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A Constrained Representation Theorem for
Well-Shaped Interval Type-2 Fuzzy Sets, and the
Corresponding Constrained Uncertainty Measures

Dongrui Wu
and Jian Huang

Abstract—The representation theorem for interval type-2 fuzzy
sets (IT2 FSs), proposed by Mendel and John, states that an 1T2
FS is a combination of all its embedded type-1 (T1) FSs, which can
be nonconvex and/or subnormal. These nonconvex and/or subnor-
mal embedded T1 FSs are included in developing many theoretical
results for IT2 FSs, including uncertainty measures, the linguistic
weighted averages (LWAs), the ordered LWAs (OLWAs), the lin-
guistic weighted power means (LWPMs), etc. However, convex and
normal T1 FSs are used in most fuzzy logic applications, particu-
larly computing with words. In this paper, we propose a constrained
representation theorem (CRT) for well-shaped IT2 FSs using only
its convex and normal embedded T1 FSs, and show that IT2 FSs
generated from three word encoding approaches and four com-
puting with words engines (LWAs, OLWAs, LWPMs, and percep-
tual reasoning) are all well-shaped IT2 FSs. We also compute five
constrained uncertainty measures (centroid, cardinality, fuzziness,
variance, and skewness) for well-shaped IT2 FSs using the CRT.
The CRT and the associated constrained uncertainty measures can
be useful in computing with words, IT2 fuzzy logic system design
using the principles of uncertainty, and measuring the similarity
between two well-shaped IT2 FSs.

Index Terms—Convex fuzzy sets, interval type-2 fuzzy sets (IT2
FSs), normal fuzzy sets, representation theorem (RT), uncertainty
measures.

1. INTRODUCTION

YPE-2 fuzzy sets (T2 FSs) and systems [21], [48] have
I attracted wide-spread research interest in the last 15 years
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Fig. 1. Number of Google Scholar items on type-2 fuzzy logic.

and have been successfully applied to many problems [5], [7],
[8],[24], [31], [46], as evidenced in Fig. 1, which shows the num-
ber of publications per year, when searched in Google Scholar
using the exact phrase “type 2 fuzzy” excluding citations and
patents.! Observe that the trend is almost exponential.

Interval type-2 (IT2) FSs are to date the most widely used
kind of T2 FSs. An IT2 FS A is described as [21]

A= [ Lo e = [/ o

where x is the primary variable, J,, an interval in [0, 1], is
the primary membership of x, u is the secondary variable, and
fu ey 1 /u is the secondary membership function (MF) at .

Uncertainty about A is conveyed by the union of all of the
primary memberships, called the footprint of uncertainty of A
[FOU(A)], i.e.,

FOU(A) = | J /.. )
reX

An IT2 ES is shown in Fig. 2. The FOU is shown as the
shaded region. It is bounded by an upper MF (UMF) A and a
lower MF (LMF) A, both of which are T1 FSs; consequently,
the membership of each element of an IT2 FS is an interval
fua (@), ug (@),

Trapezoidal IT2 FSs, whose UMF and LMF are both trape-
zoidal (triangular MFs are special cases of trapezoidal MFs),
are frequently used in practice, especially in computing with
words [24]. Nine numbers, shown as [a, b, ¢, d, e, f, g,1, h] in
Fig. 2, can be conveniently used to represent such an IT2 FS.

'We did not count the number of publications about interval-valued fuzzy
sets and systems here. The numbers would be larger if we did that.

1063-6706 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0002-7153-9703
https://orcid.org/0000-0002-8819-8829
https://orcid.org/0000-0002-6267-8824
mailto:drwu09@gmail.com
mailto:zht@mail.hust.edu.cn
mailto:huang_jan@mail.hust.edu.cn

1238

Fig. 2. Trapezoidal IT2 FS A. A, is an embedded T1 FS, which can be
nonconvex and/or subnormal.

Among them, [a, b, ¢, d] determines the UMF, and e, f, g,1, h]
determines the LMF, where h is the height of the LMF.
Note that an IT2 FS can also be represented as

A =1/FOU(A) 3)

with the understanding that this means putting a secondary mem-
bership of 1 at all points of FOU(A).
For a continuous universe of discourse X, an embedded T1

FS A, is represented as

4= / @)/ @

An example of A, is shown in Fig. 2. Observe that it is not
necessarily convex and normal.

Mendel and John [22] have presented a representation the-
orem (RT) for general T2 FSs, which when specialized to IT2
FSs can be expressed as follows.

Mendel-John RT for IT2 FSs: The FOU of an IT2 FS A is
the union of all its embedded T1 FSs, i.e.,

FOU(4) = | JA.. 5)

]
The embedded T1 FSs in the Mendel-John RT could be non-
convex and/or subnormal. This RT implies that all these embed-
ded T1 FSs should be considered in deriving theoretical results
for IT2 FSs, e.g., uncertainty measures [38], [41], similarity
measures [26], [27], [43], subsethood measures [26], [43], lin-
guistic weighted averages (LWA) [24], [36], [39], ordered LWAS
(OLWA) [35], [44], linguistic weighted power means (LWPM)
[28], and so on. However, in practice, most applications of T1
FLSs use only convex and normal T1 FSs. Additionally, the
interval approach (IA) [19], enhanced IA (EIA) [45], and Hao-
Mendel approach (HMA) [9], which are three popular methods
to construct IT2 FS models for words from surveyed end-point
data, are also based on convex and normal T1 FSs, and can
only generate convex and normal IT2 FSs. So, a constrained
RT (CRT), which considers only convex and normal embedded
T1 FSs for an IT2 FS, may be more intuitive. This is our main
motivation.
More specifically, this paper makes the following contribu-
tions.
1) We propose a CRT for well-shaped IT2 FSs, i.e., the FOU
of a well-shaped IT2 FS can be completely covered by its
convex and normal embedded T1 FSs.
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Fig.3. Four T1 FSs, where A and B are convex and normal, C' is nonconvex
and normal, and D is convex and subnormal.

2) We show that IT2 FSs generated from the 1A, EIA, and
HMA are well-shaped IT2 FSs, and hence the CRT can
be applied to them.

3) We show that IT2 FSs output by the LWAs, OLWAs,
LWPMs, or perceptual reasoning (PR) [23], [42] are also
well-shaped IT2 FSs, and hence the CRT can be applied
to them.

4) We develop algorithms for computing five constrained un-
certainty measures (centroid, cardinality, fuzziness, vari-
ance, and skewness) for well-shaped IT2 FSs.

Although we focus on trapezoidal IT2 FSs in this paper, our
results can also be extended to Gaussian and other IT2 FSs, as
long as they are well shaped.

The rest of this paper is organized as follows: Section II
introduces the proposed CRT and explains where well-shaped
IT2 FSs come from. Section III describes how five constrained
uncertainty measures (centroid, cardinality, fuzziness, variance,
and skewness) can be computed for well-shaped IT2 FSs based
on the CRT. Section IV discusses the advantages and limitations
of the CRT. Finally, Section V draws conclusions.

