT2 FSs [40].
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Our future research will compare the constrained uncertainty
measures with the unconstrained ones in such applications and
investigate which category is more favorable. Additionally, we
will extend the CRT from IT2 FSs to general T2 FSs.
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