II. CRT FOR WELL-SHAPED IT2 FSs BASED ON CONVEX AND
NORMAL EMBEDDED T1 FSs

In this section, we propose a CRT for well-shaped 1T2
FSs based on only convex and normal embedded T1 FSs.
Well-shaped IT2 FSs are the main kind of IT2 FSs used in
many applications of IT2 FLSs, particularly computing with
words [24].

A. Definitions

The definitions of convex and normal T1 FSs and well-shaped
IT2 FSs are given first.

Definition 1: [14] A T1 FS A is convex if and only if
ug (Axr + (1 — A)z2) > min(ua (x1), ua(xg)) for Vay,z €
X and A € [0,1]. |

Fig. 3 shows three convex T1 FSs A, B, and D, and a non-
convex T1 FS C.

Definition 2: [24] A T1 FS A is normal if and only if
sup,cx ua(z) = 1. |

Fig. 3 shows three normal T1 FSs A, B, and C, and a sub-
normal T1 FS D.

Definition 3: An IT2 FS A'is convex and normal if and only
if: 1) its UMF is convex and normal; and 2) its LMF is convex.

|

The IT2 FS A in Fig. 2 is convex and normal.
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Fig. 4. (a) Well-shaped IT2 FS, which is not necessarily trapezoidal.
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Fig.5. Illustration of convex and normal embedded T1 FSs which pass through
(p,u(p)).- @p <c.(d)p=c

Let [b, ¢] be the top base of A, and [, g] be the top base of A,
as shown in Fig. 2. Then,

Definition 4: AnIT2 FS A is well shaped if and only if: 1) it
is convex and normal; and 2) f > band g < ¢, i.e., the top base
of the LMF is completely within the top base of the UMF. W

Ain Figs. 2 and 4(a) are well shaped. Observe from Fig. 4(a)
that A does not need to be trapezoidal to be well shaped. Ain
Fig. 4(b) is not well shaped, although it is convex and normal,
because g > c.

B. CRT for Well-Shaped IT2 FSs

In this subsection, we propose a CRT for well-shaped
IT2 FSs.

Theorem 1: (CRT for well-shaped IT2 FSs) The FOU of a
well-shaped IT2 FS is the union of all its convex and normal
embedded T1 FSs.

]

For this CRT to be correct, we need to verify that the union
of all convex and normal embedded T1 FSs can cover the entire
FOU of a well-shaped IT2 FS, as indicated by the following.

Lemma 1: The FOU of a well-shaped IT2 FS can be com-
pletely covered by its convex and normal embedded T1 FSs.

]
Proof: Consider an arbitrary point (p, u(p)) within the FOU
of a well-shaped IT2 FS, whose UMF has top base [b, c]. There
can be only two cases.
1) p < ¢: We can construct an embedded T1 FS A, as shown
in Fig. 5(a), which starts from the LMF and then switches
to the UMF at x = p.

2) p > c¢: We can construct an embedded T1 FS A, as shown
in Fig. 5(b), which starts from the UMF and then switches
to the LMF at x = p.

In summary, for an arbitrary point within the FOU of a well-
shaped IT2 FS, we can find at least one convex and normal
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embedded T1 FS which passes through it. So, the FOU of a well-
shaped IT2 FS can be completely covered by only its convex
and normal embedded T1 FSs. |
The requirement “f > band g < ¢” in Definition 4 of a well-
shaped IT2 FS is very important, because of the following.”
Lemma 2: The FOU of a convex and normal IT2 FS cannot
be completely covered by only its convex and normal embedded
T1FSs, if f < band/or g > c. [ |
Proof: We use an example to demonstrate the case for f < b.
The case for g > c can be shown similarly.
Consider the point (p,u(p)) in Fig. 4(b), which belongs to
a convex and normal, but not well-shaped, IT2 FS. For any
normal embedded T1 FS to pass through (p, u(p)), it must have
membership 1 at at least one point on the left of z = p (because
no point on the right of £ = p can have membership 1), i.e.,
at least one point on the left of x = p must have membership
larger than u(p). Because u(p) is smaller than h (the height of the
LMF), any embedded T1 FS passing through (p, u(p)) must also
have some memberships larger than u(p) on the right of z = p.
In summary, for every normal embedded T1 FS, there are points
on both sides of x = p whose memberships are larger than u(p).
So, every normal embedded T1 FS passing through (p, u(p)) is
nonconvex. In other words, (p, u(p)) cannot be covered by any
embedded T1 FS that is both convex and normal. In fact, no point
within the dark trapezoidal area in Fig. 4(b) can be covered by
any convex and normal embedded T1 FS. |

C. Where Well-Shaped IT2 FSs Come From

In this subsection, we will show that IT2 FSs constructed from
three different word encoding approaches (IA [19], EIA [45],
and HMA [9]) are well-shaped IT2 FSs, and IT2 FSs output
by the perceptual computer [24], with four different computing
with words engines (LWA [36], [39], OLWA [35], [44], LWPM
[28], and PR [23], [42]), are also well-shaped IT2 FSs.

Theorem 2: All IT2 FSs constructed from the IA are well
shaped. |

Proof: The 1A [19] consists of two parts, the Data Part and
the F'S Part. In the Data Part, the interval end-point data for each
word are first obtained from survey, and then they go through bad
data processing, outlier processing, tolerance limit processing,
and reasonable interval processing. In each step, some intervals
may be removed. In the F'S Part, the nature of the FOU (interior,
left shoulder, or right shoulder, see Fig. 6) is first determined,
and then each of the word’s data intervals is individually mapped
into its respective T1 interior, left-shoulder or right-shoulder MF
(see Fig. 7), after which the LMF and UMF of the IT2 FS are
computed. This proof only concerns the last step, i.e., how the
LMF and UMF of the IT2 FSs in Fig. 6 are computed from the
T1 MFs in Fig. 7.

Consider first the case that the resulting IT2 FS is a left
shoulder, as shown in Fig. 6(a). Its parameters are computed

as [19]
Gyp =, _un {al(\LI)F} ©)

.....

2Note that this requirement was not considered in [33]. As a result, the CRT
in [33] has a flaw, which is corrected in this paper.
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Fig. 6. Examples of the union of (dashed) T1 MFs. The thick lines are

the LMFs and UMFs for the FOU. (a) Left-shoulder, (b) right-shoulder, and
(c) interior FOU.

Fig. 7. Examples of the T1 MFs mapped from interval end-points data.
(a) Left-shoulder, (b) right-shoulder, and (c) interior MF.

ayFp = max {al(\i)F } (7)
i=1,....,m*
EMF - i:rlnaxm* {b{\II)F } (9)

where al(\,ll)F and b;?F stand for ayp and by in Fig. 7(a) for
the 7th T1 MF in the FS Part, and m* is the total number of T1
MFs in the F'S Part. Because all m* such T1 MFs are normal, the
resulting left-shoulder IT2 FS is also normal. Since al(\?I)F < b&?F
Vi =1,...,m", itfollows from (6) and (8) that ay;r < by;r,and
from (7) and (9) that @yp < by, i.e., the resulting IT2 FS is
convex. Together these mean the resulting left-shoulder IT2 FS
is convex and normal. Since the top base of the UMF is [0, ayir ]
and the top base of the LMF is [0, ay;r ], Whereas ayp < aur,
the top base of the LMF is within the top base of the UMF. In
summary, the resulting left-shoulder IT2 FS is well shaped.

The proof for the right shoulder in Fig. 6(b) is very similar,
so it is omitted here.

Next we consider the case that the resulting IT2 FS is an
interior FOU, as shown in Fig. 6(c). In addition to ayp, amr,
byg» and byr in (6)—(9), its parameters ¢y, Guir, P> and u(p)
are computed from the interior T1 MF in Fig. 7(c) as [19]

_ : (i) S (i)
Cqp = . min {cMF ,  OMF =  Iax qCyp (10)
i=1,...,m i=1,..., m
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Fig. 8. Examples of the FOUs generated from the HMA. (a) Left-shoulder,
(b) right-shoulder, and (c) interior FOU.

_ bur(enr — anr) + avr (bur — cur)

= 11
P (emr — anr) + (byr — cur) (v
byip — P
u(p) = ————— (12)
byvir — cur
where

(i) (i)

i Ay, + b y
Cl(w)F — mr 5 MF. (13)

Because all m* T1 MFs are normal, the resulting interior IT2
FS is normal. Because a/y < il < (), Vi =1,...,m", it
follows that ayp < p < by and ayp < eyp < anr < by,
i.e., the resulting interior IT2 FS is also convex. Together these
mean that the resulting interior IT2 FS is convex and normal.
The LMF from the IA is always a triangle with apex (p, u(p)).
From Fig. 6(c), we can observe that this apex is the intersection
of the line connecting c¢\;p and by with the line connecting
cur and ayr, so cyp < p < ¢mr, i.€., the apex of the LMF
is within the top base of the UMF. Consequently, the resulting

interior IT2 FS is well shaped. |
Theorem 3: All IT2 FSs constructed from the EIA are well
shaped. |

This proof is very similar to the proof for Theorem 2, so it is
left to the reader.

Theorem 4: AllIT2 FSs constructed from the HMA are well
shaped. ]

Proof: The HMA [9] can construct an FOU from a group of
subjects and also a single subject. We only give the proof for
the first case here, as the proof for the second is very similar.

The HMA for a group of subjects also has two parts: the data
partand the FS part. Its data part is the same as that in the EIA and
similar to that in the IA, i.e., it uses bad data/outlier removal,
tolerance-limit processing, and reasonable interval processing
to clean up the intervals obtained from survey. The FS part
computes the overlap [0}, 0,] of the remaining intervals, and
[01, 0,-] then becomes the common top base of both the UMF and
the LMF, as shown in Fig. 8. The FS part also computes a;, a,,
b, and b, next from the remaining intervals (the details are not
important to this proof), and makes sure a; < a, < o0; <o, <
by < b,. It then connects the four points (a;, 0), (o7, 1), (0, 1),
and (b,,0) to form a trapezoidal normal UMF, and the four
points (a,,0), (0;,1), (or,1), and (b;,0) to form a trapezoidal
normal LMF, as shown in Fig. 8 (a; = a, = o; = 0 for the left
shoulder, and b; = b, = 0, = M for the right shoulder). Clearly,
both the UMF and the LMF are convex and normal, and hence
the IT2 FS is convex and normal. Additionally, the top base of
the LMF is always the same as the top base of the UMF, and
hence the IT2 FS is well shaped. |
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Fig. 9. LWA. (a) X;. (b) W;. (c) Yiwa.

Theorem 5: If all input IT2 FSs are well shaped, then the IT2
FS computed from the LWA is also well shaped. |

Proof: Let Xi, VT/,-, and Y be IT2 FSs shown in Fig. 9. An
LWA [36], [39] is defined as

Z?:l ﬁ/tj(z
Y Wi

Yiwa = (14)

It has been shown [36], [39] that the UMF Yiwa and the LMF
Y| wa can be computed by fuzzy weighted averages

Yiwa = 15)

L WiX;
Z

I%
|><§|

3 16
S (1o

Yiwa =

=

i

The height of Yy, is h, which is the minimum height of all
X, and W,.

YLWA and Yy, are computed using a-cut decomposition
[18]. When all X; and W; are well-shaped IT2 FSs, all X, and
W, are normal; consequently, Yiwa is also normal. Next we
need to show Yiwa is also convex.

Consider two a-cuts «; and as, where a1 < ag. Let the
a; a-cut on X; be [z, 2i;,], on W; be [w;j,w;j,], and
the corresponding a-cut on Yiwa be [y;1,v;,], i=1,...,n
j=1,2. Then, x;1 ; < Zi21, Ti1r > Tior, Wil < Wjz,, and

1241
w1, > Wia,,. yj,; and y; , are computed as [36], [39]
. Doisy Wilijl
= min i J=12 a7
Yi wi€lwijrwig,] Dy Wi ’
n
G = max  Z=LUTur oo (g

ZTL . )
i=1 Wi
To show Yiwa is convex, we only need to show that Yj1 18
nondecreasing with the increase of ¢, and y; , is nonincreasing
with the increase of oy, i.e., y2; > y1,; and yo, <y, when
ap < o9

wi €lwij 1,wij ]

n
B . Doy Witio,l
Yo = min Y~ .
wi€lwis, 1, wia, ] Zi:l w;
S win
. i=1 Wilil,
> min +
wi €lwiz, Wiz, ] Zi:l W;
S wiin
. i=1 Wilil,
> min sl — vy, (19)
w; €lwit,,win ] Zi:l Wi
n
B Yo Wi,
Yo, = max Y —
w; €[wia, 1, wiz, ] Zz‘:l wi
Sy wira
i— il r
< max +
wi €[wig 1, Wiz, ) Zizl w;
Si, win
— il r
< max L=l AT Yi,r- (20)

E?:1 wi

So, Yiwa is convex. In a similar way, we can also show that
Y wa is convex. Consequently, Yiwa is convex and normal.

Let the top base of Yiwa be [b, c], and the top base of Y wa
be [f, g], as shown in Fig. 9(c). Next we need to show f > band
g < c. From the LWA algorithm [36], [39], we have

n b n
min Ez 1 VWi max D i CiWi
o . o n .
wi €[b],ct] Zz 1 Wi w; €[bl,cl] Zi—l w;

E fzwz Zz 1gzwz

f = min , g= m
wze[fl 9’] Zz 1 Wi wle[f;mq/] Zz 1 Wi

Because f; > b;, and g; < ¢, it follows that

wi €[win 1,win ]

b=

b c=

T b,
f _ min Zzzl flwl > min Zz 1 0iWi
wielflgll iy Wi wielfloll Yoy Wi
n b ;
>  min le—w =c 21
w; €[bl,cl] Zz 1 Wi
g = max —Zijl giti <  max —Ziﬁl Cit
wielflgl]l i wi T wielflgll iy wi
< max Z‘ LG c. (22)
wi €[bY,cl] Ez 1 Wi
S0, Yiwa is a well-shaped IT2 FS. |
Theorem 6: 1If all input IT2 FSs are well shaped, then the IT2
FS computed from the OLWA is also well shaped. |
The OLWA is defined as [35], [44]
~ Wij(g(')
Yorwa = = (23)
1 Wi
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where o : {1,...,n} — {1,...,n} is a permutation function
such that {Xa(l),XU@), . ,XU(")} are in descending order.
Clearly, once ordered, the OLWA becomes an LWA, and hence
Theorem 6 is true.
Theorem 7: If all input IT2 FSs are well shaped, then the IT2
FS computed from the LWPM is also well shaped. |
Proof: The LWPM is defined as’ [28]
n i oq\ e
Y/LWPM = lim 721‘:1 WL~XL
e\ W
Clearly, the LWA is a special case of the LWPM when ¢* = 1.
As in the LWA, the UMF and LMF of ?LWPM are also computed
28]

(24)

_ . n W X1 1/q
YLWPM = th?* (Zf > (25)
7—1
) W X‘I 1/q
Yiwem = qlirf}* (ZZ W, ) (26)
i=1 -

from a-cut decomposition.

When ¢* = oo, Yowpm 18 1ndependent of I/V7 , and it equals the
maximum X When ¢* = —oo, YiwpMm is also independent of
W;, and it -equals the minimum X;. Since all X; are well- shaped
IT2 FSs, YLWPM is also a well-shaped IT2 FS when ¢* = +-o0.

Next we consider a finite ¢*. Without loss of generality, we
focus only on ¢* > 0. The case for ¢* < 0 can be shown very
similarly.

When all X; and W; are normal, Y{wpm is normal. Next we
show that Yiwpwm is convex when q* > 0.

Consider two a-cuts «; and «o, where oy < «s. Let the
a; a-cut on X; be [@ij1, xijr], on W, be [wij 1, wijr], and
the corresponding a-cut on Yiwem be [y, y5.,], i =1,...,n,
Jj=1,2. Then, z;1; < ®io 1, Tinr = Tio,rs Wit < Wiog, and
Wit > W2, Yj, and y; . are computed as [28]

n a 1/q"
Dol Wiy

. ij,! ;
Yjl = min , »J=12 (@27
o wi €lwij1,wij.,] Z?:l wi
* 1/q
Z;I;l ? ?jT
. = max _ 5 | = 1 2 28
Yj.r e ST o J=12(28)

To show that Yiwa is convex, we only need to show that y; ; is
nondecreasing with the increase of «;, and y; , is nonincreasing
with the increase of «y, i.e., y2; > y1,; and y», < y1, when
a; < (9.

Because both z¢" and z'/7" increase with z when ¢* > 0, we
have

o\ 1/

Sy wid
min izl Wiliny
n
w; €[w;a 1, wiz, ] Ei:l wi

Y21 =

3[28] used q — r; however, r has been used in this paper to denote right; to
avoid confusion, we use ¢ — ¢* in this paper.

4[28] states that In the IT2 case, this computation (weighted power mean
interval computation) is applied to both the upper and lower bounding functions
for the scores and weights to determine the corresponding upper and lower
bounding functions of the global score.
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N B

y

Fig. 10.  Yiwpm in the LWPM. X; and W; are shown in Fig. 9(a) and (b),
respectively.
n q Ve
) D1 Wil
> min -~ ..
wi €[wi,,wiz,, ] Zi:l wi
n e 1/¢*
. D1 Wil
> min —~n . =y (29)
w; €[wir,,wit,r] Zi:l wi
n 1/q*
Y max Z = wlx 27
2,r —
wi €[wiz, 1, wiz, ] Zzlzl w;
S et M
1 il
< max e
w; €[wia,1,wiz, ] Zi:l w;
SF win v
1 Wil
< max - =Y. (30)

< T~ .
wi €[wi,,wit,, ] Zy‘,:lwi

So, Yiwpum is convex. In a simila{way, we can also show that
Y wpm 1s convex. Consequently, Y1 wpym is convex and normal.
Next we need to show f > band g < cin Fig. 10

b= min Zi:’nl & bL (31)
wielb]. ]\ Doy wi
«\ 1/4q
n ) {]
c= max | iz i (32)
wiel].el] \ Doi_y Wi
) 1/q
n q
— min Ev—nliwlfz (33)
wielflol] \ Doimy Wi
g= max Eioy wig (34)

wielflgll \ Do

Because z'/4" increases with z when ¢* > 0, to show that f > b
and g < ¢, we only need to show that

q n
. _,w S w;gb
min 727 =1 fi >  max Z’ﬁll ] (35)
wi €[f!,97] § :izl wj w; €[b],ct] § :izl i
n q* n *
. ' w;g! ' w;c
min 72“1 19 < max izt Wit (36)

n —_ n -
wi€lflg] D oiq Wi wielbl ] Do W

\yhich can be proved similarly as (21) and (22) in the LWA. So,

YiwewMm is a well-shaped IT2 FS. |
Theorem 8: 1If all input IT2 FSs are well shaped, then the IT2
FS computed from PR is also well shaped. |

Proof: There are two types of PR.
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1) Firing interval based PR [23], where

> S X
Yo = 55— (37)
2z Fi

in which F; = [f,, f;] is the firing interval of the ith rule.
We can view F; as a special well-shaped IT2 FS F}, where

1, felf,fi

. (38)
0, otherwise.

uF;(f):uF[(f):{

Then, }71:1 in (37) becomes an LWA. It follows from The-
orem 4 that Yy is a well-shaped IT2 FS.
2) Similarity-based PR [42], where

- nooxXof

7y = S Nl (39)
e fi

in which f; is the firing level of the ith rule computed

from the similarities. Again, we can view f; as a special

well-shaped IT2 FS F; where

17 f:fl

. (40)
0, otherwise.

uF;(f)—qu(f)—{

Then, 575 in £39) becomes an LWA. It follows from The-
orem 4 that Yy is also a well-shaped IT2 FS. |

III. CONSTRAINED UNCERTAINTY MEASURES OF
WELL-SHAPED IT2 FSs USING THE CRT

As pointed out by Zadeh [51], uncertainty is an attribute
of information. He proposed to use the generalized theory of
uncertainty (GTU) to handle it. In GTU, uncertainty is linked
to information through the concept of granular structure — a
concept which plays a key role in human interaction with the
real world [11], [49], [50].

FSs are natural granules in GTU. However, before they can
be used in GTU, there is a need to quantify the uncertainty as-
sociated with them. Klir [15] states that once uncertainty (and
information) measures become well justified, they can very ef-
fectively be utilized for managing uncertainty and the associated
information. For example, they can be utilized for extrapolat-
ing evidence, assessing the strength of relationship between
given groups of variables, assessing the influence of given in-
put variables on given output variables, measuring the loss of
information when a system is simplified, and the like.

Centroid, cardinality, fuzziness, variance, and skewness are
all uncertainty measures for FSs. They have been extensively
studied in the literature for T1 FSs. In [38], we defined these
five uncertainty measures for arbitrary IT2 FSs based on the
Mendel-John RT, and our definitions have been extended to
general T2 FSs [53]. In this section, we define and compute
them for well-shaped IT2 FSs using the CRT.
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A. Constrained Centroid of a Well-Shaped IT2 FS Using the
CRT

The centroid ¢(A4) of a T1 FS A is defined as

Sy wia (i)
Zg\il ua (i)
Definition 5: [38] The (unconstrained) centroid C'; of an

IT2 FS fl, based on the Mendel-John RT, is the union of the
centroids of all its embedded T1 FSs A,, i.e.,

o(A) = (41)

i = e = [a(d), e (A)] (42)
VA,
where
c1(A) = min¢(A,) (43)
e (A) = max c(A.). (44)
]

It has been shown [6], [12], [20], [21], [25] that cl(A) and

¢, (A) can be expressed as

k N
P Doimy Tiug(w) + Zi:kJrl ziup (i)

¢(A) = min
(A kel,N 1] Zf:l () + Z?Lk+1 ug (i)
_ X wuae) + N wale) o
S () 0N wa ()
e, (A~) _ Z;C:l l'l’U/A(.TL) + Z;',V:kle Tiu g (xt)

max - =
REN= Y70 ua (@) + D iy wa (i)

_ S mua () + SN xiu,ﬁi(mi). 46)
ZZR:I ua (i) + Z;’\LRH ug ()

Switch points L and R, as well as ¢;(A) and ¢, (A4), can be com-

puted by using the iterative Karnik—Mendel (KM) algorithms

[12], [21], or many other more efficient algorithms [34].
Definition 6: The constrained centroid C*; of a well-shaped

IT2 FS fl, based on the CRT, is the union of the centroids of all
its convex and normal embedded T1 FSs ASCN ,l.e.,

Cq = U c (ASN) = [cf (121) ,Co (fl)} (47)
VACN
where
cf (121) = Inin ¢ (AECA) , Ch (A) = max c (ASN)
F (48)
[ |

Similar to the unconstrained centroid, for ¢f (A), we still need
a large weight for small = and a small weight for large z, i.e.,
the corresponding embedded T1 FS must switch from the UMF
to the LMF at some point. However, since this A" must be
convex and normal, we have two constraints.

1) Because A°Y must be normal, at least one point on it
must have membership 1. So, the left switch point L°
must satisfy . > b, where b is the left-most point on the
top base of A, as shown in Fig. 11(a).
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u = u -

A

1} A 1 ; A A"

7 S ; : /] S <

0 b f g ¢ X 0 b X
(@)

Fig. 11.  (a) A', the LMF that should be used in the KM algorithm for com-

puting ¢f (A). (b) A”, the LMF that should be used in the KM algorithm for

computing 5 (A).

2) Because ASN must be convex, if the switch point is be-
tween b and f, as shown in Fig. 11(a), then the MF of
AYN between b and f must be raised to &, the height of
the LMEF, to ensure that it is convex.

Though these two constraints seem complex, they can be
simultaneously satisfied by smartly redefining the LMF of A
and then using it in the KM algorithm, as explained in the
following algorithm for computing ¢f (A).

The algorithm for computing ¢f (A), the left end point of
the constrained centroid of a well-shaped IT2 FS:
(1) define
ui(x), x <b
ug(z) = ¢ h, b<a< f
B ug ((ﬂ), T > f ;

(2) useuy(x)anduz(z)inthe KM algorithm to compute
¢ (A).

The motivation for defining w4/ (x) = u;(x) for z < bis to
ensure that b is included in ever)7 embedded T1 FS, i.e., every
embedded T1 FS is normal.

Similarly, to compute ¢ (A), a small weight should be used
for small « and large weight for large z, i.e., the corresponding
AYN should still switch from the LMF to the UMF at some
point. Because ASN must be normal, at least one point on it
must have membership 1. So, the right switch point R° must
satisfy zr. < ¢, where c is the right-most point on the top base
of the UMF of A, as shown in Fig. 11(b). Again, by smartly
redefining the LMF of A, the KM algorithm can be used to
compute ¢ (A).

The algorithm for computing ¢ (A), the right end point of
the constrained centroid of a well-shaped IT2 FS:
1) define

ua(z), w<f
uyr(x) =< h, f<zxz<ec
ui(z), =g
2) usewu,r(x)andu 4 () inthe KM algorithm to compute

< (A).

-
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0.5 0.5

0 0
0 2 4 6 0 2 4 6
(@) (b)
Fig. 12. Embedded T1 FSs determining, (a) (:1(;1) (red dashed curve) and

cf (A) (blue solid curve), and (b) ¢, (A) (red dashed curve) and ¢ (A) (blue
solid curve).

The motivation for defining u’; (z) = u4 () for z > cis to
ensure that c is included in every embedded T1 FS, i.e., every
embedded T1 FS is normal.

Example 1: Consider the FOU shown in Fig. 12. The do-
main of x, [0,6], was discretized into 1000 equally-spaced
points in the computation, i.e., N = 1000. In this example,
C; = [2.6733,4.5745] and C;i = [2.7901,4.5604]. Observe
that ¢ C C;, which is intuitive, because Cii is computed
from only a subset of those embedded T1 FSs used to compute
C';. Also, observe from Fig. 12 that the actual embedded T1
FSs used for computing Cji and C'; are quite different: the em-
bedded T1 FSs for C;i are convex and normal, but those for C';
can be nonconvex and/or subnormal. |

B. Constrained Cardinality of a Well-Shaped IT2 FS Using
the CRT

Definition 7: [38] The normalized cardinality of a Tl FS A
is defined as

o) = 2050 o) (49)
N s ALy

where | X | = )y — x is the length of the universe of discourse
used in the computation. ]

Definition 8: [38] The (unconstrained) cardinality of an IT2
FS fl, based on the Mendel-John RT, is the union of normalized
cardinalities of all its embedded T1 FSs A, i.e.,

&EUNMZMMWM@} (50)
VA,
where
P (121> =minp(Ae), pr (fl) =maxp(4). (51
(]

In [38] we have shown that p;(A) and p,(A) can be
computed as

pi(A) =p(4)
pr(A) = p(A).

Definition 9: The constrained cardinality of a well-shaped
IT2 FS A, based on the CRT, is the union of normal-
ized cardinalities of all its convex and normal embedded

(52)
(33)
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0.5 0.5
0 0
0 2 4 6 0 2 4 6
(@) (b)
Fig. 13.  Embedded T1 FSs determining, (a) p; (/1) (red dashed curve) and

p§ (A) (blue solid curve), and (b) p, (A) (red dashed curve) and p (A) (blue
solid curve).

T1FSs ASY i,

%Emmpm?dzwcgmﬂ@] (54
where r
i () = min p (45%) (55)
o (4) = e p (477) (56)
|

Observe that A in (53) is already convex and normal; so,
pe(A) = p.(A) = p(A). However, A in (52) is generally not
normal. So, generally p§ (A) # p;(A).

Theorem 9: p§(A) in (55) is the cardinality of a minimally
modified convex and normal embedded T1 FS from A, by bring-
ing any single point on its top base to membership 1 and keeping
all other points untouched. |

Proof: As shown in [38], the LMF A of a well-shaped 1T2
FS A [an example is shown in Fig. 13(a)] has the smallest
cardinality among all the embedded T1 FSs. It is convex, but
generally subnormal. We need to bring at least one point on
A to membership 1 to make it normal. At the same time, we
need to make sure this modification introduces the smallest
increase to the cardinality of A. Clearly, this can be achieved
by bringing any single point on its top base to membership 1
and keeping all other points untouched, because the points on
the top base are the closest to membership 1. ]

Consequently, the following procedure can be used to com-
pute P7.

The algorithm for computing P§ = {p;’(ﬁ), pﬁ(fl)}, the
constrained cardinality of a well-shaped IT2 FS:
1) pi(A) = p(A) + %—‘(1 — h), where h is the height of
the LMF;
2) pt(A) = p(A), which equals the cardinality of the
UME

Note that when computing pf(fl) in the continuous space,
the modification to A may not be reflected numerically, as
\}im ‘])\(f—l( 1 — h) = 0. However, theoretically there should be
N —00

a “spike” at the top of A in computing pf (A).
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Fig. 14. A (solid lines) is more fuzzy than B (dashed lines).

Example 2: For the IT2 FS A shown in Fig. 13, which is the
same as the one shown in Fig. 12, P; = [0.7992, 3.9960] and
P¢ =10.8004, 3.9960]. Observe that P C Pj. [ ]

C. Constrained Fuzziness (Entropy) of a Well-Shaped IT2 FS
Using the CRT

The fuzziness (entropy) of a T1 FS is used to quantify the
amount of vagueness in it. A T1 FS C is most fuzzy when all its
memberships equal 0.5. A T1 FS A is more fuzzy than a T1 FS
B if Ais nearer to such a C than B is. For example, in Fig. 14 A
is more fuzzy than B because the memberships of A are closer
tou = 0.5.

Different fuzziness measures have been proposed [13] for
T1 FSs. In this paper, we use the following general fuzziness
measure [16].

Definition 10: [16] A general fuzziness measure of a T1 FS
A, f(A), is defined as

fA) = (ng <xz»>>>

(57

where h is a monotonically increasing function from R™ to R,
and, g : [0,1] — R is a function associated with each z;. Ad-
ditionally, 1) g(0) = ¢g(1) = 0; 2) g(0.5) is a unique maximum
of g; and 2) g must be monotonically increasing on [0, 0.5] and
monotonically decreasing on [0.5, 1]. |

Theoretically, f(A) can be any T1 fuzziness definition satis-
fying the requirements in Definition 10; however, we prefer a
normalized version such as Yager’s definition [47]

1

3} F

where (3 is a positive constant, because it converges as N
increases.

Several researchers have proposed definitions of the fuzziness
for IT2 FSs [2], [4], [30], [32], [38], [52]. The most popular one
is Wu and Mendel’s interval fuzziness definition.

Definition 11: [38] The (unconstrained) fuzziness I'; of an
IT2 FS fl, based on the Mendel-John RT, is the union of the
fuzziness of all its embedded T1 FSs A, , i.e.,

Fi= )= [ (4).5 (4)]

[ 2uate) = 1)
N7

fi(A)=1- (58)

(59)
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where f;(A) and f, (A) are the minimum and maximum of the
fuzziness of all A, respectively, i.e.,

fi (4) = min f(A.) (60)
£ (4) = max f(A.) (61)

and f(A.) satisfies Definition 3. [ |
The unconstrained fuzziness of an IT2 FS is computed by the
following theorem.
Theorem 10: [38] Let A.; be defined as

wa, (z) = {UA(m)a lug(z) —0.5] > |ug(z) — 0.5]

(62)
ug(z), |ug(z)—0.5] <|ug(z)—0.5]
and A.o be defined as

ug(z), wi(x)<0.5,us(x) <05
ua,, () =< ug(z), wi(z)>0.5,ua(xz)>05 (63)
0.5, otherwise.
Then (60) and (61) can be computed as
fi (A) = r(au) (64)
5 (A) = f(Ae) (65)

where f(A) is defined in (57). [ |
In this paper, we define the constrained fuzziness of a well-
shaped IT2 ES as follows.
Definition 12: The constrained fuzziness Ff5 of a well-

shaped IT2 FS fl, based on the CRT, is the union of the fuzziness
of all its convex and normal embedded T1 FSs AECN ,i.e.,

Fo= U 1At = [ (A). 5 (A)] @0
VASN

where
fi(A) = min F(A7) (67)
clAY — CN
fr(A)—VAg?gf(Ae )- (68)
O

The following two theorems show how the constrained fuzzi-
ness of a well-shaped IT2 FS can be computed.

Theorem 11: f{(A) in (67) is the same as f;(A) in (64). W

Proof: f (fl) in (64) is the smallest fuzziness of all possible
embedded T'1 FSs, no matter convex or not, or normal or not. We
only need to show that the corresponding A.; in (62) is convex
and normal. Then it follows that ff (A) = fi(A) = f(A.1).

Let 2’ be the solution that
ug (') —0.5=0.5 —uy (2) (69)

ie., ug(2') and uy (2) are at the same distance to membership

0.5. (69) is equivalent to
ua (@) +ug(@) = 1. (70)

Generally the solution of 2’ consists of two intervals, [} |, 77 ,]
and [7).1,2),]. [7,1,2,,] Clg,d] in Fig. 15, because
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Fig. 15. Illustration of A, (the red dashed curve).
u ~
1l A
SF-——-
0 frg X X
(a)
Fig. 16. Illustration of A, (red dashed curve) for different heights of the
LMF.

ua(9) +uilg) > 1, ua(d) +ui(d) = 0,and uy (z) + uy(x)
is nonincreasing in [g, d] according to the definition of a well-
shaped IT2 FS. Similarly, we can show [z} |, 2] ,] € [a, f], and
Fig. 15 shows a special case that z; | = xQQ = 1.

Then according to (62), A.1 is the red dashed curve in Fig. 15,
i.e., it first stays on the LMF, then switches to the UMF at z =
) ,, and then switches back to the LMF at x =z ;. Clearly,
Aél is convex and normal. This completes the proof. |

Theorem 12: f¢(A) in (68) is the fuzziness of a minimally
modified convex and normal embedded T1 FS from A.» in (63),
by bringing any single point on its top base to membership 1
and keeping all other points untouched. |

Proof: A.» defined in (63) of a well-shaped IT2 FS A has the
largest fuzziness. Itis convex, but generally subnormal, as shown
in Fig. 16. We need to bring one point on A.o to membership
1 to make it normal, but at the same time, keep it convex and
minimize the reduction to its fuzziness.

Considerz = p € [f, g, as shown in Fig. 16. Then, according
to the definition of a well-shaped IT2FS, u 5 (p) = 1.If ua (z) <
0.5, as shown in Fig. 16(a), then according to the definition of
Ago in (63), ug,, (p) = 0.5, i.e., every point on the top base
of A.5 has membership 0.5. We can bring any such point to
membership 1 to make the modified A, normal and convex.
At the same time, because the points on the top base of A, are
closest to membership 1, this introduces the minimum decrease
to its fuzziness. Note that we cannot choose a point not on the
top base because then the modified A5 is nonconvex.

On the other hand, if w4 (x) > 0.5, as shown in Fig. 16(b),
then according to the definition of A,y in (63), ua,,(p) =
ua(p). Again, we can bring (p,ua,,(p)) to membership
1 to make the modified A.» normal and convex. Because
(p,ua,,(p)) is the closest point on A.o to membership 1, this
introduces the minimum decrease to its fuzziness. |

In summary, the following procedure can be used to compute
the constrained fuzziness of a well-shaped IT2 FS.
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[

4 6 0 2 4 6
(a) (b)
Fig. 17. Embedded T1 FSs determining, (a) f;(A) (red dashed curve) and
f{ (A) (blue solid curve), and (b) f, (A) (red dashed curve) and f;(A) (blue
solid curve).

Fig. 18.  Illustration of the variance of T1 FSs.

The algorithm for computing F'5 = [ fr(A), e ([l)} , the
constrained fuzziness of a well-shaped IT2 FS:
1) ff(A) = fi(A) = f(A.1), where A, is defined in
(62);
2) f(A) = f(A.s), where A,z = A,y in (63), except
that a single = € [f,g] on A.o is modified to have
membership 1.

Note that when computing f¢ (fl) in the continuous space,
the modification to A.» may not be reflected numerically, as
the integral on the “spike” is zero. However, theoretically there
should be a “spike” at the top of A, in computing f¢(A).

Example 3: Consider the IT2 FS Ain Fig. 17, which is the
same as the IT2 FS shown in Fig. 12. According to (62) and (63),
Ac1 and A.o are as shown in Fig. 17(a) and (b), respectively, as
the red dashed curve. When Yager’s definition is used and § =
1, Fy = [0.0303,0.7763], and F'; = [0.0303, 0.7759]. Observe
that 5 C Fy. |

D. Variance of an IT2 FS

The variance of a Tl FS A measures its compactness, i.e., a
smaller (larger) variance means A is more (less) compact. For
example, in Fig. 18, A has smaller variance than B because it is
more compact.

There are different definitions of the variance of a T1 FS [3],
[17]. In this paper, we use the following relative variance of A,
to A [38].

Definition 13: [38] The relative variance of an embedded
T1FS A, to an IT2 FS A, v (A.), is defined as

S o= e (A)] i e)

Vil = e ) o
where
(-,
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is the center of the centroid of A, C' 7 thatis givenin (42). H
Definition 14: [38] The variance of an IT2 FS /L V. is the
union of relative variance of all its embedded T1 FSs 4., i.e.,

Vi= Uit = [ (4) 0 (4)

¢

(73)

where v;(A) and v, (A) are the minimum and maximum relative
variance of all A., respectively, i.e.,

u (4) =minvg(A,) (74)
vy ([l) = I\élff( v (Ae). (75)
]

The iterative KM Algorithms can be used to compute v;(A)
and v, (A) [38].

In this paper, we define the constrained variance of a well-
shaped IT2 FS as follows.

Definition 15: The constrained variance V;f of a well-

shaped IT2 FS fl, based on the CRT, is the union of the relative
variance of all its convex and normal embedded T1 FSs A",

i.e.,
Vi= U v (AEV) = [vf ([l) , Uy (/1)} (76)
VACN
where
vy (jl) = VIE}Q v (ASA) (77)
vy ([l) = max vy (Aem\) . (78)
| |

The computation of the constrained variance is much more
complicated that the constrained centroid/cardinality/fuzziness,
and we do not have a closed-form sol~ution for it~. So, the follow-

ing algorithm is used to compute vj (A) and v¢ (A), by minimally
modifying the corresponding A, in computing v; (A) and v, (A).

The algorithm for computing V§ = [v,((fl), vl (/Nl)}, the
constrained variance of a well-shaped IT2 FS.
1) For vf(A):
a) use the KM algorithm to compute v;(A), and
identify the corresponding A, ;
b) if A, is not already normal, then minimally mod-
ify it to make it normal;
c¢) if A, is not already convex, then minimally mod-
ify it to make it convex.
2) For v¢(A):
a) use the KM algorithm to compute v, (A), and
identify the corresponding A.;
b) if A, is not already normal, then minimally mod-
ify it to make it normal;
c¢) if A, is not already convex, then minimally mod-

ify it to make it convex.

To minimally modify a subnormal A, to make it normal, we
pick a point on A, that is also on A and is closest to either
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o o

b ¢ X b ¢ o) b

(@) (b) (©

Fig. 19.  Procedure to compute v} (A). (a) A, for computing v; (A). (b) Min-
imal modification to make A, normal. (¢) Minimal modification to make A,
convex.

1 " 4 1 ! A 1 ¢ 4
Hal ' *\\ /:\
] A
ZL(A-])C * hc(.i; * ':(j)C *
(a) (b) (©

Fig. 20. Procedure to compute v(A). (a) A, for computing v, (A).
(b) Minimal modification to make A, normal. (c) Minimal modification to
make A, convex.

0.5 0.5

0 0 .
0 2 4 6 0 2 4 6

(a) (b)

Fig. 21. Embedded T1 FSs determining, (a) U](A) (red dashed curve) and

vlc(fi) (blue solid curve), and (b) v, (A) (red dashed curve) and vf (/I) (blue
solid curve).

(b,1) or (c, 1) on the top base of A (for example, the blue point
in Fig. 19(a) for vf (fl), and the blue point in Fig. 20(a) for
v¢(A)), and then bring it to (b, 1) or (c, 1), whichever is closer
(for example, Fig. 19(b) for vf (A), and Fig. 20(b) for ve (A)).

To minimally modify a nonconvex A, to make it convex, we
first compute

hy = maxu(zx')

hy = maxu(x'), max

r'<w

(79)

and then change u(z) to min(hy, he) if u(z) < hy and u(z) <
hy. Usually most u(x) will remain unchanged, as shown in
Fig. 19(c) for vf (A) and Fig. 20(c) for v¢ (A).

Example 4: Consider the IT2 FS A in Fig. 21, which
is the same as the IT2 FS shown in Fig. 12. We have
Vi =1[0.3301,2.3215] and V¢ =[0.3301,2.0031]. Observe

that V¢ C V3. o

E. Skewness of an IT2 FS

The skewness of a Tl FS A, s(A), is an indicator of its
symmetry. For example in Fig. 22, A has skewness smaller than
zero because it skews to the right, B has skewness larger than
zero because it skews to the left, and C' has skewness zero
because it is symmetrical.

There are different definitions of skewness for T1 FSs [1],
[29], [37]. In this paper, we use the following relative skewness
of A, to A [38].
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Fig.22.  Illustration of the skewness of T1 FSs.

Definition 16: The relative skewness of an embedded T1 FS
ActoanIT2FS A, s ;(A,), is defined as

POl [xi —c (1‘1)}3 pa, (z;)
S pa, ()

where c(fl) is the center of the centroid of A [see (72)]. [ |
Definition 17: The skewness of an IT2FS A, S ;, s the union
of the relative skewness of all its embedded T1 FSs A,, i.e.,

Sp=sa(4) = [Sz (A) > S (A)]

e

si(A) = (80)

81)

where s;(A) and s, (A) are the minimum and maximum relative
skewness of all A, respectively, i.e.,

s (4) = mins; (40) (82)
S, (fl) = rgﬂx 55(Ae). (83)
|

The iterative KM Algorithms can also be used to compute
si(A) and s, (A) [38].

The computation of the constrained skewness is
also much more complicated that the constrained cen-
troid/cardinality/fuzziness, and we do not have a closed-form
solution for it. So, the following algorithm is used to compute

s7(A) and s (A), by minimally modifying the corresponding

A, in computing s;(A) and s, (A).

The algorithm for computing S5 = [s}’([l), ¢ ([1)} , the
constrained variance of a well-shaped IT2 FS.
1) For s{(A):
a) use the KM algorithm to compute s;(A), and
identify the corresponding A.;
b) if A, is not already normal, then minimally mod-
ify it to make it normal;
¢) if A, is not already convex, then minimally mod-
ify it to make it convex.
2) For s%(A):
a) use the KM algorithm to compute s, (A), and
identify the corresponding A.;
b) if A, is not already normal, then minimally mod-
ify it to make it normal;
¢) if A, is not already convex, then minimally mod-
ify it to make it convex.
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e(d)

o(d) o(A)

(a) (b) (©)

Fig.23.  Procedure to compute s} (A). (a) A, for computing s;(A). (b) Min-
imal modification to make A, normal. (c) Minimal modification to make A,
convex.

Fig. 24. Procedure to compute s¢(A). (a) A, for computing s, (A).
(b) Minimal modification to make A, normal. (c) Minimal modification to
make A, convex.

(a) (b)

Fig. 25. Embedded T1 FSs determining, (a) sl(/i) (red dashed curve) and
57 (A) (blue solid curve), and (b) s, (A) (red dashed curve) and s§ (A) (blue
solid curve).

X
a b b ¢ c d

Fig. 26. Completely filled-in A and B, and the corresponding embedded T1
FSs used by the CRT to compute their centroids.

The procedures for minimally modifying a subnormal A, to
make it normal, and for minimally modifying a nonconvex A, to
make it convex, are the same as those in the previous subsection.
Tlustrative examples for s{ (A) and s¢(A) are shown in Figs. 23
and 24, respectively.

Example 5: Consider the IT2 FS Ain Fig. 25 , which is
the same as the IT2 FS shown in Fig. 12. We have S; =
[—4.1481,2.0321] and 55 = [—3.1735,1.9299]. Observe that

S;I{CSA' |

IV. ADVANTAGES AND LIMITATIONS OF THE CRT

The Mendel-John RT [22] has been widely used to compute
the centroid of IT2 FSs. However, its output may be counter
intuitive for completely filled-in FOUs, as shown in Fig. 26.
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Fig. 27. Homotopic embedded T1 FS of A.

When the Mendel-John RT is used, C'; = [a,d] = C}5, which
is counter intuitive. In contrast, the CRT gives Cji =[e,¢] C
[a, d], where ¢; is the centroid of the red dashed T1 FS in Fig. 26,
and ¢, is the centroid of the red dotted T1 FS. Similarly, the CRT
gives C%, = [}, ¢;] C [a, d], where ¢} is the centroid of the blue
dashed T1 FS in Fig. 26, and ¢. is the centroid of the blue dotted
T1 FS. We have Cg C Cji, which is more reasonable than the
Mendel-John RT result.

The FOU of an IT2 FS may also be completely covered by
homotopic embedded T1 FSs of the LMF and the UMF, i.e.,
A* = )1A+ (1 -21)A, a €[0,1]. However, when both A and
A are symmetric about x = p, as shown in Fig. 27, A* is always
symmetric about z = p regardless of A. So, the centroid of A*
is always p, and the centroid of A becomes a single number p,
which is counter intuitive. Additionally, most A, are subnormal.
The CRT does not have these problems.

Finally, we need to point out a limitation of the CRT. In a
Mamdani IT2 fuzzy logic system [21] that combines the fired
rules by using the union, the resulting FOU will be subnormal
and nonconvex, so the CRT cannot be applied. In contrast, the
Mendel-John RT can accommodate this. Nevertheless, we sug-
gest that the main applications of the CRT should be computing
with words [24], as we have shown in Section II-C that IT2
FSs constructed from three different word encoding approaches
(IA, EIA, and HMA) are well shaped, and IT2 FSs output by
the perceptual computer with four different computing with
words engines (LWAs, OLWAs, LWPMs, and PR), are also well
shaped.

V. CONCLUSION

The Mendel-John RT has been widely used in developing
many theoretical results for IT2 FSs, including uncertainty mea-
sures, similarity measures, subsethood measures, LWAs, OL-
WAs, LWPMs, and so on. Nonconvex and/or subnormal em-
bedded T1 FSs are included in such RT, whereas in practice, we
almost always use only convex and normal FSs. In this paper, we
have proposed a CRT for well-shaped IT2 FSs, and shown that
IT2 FSs generated by three different word encoding approaches
(IA, EIA, and HMA) and four different computing with words
engines (LWA, OLWA, LWPM, and PR) are all well-shaped
IT2 FSs. We have also proposed algorithms for computing the
constrained centroid, cardinality, fuzziness, variance and skew-
ness of well-shaped IT2 FSs based on the CRT. These measures
can be used to extend the principles of uncertainty [10], [14]
from T1 FSs to IT2 FSs, and to compute the similarity of two
well-shaped IT2 FSs [40].
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Our future research will compare the constrained uncertainty
measures with the unconstrained ones in such applications and
investigate which category is more favorable. Additionally, we
will extend the CRT from IT2 FSs to general T2 FSs.
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